En 21 día(s), 17 hora(s) y 20 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Automatic 3D segmentation of the prostate on magnetic resonance images for radiotherapy planning

dc.contributorRomero Castro, Edgar Eduardospa
dc.contributor.authorAlvarez Jiménez, Charlemsspa
dc.date.accessioned2019-06-29T20:12:22Zspa
dc.date.available2019-06-29T20:12:22Zspa
dc.date.issued2015-06-09spa
dc.description.abstractAbstract. Accurate segmentation of the prostate, the seminal vesicles, the bladder and the rectum is a crucial step for planning radiotherapy (RT) procedures. Modern radiotherapy protocols have included the delineation of the pelvic organs in magnetic resonance images (MRI), as the guide to the therapeutic beam irradiation over the target organ. However, this task is highly inter and intra-expert variable and may take about 20 minutes per patient, even for trained experts, constituting an important burden in most radiological services. Automatic or semi-automatic segmentation strategies might then improve the efficiency by decreasing the measured times while conserving the required accuracy. This thesis presents a fully automatic prostate segmentation framework that selects the most similar prostates w.r.t. a test prostate image and combines them to estimate the segmentation for the test prostate. A robust multi-scale analysis establishes the set of most similar prostates from a database, independently of the acquisition protocol. Those prostates are then non-rigidly registered towards the test image and fusioned by a linear combination. The proposed approach was evaluated using a MRI public dataset of patients with benign hyperplasia or cancer, following different acquisition protocols, namely 26 endorectal and 24 external. Evaluating under a leave-one-out scheme, results show reliable segmentations, obtaining an average dice coefficient of 79%, when comparing with the expert manual segmentation.spa
dc.description.abstractLa delineación exacta de la próstata, las vesículas seminales, la vejiga y el recto es un paso fundamental para el planeamiento de procedimientos de radioterapia. Protocolos modernos han incluido la delineación de los órganos pélvicos en imágenes de resonancia magnética (IRM), como la guia para la irradiación del haz terapéutico sobre el órgano objetivo. Sin embargo, esta tarea es altamente variable intra e inter-experto y puede tomar al rededor de 20 minutos por paciente, incluso para expertos entrenados, convirtiéndose en una carga importante en la mayoría de los servicios de radiología. Métodos automáticos o semi-automáticos podrían mejorar la eficiencia disminuyendo los tiempos medidos mientras se conserva la precisión requerida. Este trabajo presenta una estrategia de segmentación de la próstata completamente automático que selecciona las prostatas más similares con respecto a una imagen de resonancia magnética de prueba y combina las delineaciones asociadas a dichas imágenes para estimar la segmentación de la imagen de prueba. Un análisis multiescala robusto permite establecer el conjunto de las próstatas más parecidas de una base de datos, independiente del protocolo de adquisición. Las imágenes seleccionadas son registradas de forma no rigida con respecto a la imagen de prueba y luego son fusionadas mediante una combinación lineal. El enfoque propuesto fue evaluado utilizando un conjunto público de imágenes de resonancia magnética de pacientes con hiperplasia benigna o con cancer, con diferentes protocolos de adquisición, esto es 26 externas y 24 endorectales. Este trabajo fue evaluado bajo un esquema leave-one-out, cuyos resultados mostraron segmentaciones confiables, obteniendo un DSC promedio de 79%, cuando se compararon los resultados obtenidos con las segmentaciones manuales de expertos.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/49258/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/54354
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Medicina Departamento de Imágenes Diagnósticasspa
dc.relation.ispartofDepartamento de Imágenes Diagnósticasspa
dc.relation.referencesAlvarez Jiménez, Charlems (2015) Automatic 3D segmentation of the prostate on magnetic resonance images for radiotherapy planning. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc53 Física / Physicsspa
dc.subject.ddc6 Tecnología (ciencias aplicadas) / Technologyspa
dc.subject.ddc61 Ciencias médicas; Medicina / Medicine and healthspa
dc.subject.ddc62 Ingeniería y operaciones afines / Engineeringspa
dc.subject.proposalRadiotherapy planningspa
dc.subject.proposalMRI prostate segmentationspa
dc.subject.proposalAtlas based approachesspa
dc.subject.proposalLabel fusion strategyspa
dc.subject.proposalPlaneación de la radioterapiaspa
dc.subject.proposalSegmentación de la próstata en imágenes de resonancia magneticaspa
dc.subject.proposalEnfoques basados en atlasspa
dc.subject.proposalEstrategía de fusión de etiquetasspa
dc.titleAutomatic 3D segmentation of the prostate on magnetic resonance images for radiotherapy planningspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
53160371.2015.pdf
Tamaño:
3.22 MB
Formato:
Adobe Portable Document Format