Development of a NiOxHy/chitosan-MWCNTs modified screen-printed electrode for dual detection of glucose and insulin

dc.contributor.advisorEstupiñan Durán, Hugo Armando
dc.contributor.authorSantacruz Zambrano, Solvey Isleny
dc.contributor.orcidESTUPIÑAN DURAN, HUGO ARMANDO [0000000296073364]
dc.contributor.researchgroupGrupo de Investigación en Biosuperficies
dc.date.accessioned2026-02-04T18:20:30Z
dc.date.available2026-02-04T18:20:30Z
dc.date.issued2026-02-03
dc.descriptionIlustraciones
dc.description.abstractThe development of advanced electrochemical sensors depends on the rational design and optimization of functional materials with high electrocatalytic activity, stability, and sensitivity. This thesis reports the synthesis, integration, and electrochemical evaluation of a non enzymatic sensing platform based on nickel oxyhydroxide-decorated multi-walled carbon nanotubes (NiOxHy@MWCNTs) dispersed in a chitosan matrix and deposited onto gold screen printed electrodes (SPEs) for the separate detection of glucose and insulin. The NiOxHy @MWCNTs composite was synthesized via hydrothermal treatment using nickel nitrate hexahydrate as the precursor and characterized by Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) to confirm its structural, morphological, and elemental properties. Electrochemical characterization using cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry, and electrochemical impedance spectroscopy (EIS) revealed that SPEs modified with the 2 mM hydrothermal powder exhibited the most favorable interfacial properties: the lar gest electroactive surface area (Randles–Ševčík analysis), highest double layer capacitance (Cdl), and lowest charge-transfer resistance (Rct). These attributes translated into superior analytical performance for both glucose and insulin detection. Compared with unmodified SPEs, the modified electrodes displayed enhanced current responses and well defined redox features for both analytes, confirming the role of the NiOxHy@MWCNTs–chitosan composite in improving electron transfer and catalytic activity. Overall, these findings demonstrate the potential of the optimized 2 mM NiOxHy@MWCNTs chitosan/SPE platform as a cost-effective and versatile sensing material for targeted analyte detection, contributing to the advancement of next-generation electrochemical sensor technologies with applications in miniaturized and point-of-care diagnostic devices.eng
dc.description.abstractEl desarrollo de sensores electroquímicos avanzados depende del diseño racional y la optimización de materiales funcionales con alta actividad electrocatalítica, estabilidad y sensibilidad. Esta tesis presenta la síntesis, integración y evaluación electroquímica de una plataforma de detección no enzimática basada en nanotubos de carbono de paredes múltiples decorados con oxihidróxido de níquel (NiOxHy@MWCNTs), dispersos en una matriz de quitosano y depositados sobre electrodos serigrafiados de oro (SPEs) para la detección independiente de glucosa e insulina. El compuesto NiOxHy@MWCNTs se sintetizó mediante tratamiento hidrotermal utilizando como precursor el nitrato de níquel hexahidratado, y fue caracterizado por espectroscopía Raman, difracción de rayos X (XRD), microscopía electrónica de barrido (SEM) y espectroscopía de dispersión de energía de rayos X (EDS) para confirmar sus propiedades estructurales, morfológicas y elementales. La caracterización electroquímica, mediante CV, LSV, y EIS, reveló que los SPEs modificados con el polvo hidrotermal 2 mM presentaron las propiedades interfaciales más favorables: la mayor área electroactiva (análisis de Randles–Ševčík), la capacitancia de doble capa (Cdl) más alta y la menor resistencia a la transferencia de carga (Rct). Estos atributos se tradujeron en un rendimiento analítico superior para la detección de glucosa e insulina. En comparación con los SPEs sin modificar, los electrodos modificados mostraron respuestas de corriente mejoradas y picos redox bien definidos para ambos analitos, confirmando el papel del compuesto NiOxHy@MWCNTs–quitosano en la mejora de la transferencia electrónica y la actividad catalítica. En conjunto, estos resultados demuestran el potencial de la plataforma optimizada 2 mM NiOxHy@MWCNTs–quitosano/SPE como material sensor versátil y de bajo costo para la detección dirigida de analitos, contribuyendo al avance de las tecnologías de sensores electroquímicos de nueva generación con aplicaciones en dispositivos miniaturizados y de diagnóstico en el punto de atención. (Texto tomado de la fuente)spa
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaElectroquímica Aplicada a Sensores
dc.format.extent1 recurso en líne (108 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89394
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.relation.referencesJ. Baranwal, B. Barse, G. Gatto, G. Broncova, and A. Kumar, “Electrochemical Sensors and Their Applications: A Review,” Chemosensors 2022, Vol. 10, Page 363, vol. 10, no. 9, p. 363, Sep. 2022, doi: 10.3390/CHEMOSENSORS10090363.
dc.relation.referencesS. Khataee, G. Dehghan, Z. Shaghaghi, A. Khataee, and M. Amini, “A novel bifunctional electrochemical nanosensor for simultaneous detection of glucose and insulin based on NiO/Co3O4@CuAl LDH-MWCNT nanocomposite-modified carbon paste electrode,” Microchemical Journal, vol. 201, p. 110644, Jun. 2024, doi: 10.1016/J.MICROC.2024.110644.
dc.relation.referencesR. Singh, R. Gupta, D. Bansal, R. Bhateria, and M. Sharma, “A Review on Recent Trends and Future Developments in Electrochemical Sensing,” ACS Omega, 2023, doi: 10.1021/ACSOMEGA.3C08060/ASSET/IMAGES/LARGE/AO3C08060_0013.JPEG.
dc.relation.referencesWorld Health Organization, “Diabetes.” Accessed: Feb. 11, 2024. [Online]. Available: https://www.who.int/health-topics/diabetes#tab=tab_1
dc.relation.referencesE. H. El-Ads, A. Galal, and N. F. Atta, “Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode – Towards a novel non-enzymatic glucose sensor,” Journal of Electroanalytical Chemistry, vol. 749, pp. 42–52, Jul. 2015, doi: 10.1016/J.JELECHEM.2015.04.033.
dc.relation.referencesS. Chatterjee, K. Kamalasekaran, S. Malaiappan, and A. K. Sundramoorthy, “Electrodeposition of nickel nanoparticles on graphene/iron (III) phthalocyanine-4,4’,4,”,4’”-tetrasulfonic acid coated electrode for glucose sensing,” Inorg Chem Commun, vol. 161, p. 112140, Mar. 2024, doi: 10.1016/J.INOCHE.2024.112140.
dc.relation.referencesM. Liu, M. Yang, M. Wang, H. Wang, and J. Cheng, “A Flexible Dual-Analyte Electrochemical Biosensor for Salivary Glucose and Lactate Detection,” Biosensors 2022, Vol. 12, Page 210, vol. 12, no. 4, p. 210, Mar. 2022, doi: 10.3390/BIOS12040210.
dc.relation.referencesS. A. Antar et al., “Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments,” Biomedicine & Pharmacotherapy, vol. 168, p. 115734, Dec. 2023, doi: 10.1016/J.BIOPHA.2023.115734.
dc.relation.referencesI. Šišoláková et al., “Electrochemical determination of insulin at CuNPs/chitosan-MWCNTs and CoNPs/chitosan-MWCNTs modified screen printed carbon electrodes,” Journal of Electroanalytical Chemistry, vol. 860, p. 113881, Mar. 2020, doi: 10.1016/J.JELECHEM.2020.113881.
dc.relation.referencesJ. Hovancová, I. Šišoláková, R. Oriňaková, and A. Oriňak, “Nanomaterial-based electrochemical sensors for detection of glucose and insulin,” Journal of Solid State Electrochemistry 2017 21:8, vol. 21, no. 8, pp. 2147–2166, Mar. 2017, doi: 10.1007/S10008-017-3544-0.
dc.relation.referencesK. Guo, Y. Li, and H. Bian, “Development of an electrochemical sensor for simultaneous determination of glucose and insulin: Application for accurate classification of diabetes mellitus,” Int J Electrochem Sci, vol. 18, no. 7, p. 100212, Jul. 2023, doi: 10.1016/J.IJOES.2023.100212.
dc.relation.referencesJ. Wang, “Electrochemical glucose biosensors,” Chem Rev, vol. 108, no. 2, pp. 814–825, Feb. 2008, doi: 10.1021/CR068123A/ASSET/CR068123A.FP.PNG_V03.
dc.relation.referencesI. Šišoláková et al., “Influence of a polymer membrane on the electrochemical determination of insulin in nanomodified screen printed carbon electrodes,” Bioelectrochemistry, vol. 130, p. 107326, Dec. 2019, doi: 10.1016/J.BIOELECHEM.2019.06.011.
dc.relation.referencesJ. Yu, S. Wang, L. Ge, and S. Ge, “A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination,” Biosens Bioelectron, vol. 26, no. 7, pp. 3284–3289, Mar. 2011, doi: 10.1016/J.BIOS.2010.12.044.
dc.relation.referencesJ. Zhao, “Simultaneous determination of plasma creatinine, uric acid, kynurenine and tryptophan by high-performance liquid chromatography: method validation and in application to the assessment of renal function,” Biomedical Chromatography, vol. 29, no. 3, pp. 410–415, Mar. 2015, doi: 10.1002/BMC.3291.
dc.relation.referencesN. E. Azmi et al., “A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes,” Biosens Bioelectron, vol. 67, pp. 129–133, May 2015, doi: 10.1016/J.BIOS.2014.07.056.
dc.relation.referencesY. Kumada, S. Katoh, H. Imanaka, K. Imamura, and K. Nakanishi, “Development of a one-step ELISA method using an affinity peptide tag specific to a hydrophilic polystyrene surface,” J Biotechnol, vol. 127, no. 2, pp. 288–299, Jan. 2007, doi: 10.1016/J.JBIOTEC.2006.07.011.
dc.relation.referencesK. Ortner, W. Buchberger, and M. Himmelsbach, “Capillary electrokinetic chromatography of insulin and related synthetic analogues,” J Chromatogr A, vol. 1216, no. 14, pp. 2953–2957, Apr. 2009, doi: 10.1016/J.CHROMA.2008.11.008.
dc.relation.referencesH. Zhang et al., “Electrochemical Detection of Insulin Based on Screen Printed Electrode Modified by Nickel Hydroxide,” 2018 IEEE 1st International Conference on Micro/Nano Sensors for AI, Healthcare, and Robotics, NSENS 2018, pp. 55–59, Jul. 2018, doi: 10.1109/NSENS.2018.8713631.
dc.relation.referencesY. Lin, L. Hu, L. Li, and K. Wang, “Facile synthesis of nickel hydroxide–graphene nanocomposites for insulin detection with enhanced electro-oxidation properties,” RSC Adv, vol. 4, no. 86, pp. 46208–46213, Sep. 2014, doi: 10.1039/C4RA06648K.
dc.relation.referencesS. E. Moradi, A. Shokrollahi, and F. Shahdost-Fard, “Nickel cobalt oxide nanoparticles-decorated multi-walled carbon nanotubes as a high-performance sensing platform for the detection of tramadol in human biofluids,” J Alloys Compd, vol. 1016, p. 178837, Feb. 2025, doi: 10.1016/J.JALLCOM.2025.178837.
dc.relation.referencesA. Hulanicki, S. Glab, and F. Ingman, “Chemical sensors: definitions and classification,” Pure and Applied Chemistry, vol. 63, no. 9, pp. 1247–1250, Jan. 1991, doi: 10.1351/PAC199163091247.
dc.relation.referencesK. Sankar, U. Kuzmanović, S. E. Schaus, J. E. Galagan, and M. W. Grinstaff, “Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial,” ACS Sens, vol. 9, no. 5, pp. 2254–2274, May 2024, doi: 10.1021/ACSSENSORS.4C00043/ASSET/IMAGES/MEDIUM/SE4C00043_0016.GIF.
dc.relation.referencesC. Sabu, T. K. Henna, V. R. Raphey, K. P. Nivitha, and K. Pramod, “Advanced biosensors for glucose and insulin,” Biosens Bioelectron, vol. 141, p. 111201, Sep. 2019, doi: 10.1016/J.BIOS.2019.03.034.
dc.relation.referencesH. G. J. M. Guolin Wu, “Chitosan-based Biomaterials.”
dc.relation.referencesH. Bagheri, A. Afkhami, H. Khoshsafar, M. Rezaei, S. J. Sabounchei, and M. Sarlakifar, “Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode,” Anal Chim Acta, vol. 870, no. 1, pp. 56–66, Apr. 2015, doi: 10.1016/J.ACA.2015.03.004.
dc.relation.referencesW. C. Lee et al., “Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer,” Biosens Bioelectron, vol. 130, pp. 48–54, Apr. 2019, doi: 10.1016/J.BIOS.2019.01.028.
dc.relation.referencesG. Csiffáry, P. Futo, N. Adányi, and A. Kiss, “Ascorbate Oxidase-Based Amperometric Biosensor for l-Ascorbic Acid Determination in Beverages,” Food Technol Biotechnol, vol. 54, no. 1, p. 31, Jan. 2016, doi: 10.17113/FTB.54.01.16.4135.
dc.relation.referencesP. Jakubec, V. Urbanová, Z. Medříková, and R. Zbořil, “Advanced Sensing of Antibiotics with Magnetic Gold Nanocomposite: Electrochemical Detection of Chloramphenicol,” Chemistry - A European Journal, vol. 22, no. 40, pp. 14279–14284, Sep. 2016, doi: 10.1002/CHEM.201602434,.
dc.relation.referencesM. Elfiky, N. Salahuddin, A. Hassanein, A. Matsuda, and T. Hattori, “Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials,” Microchemical Journal, vol. 146, pp. 170–177, May 2019, doi: 10.1016/J.MICROC.2018.12.034.
dc.relation.referencesT. B. Ha et al., “Electro-Immobilization of Acetylcholinesterase Using Polydopamine for Carbaryl Microsensor,” J Electron Mater, vol. 47, no. 2, pp. 1686–1693, Feb. 2018, doi: 10.1007/S11664-017-5880-3/METRICS.
dc.relation.referencesC. M. A. Brett and A. M. O. Brett, Electrochemistry : principles, methods, and applications. Oxford University Press, 1993.
dc.relation.referencesH. Yamada, K. Yoshii, M. Asahi, M. Chiku, and Y. Kitazumi, “Cyclic Voltammetry Part 1: Fundamentals,” Electrochemistry, vol. 90, no. 10, pp. 102005–102005, Oct. 2022, doi: 10.5796/ELECTROCHEMISTRY.22-66082.
dc.relation.referencesJ. Shepa et al., “Nio nanoparticles for electrochemical insulin detection,” Sensors, vol. 21, no. 15, Aug. 2021, doi: 10.3390/s21155063.
dc.relation.referencesK. Wandelt, “SURFACE SCIENCE AND ELECTROCHEMISTRY,” 2018.
dc.relation.referencesH. Sarvazad, S. H. Cahngaripour, N. Eskandari Roozbahani, and B. Izadi, “Evaluation of electrolyte status of sodium, potassium and magnesium, and fasting blood sugar at the initial admission of individuals with COVID-19 without underlying disease in Golestan Hospital, Kermanshah,” New Microbes New Infect, vol. 38, p. 100807, Nov. 2020, doi: 10.1016/J.NMNI.2020.100807.
dc.relation.referencesQ. Wang et al., “Insulin resistance and systemic metabolic changes in oral glucose tolerance test in 5340 individuals: An interventional study,” BMC Med, vol. 17, no. 1, pp. 1–12, Nov. 2019, doi: 10.1186/S12916-019-1440-4/FIGURES/6.
dc.relation.referencesS. H. Alzahrani, M. Baig, M. M. Aashi, F. K. Al-shaibi, D. A. Alqarni, and W. H. Bakhamees, “Association between glycated hemoglobin (HbA1c) and the lipid profile in patients with type 2 diabetes mellitus at a tertiary care hospital: A retrospective study,” Diabetes, Metabolic Syndrome and Obesity, vol. 12, pp. 1639–1644, 2019, doi: 10.2147/DMSO.S222271.
dc.relation.referencesA. L. Galant, R. C. Kaufman, and J. D. Wilson, “Glucose: Detection and analysis,” Food Chem, vol. 188, pp. 149–160, Dec. 2015, doi: 10.1016/J.FOODCHEM.2015.04.071.
dc.relation.referencesDevlin and Thomas M, “Textbook of Biochemistry with Clinical Correlations.”
dc.relation.referencesNational Center for Biotechnology Information, “PubChem Compound Summary for CID 5793, D-Glucose. .”
dc.relation.referencesA. D. Luong, I. Roy, B. D. Malhotra, and J. H. T. Luong, “Analytical and biosensing platforms for insulin: A review,” Sensors and Actuators Reports, vol. 3, p. 100028, Nov. 2021, doi: 10.1016/J.SNR.2021.100028.
dc.relation.referencesA. T. Lawal, “Recent developments in electrochemical sensors based on graphene for bioanalytical applications,” Sens Biosensing Res, vol. 41, p. 100571, Aug. 2023, doi: 10.1016/J.SBSR.2023.100571.
dc.relation.referencesM. Y. Ali, H. B. Abdulrahman, W. T. Ting, and M. M. R. Howlader, “Green synthesized gold nanoparticles and CuO-based nonenzymatic sensor for saliva glucose monitoring,” RSC Adv, vol. 14, no. 1, pp. 577–588, Jan. 2024, doi: 10.1039/D3RA05644A.
dc.relation.referencesY. Luo, Y. Xiang, L. Qin, J. Zhao, H. He, and Y. Liu, “Screen-printed electrode modified with MoO3-MoS2/Ni porous array for sensitive non-enzymatic glucose sensor,” Sens Actuators A Phys, vol. 364, p. 114817, Dec. 2023, doi: 10.1016/J.SNA.2023.114817.
dc.relation.referencesT. Dinh Van et al., “High-performance nonenzymatic electrochemical glucose biosensor based on AgNP-decorated MoS2 microflowers,” Current Applied Physics, vol. 43, pp. 116–123, Nov. 2022, doi: 10.1016/J.CAP.2022.09.001.
dc.relation.referencesY. Cai, Q. Cui, H. Zhang, X. Ma, and M. Xue, “Promoted Non-enzymatic Glucose Sensor Based on Synergistic Effect of Hydrothermal Synthesized Ni(OH)2-Graphene Nanocomposite,” Chem Res Chin Univ, vol. 40, no. 5, pp. 914–921, Oct. 2024, doi: 10.1007/S40242-024-4170-X/METRICS.
dc.relation.referencesS. Liu, Z. Shen, L. Deng, and G. Liu, “Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin towards precise diagnosis of prediabetes/diabetes,” Biosens Bioelectron, vol. 209, p. 114251, Aug. 2022, doi: 10.1016/J.BIOS.2022.114251.
dc.relation.referencesI. Šišoláková et al., “Zn Nanoparticles Modified Screen Printed Carbon Electrode as a Promising Sensor for Insulin Determination,” Electroanalysis, vol. 33, no. 3, pp. 627–634, Mar. 2021, doi: 10.1002/ELAN.202060417.
dc.relation.referencesI. Šišoláková, O. Petruš, J. Shepa, Z. Farka, A. Oriňak, and R. Oriňaková, “Colloidal lithography as a novel approach for the development of Ni-nanocavity insulin sensor,” Scientific Reports 2022 12:1, vol. 12, no. 1, pp. 1–12, Jun. 2022, doi: 10.1038/s41598-022-15283-7.
dc.relation.referencesE. Vargas et al., “Enzymatic/Immunoassay Dual-Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection,” Angew Chem Int Ed Engl, vol. 58, no. 19, pp. 6376–6379, May 2019, doi: 10.1002/ANIE.201902664.
dc.relation.referencesS. E. Moradi, A. Shokrollahi, and F. Shahdost-Fard, “Nickel cobalt oxide nanoparticles-decorated multi-walled carbon nanotubes as a high-performance sensing platform for the detection of tramadol in human biofluids,” J Alloys Compd, vol. 1016, p. 178837, Feb. 2025, doi: 10.1016/J.JALLCOM.2025.178837.
dc.relation.referencesL. Stratmann, “IS-W1-3.C1.RS.35-M1 Description.”
dc.relation.referencesM. A. G. Alvarez et al., “Effects of the incorporation of copper on the micro structure, charge transport and photoelectrical properties of sputtered ZnTe:Cu films,” Journal of Materials Science: Materials in Electronics, vol. 35, no. 22, pp. 1–13, Aug. 2024, doi: 10.1007/S10854-024-13267-Z/FIGURES/7.
dc.relation.referencesH. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens Actuators B Chem, vol. 173, pp. 157–163, Oct. 2012, doi: 10.1016/J.SNB.2012.06.071.
dc.relation.referencesZ. J. Sun et al., “Reinforced electrochemical energy storage through controlled construction of hierarchical hollow β-Ni(OH)2 microspheres enriched with oxygen vacancies induced by functionalized MWCNTs,” Appl Surf Sci, vol. 652, p. 159331, Apr. 2024, doi: 10.1016/J.APSUSC.2024.159331.
dc.relation.referencesS. Ramesh et al., “Ni(OH)2-decorated nitrogen doped MWCNT nanosheets as an efficient electrode for high performance supercapacitors,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–10, Apr. 2019, doi: 10.1038/s41598-019-42281-z.
dc.relation.referencesY. H. Lai, S. Gupta, C. H. Hsiao, C. Y. Lee, and N. H. Tai, “Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors,” Electrochim Acta, vol. 354, p. 136744, Sep. 2020, doi: 10.1016/J.ELECTACTA.2020.136744.
dc.relation.referencesM. N. T. Silva, R. G. Rocha, E. M. Richter, R. A. A. Munoz, and E. Nossol, “Nickel Oxy-Hydroxy/Multi-Wall Carbon Nanotubes Film Coupled with a 3D-Printed Device as a Nonenzymatic Glucose Sensor,” Biosensors 2023, Vol. 13, Page 646, vol. 13, no. 6, p. 646, Jun. 2023, doi: 10.3390/BIOS13060646.
dc.relation.referencesW. Jiang et al., “Nickel hydroxide–carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances,” Nanotechnology, vol. 26, no. 31, p. 314003, Jul. 2015, doi: 10.1088/0957-4484/26/31/314003.
dc.relation.referencesG. Madhurambal and & M. Mariappan, “Growth and characterization of urea-thiourea non-linear optical organic mixed crystal,” 2010.
dc.relation.referencesY. Wu, Y.-H. Liang, and S.-K. Yen, “Effects of Chitosan on Loading and Releasing for Doxorubicin Loaded Porous Hydroxyapatite–Gelatin Composite Microspheres,” Polymers 2022, Vol. 14, Page 4276, vol. 14, no. 20, p. 4276, Oct. 2022, doi: 10.3390/POLYM14204276.
dc.relation.referencesM. Salerno and S. Dante, “Scanning Kelvin probe microscopy: Challenges and perspectives towards increased application on biomaterials and biological samples,” Jun. 05, 2018, MDPI AG. doi: 10.3390/ma11060951.
dc.relation.referencesA. J. Bard and L. R. Faulkner, Electrochemical methods : fundamentals and applications. 2001.
dc.relation.referencesE. Bakker and E. Pretsch, “Potentiometric sensors for trace-level analysis,” Trends Analyt Chem, vol. 24, no. 3, p. 199, 2005, doi: 10.1016/J.TRAC.2005.01.003.
dc.relation.referencesR. Vishnuraj, K. K. Karuppanan, M. Aleem, and B. Pullithadathil, “Boosting the performance of NO2 gas sensors based on n–n type mesoporous ZnO@In2O3 heterojunction nanowires: in situ conducting probe atomic force microscopic elucidation of room temperature local electron transport,” Nanoscale Adv, vol. 2, no. 10, pp. 4785–4797, Oct. 2020, doi: 10.1039/D0NA00318B.
dc.relation.referencesV. N. Uversky et al., “Prediction of the Association State of Insulin Using Spectral Parameters,” 2003.
dc.relation.referencesM. Harun-Or-Rashid, M. N. Aktar, V. Preda, and N. Nasiri, “Advances in electrochemical sensors for real-time glucose monitoring,” May 08, 2024, Royal Society of Chemistry. doi: 10.1039/d4sd00086b.
dc.relation.referencesJ. Wang and M. Musameh, “Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes,” Anal Chim Acta, vol. 511, no. 1, pp. 33–36, May 2004, doi: 10.1016/j.aca.2004.01.035.
dc.relation.referencesX. Xuan, H. S. Yoon, and J. Y. Park, “A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate,” Biosens Bioelectron, vol. 109, pp. 75–82, Jun. 2018, doi: 10.1016/j.bios.2018.02.054.
dc.relation.referencesH. Wang and K. Wang, “Development of a New Point of Care Testing for Electrochemical Detection of Glucose in Blood,” Int J Electrochem Sci, vol. 16, no. 12, p. 211242, Dec. 2021, doi: 10.20964/2021.12.49.
dc.relation.referencesB. Fall et al., “Highly efficient non-enzymatic electrochemical glucose sensor based on carbon nanotubes functionalized by molybdenum disulfide and decorated with nickel nanoparticles (GCE/CNT/MoS2/NiNPs),” Sensors and Actuators Reports, vol. 5, p. 100136, Jun. 2023, doi: 10.1016/J.SNR.2022.100136.
dc.relation.referencesZ. Zhao et al., “A flexible nonenzymatic sweat glucose sensor based on Au nanoflowers coated carbon cloth,” Sens Actuators B Chem, vol. 388, p. 133798, Aug. 2023, doi: 10.1016/J.SNB.2023.133798.
dc.relation.referencesH. Imanzadeh, M. Amiri, and M. Nozari-Asbemarz, “A novel NiO/C@rGO nanocomposite derived from Ni(gallate): A non-enzymatic electrochemical glucose sensor,” Microchemical Journal, vol. 199, p. 110106, Apr. 2024, doi: 10.1016/J.MICROC.2024.110106.
dc.relation.referencesF. Zhou et al., “Enhanced sensing performance of flexible non-enzymatic electrochemical glucose sensors using hollow Fe3O4 nanospheres of controllable morphologies,” Ceram Int, vol. 50, no. 20, pp. 38009–38021, Oct. 2024, doi: 10.1016/J.CERAMINT.2024.07.162.
dc.relation.references“Insulin: Background, Serum Insulin Measurement, Interpretation.” Accessed: Aug. 08, 2025. [Online]. Available: https://emedicine.medscape.com/article/2089224-overview#a4?form=fpf
dc.relation.referencesI. Šišoláková et al., “Zn Nanoparticles Modified Screen Printed Carbon Electrode as a Promising Sensor for Insulin Determination,” Electroanalysis, vol. 33, no. 3, pp. 627–634, Mar. 2021, doi: 10.1002/ELAN.202060417;PAGEGROUP:STRING:PUBLICATION.
dc.relation.referencesF. Chovancová et al., “Synthesis of nickel dopped chitosan nanoparticles as a novel platform for electrochemical insulin detection,” Biosens Bioelectron X, vol. 25, p. 100624, Sep. 2025, doi: 10.1016/J.BIOSX.2025.100624.
dc.relation.referencesT. Donnor and S. Sarkar, “Insulin- Pharmacology, Therapeutic Regimens and Principles of Intensive Insulin Therapy,” Endotext, Feb. 2023, Accessed: Aug. 08, 2025. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK278938/
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.lembElectoquímica
dc.subject.lembBiosensores
dc.subject.lembMarcadores bioquimicos
dc.subject.lembMateriales biomédicos
dc.subject.proposalNon-enzymatic electrochemical sensoreng
dc.subject.proposalSensor electroquímico no enzimáticospa
dc.subject.proposalNickel oxyhydroxide (NiOxHy)eng
dc.subject.proposalOxihidróxido de níquel (NiOxHy)spa
dc.subject.proposalMulti walled carbon nanotubes (MWCNTs)eng
dc.subject.proposalNanotubos de carbono de paredes múltiples (MWCNTs)spa
dc.subject.proposalGlucose and insulin detectioneng
dc.subject.proposalDetección de glucosa e insulinaspa
dc.titleDevelopment of a NiOxHy/chitosan-MWCNTs modified screen-printed electrode for dual detection of glucose and insulineng
dc.title.translatedDesarrollo de un electrodo impreso modificado con NiOxHy/quitosano-MWCNTs para la detección dual de glucosa e insulinaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010100648.2026.pdf
Tamaño:
7.99 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: