Estimación del riesgo de longevidad mediante distribuciones de supervivencia transmutadas

dc.contributor.advisorGiraldo Gomez, Norman Diego
dc.contributor.authorOrozco Cortés, Juan Sebastian
dc.coverage.countryColombia
dc.date.accessioned2023-07-06T20:23:58Z
dc.date.available2023-07-06T20:23:58Z
dc.date.issued2023-05-30
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEstudiar la mortalidad a futuro es un aspecto fundamental para estimaciones actuariales, demográficas, planeación de servicios de salud, aspectos de vivienda y ordenamiento territorial, entre otros. Consecuentemente, se usa para proyectar futuras tablas de vida por edad, estimaciones de tasas de mortalidad, funciones de supervivencia y en general, en el uso de distribuciones de vida. Autores como Gompertz (1833), Heligman y Pollard (1980) y Pitacco et al. (2009) han propuesto leyes de mortalidad, así, como distribuciones capaces de proyectar datos de vida. Sin embargo, hay críticas sobre la precisión del ajuste en edades avanzadas. El objetivo principal de este trabajo es usar el mapeo de transmutación propuesto por Shaw y Buckley (2009) para una distribución de vida y convertir (λ), el parámetro de transmutación inicialmente fijo en un parámetro de serie de tiempo mediante el uso de un modelo lineal local amortiguado de McKenzie y Gardner Jr (2010) y Sbrana y Silvestrini (2020). Los resultados indicaron un mayor ajuste para captar el efecto de la disminución de la mortalidad en las edades avanzadas, por lo tanto, una mejora en la estimación del riesgo de longevidad. (Texto tomado de la fuente)spa
dc.description.abstractStudying future mortality is a fundamental aspect for actuarial and demographic estimates, health service planning, housing and territorial planning, among others. Consequently, it is used to project future life tables by age, estimates of mortality rates, survival functions, and in general, in the use of life distributions. Authors such as Gompertz (1833), Heligman y Pollard (1980) and Pitacco et al. (2009) have proposed laws of mortality, as well as distributions capable of projecting life data. However, there are criticisms of the accuracy of the fit at advanced ages. The main objective of this work is to use the transmutation mapping proposed by Shaw y Buckley (2009) for a lifetime distribution and convert (λ), the initially fixed transmutation parameter into a time series parameter by using a damped local linear model of McKenzie y Gardner Jr (2010) and Sbrana y Silvestrini (2020). The results indicated a greater adjustment to capture the effect of the decrease in mortality in advanced ages, therefore, one in the estimation of longevity risk.eng
dc.description.curricularareaÁrea Curricular Estadísticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaActuaríaspa
dc.format.extentxix, 99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84153
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbd El-Bar, A. M. (2018). An extended gompertz-makeham distribution with application to lifetime data. Communications in Statistics-Simulation and Computation, 47 (8), 2454–2475. doi: 10.1080/03610918.2017.1348517spa
dc.relation.referencesAbdul-Moniem, I. B. (2015). Transmuted burr type iii distribution. Journal of Statistics: Advances in Theory and Applications, 14 (1), 37–47.spa
dc.relation.referencesArenas de mesa, A. (2019). Los sistemas de pensiones en la encrucijada: desafíos para la sostenibilidad en américa latina. CEPAL: Proyecto “Sistemas de pensiones en América Latina: la reducción de las brechas económicas y sociales”, 323, https://www.cepal.org/es/publicaciones/45945-sistemas-pensiones-americalatina-institucionalidad-gasto-publico-sostenibilidadspa
dc.relation.referencesArenas de mesa, A. (2020). Los sistemas de pensiones en américa latina: institucionalidad, gasto público y sostenibilidad financiera en tiempos del covid-19. CEPAL: Proyecto “Sistemas de pensiones en América Latina: la reducción de las brechas económicas y sociales”, 65, https://www.cepal.org/es/publicaciones/45945-sistemas-pensionesamerica-latina-institucionalidad-gasto-publico-sostenibilidad.spa
dc.relation.referencesAryal, G. R., y Tsokos, C. P. (2009). On the transmuted extreme value distribution with application. Nonlinear Analysis: Theory, Methods & Applications, 71 (12), 1401-1407spa
dc.relation.referencesAryal, G. R., y Tsokos, C. P. (2011). Transmuted weibull distribution: A generalization of theweibull probability distribution. European Journal of pure and applied mathematics, 4 (2), 89–102spa
dc.relation.referencesAzuero Zuñiga, F. (2020). El sistema de pensiones en colombia: Institucionalidad, gasto público y sostenibilidad financiera. Macroeconomía del Desarrollo, 206, https://repositorio.cepal.org/bitstream/handle/11362/45780/1/S2000379es.pdfspa
dc.relation.referencesBabbage, C. (1823). On the tables of single and annual assurance premiums. Journal of the Institute of Actuaries, 6 , 185spa
dc.relation.referencesBeard, R. E. (1971). Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic processes. Biological aspects of demography, 999 , 57–68spa
dc.relation.referencesBebbington, M., Lai, C.-D., y ZITIKIS, R. (2011). Modelling deceleration in senescent mortality. Mathematical Population Studies, 18 (1), 18–37spa
dc.relation.referencesBemmaor, A. C. (1992). Modeling the diffusion of new durable goods: Word-of-mouth effect versus consumer heterogeneity. (pp. 201–229). https://doi.org/10.1007/978-94-011-1402-86spa
dc.relation.referencesBooth, H., Hyndman, R. J., Tickle, L., y cols. (2014). Prospective life tables. Computational Actuarial Science with R, 319–344spa
dc.relation.referencesBravo, J. M., y de Freitas, N. E. M. (2018). Valuation of longevity-linked life annuities. Insurance: Mathematics and Economics, 78 , 212–229spa
dc.relation.referencesBrouhns, N., Denuit, M., y Vermunt, J. (2002, 12). A poisson log-bilinear regression approach to the construction of projected life tables. Insurance: Mathematics and Economics, 31 , 373-393. doi: 10.1016/S0167-6687(02)00185-3spa
dc.relation.referencesBurkner, P.-C. (2017). brms: An r package for bayesian multilevel models using stan. Journal of statistical software, 80 , 1–28spa
dc.relation.referencesCairns, A. J., Blake, D., y Dowd, K. (2006). A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. Journal of Risk and Insurance, 73 (4), 687–718. doi: doi/10.1111/j.1539-6975.2006.00195.xspa
dc.relation.referencesChuang, A. (1991). Time series analysis: univariate and multivariate methods. Taylor & Francisspa
dc.relation.referencesDANE. (1993). Tablas abreviadas de mortalidad por sexo para fechas censales y estimaciones quinquenales 1995-2025. Estudios Censales DANEspa
dc.relation.referencesDatabase, H. M. (2016). University of california, berkeley and max planck institute for demographic research. Descargado de Available at www.mortality.org or www.humanmortality.de (data downloaded on July 10, 2014)spa
dc.relation.referencesDeng, Y., Brockett, P. L., y MacMinn, R. D. (2012). Longevity/mortality risk modeling and securities pricing. Journal of Risk and Insurance, 79 (3), 697–721spa
dc.relation.referencesDe Rosa, C., Luciano, E., y Regis, L. (2017). Basis risk in static versus dynamic longevity-risk hedging. Scandinavian Actuarial Journal, 2017 (4), 343–365spa
dc.relation.referencesDe Waegenaere, A., Melenberg, B., y Stevens, R. (2010). Longevity risk. De Economist, 158 , 151–192spa
dc.relation.referencesDormoy, E. (1878). Theorie mathematique des assurances sur la vie (Vol. 1). Gauthier-Villarsspa
dc.relation.referencesD’Amato, V., Di Lorenzo, E., Haberman, S., Russolillo, M., y Sibillo, M. (2011). The poisson log-bilinear lee-carter model: Applications of efficient bootstrap methods to annuity analyses. North American Actuarial Journal, 15 (2), 315–333spa
dc.relation.referencesFonseca, T., Cerqueira, V., Migon, H., y Torres, C. (2019). The effects of degrees of freedom estimation in the asymmetric garch model with student-t innovations. arXiv preprint arXiv:1910.01398spa
dc.relation.referencesGhosh, S., Kataria, K., y Vellaisamy, P. (2021). On transmuted generalized linear exponential distribution. Communications in Statistics-Theory and Methods, 50 (9), 1978–2000spa
dc.relation.referencesGiraldo, N. (2014). Actuar´ıa de contingencias de vida. aplicaciones con r. notas de clase. Escuela de Estadística. U. Nacional, sede Medellin, Sin publicarspa
dc.relation.referencesGompertz, B. (1833). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. En Abstracts of the papers printed in the philosophical transactions of the royal society of london (pp. 252–253)spa
dc.relation.referencesHeligman, L., y Pollard, J. H. (1980). The age pattern of mortality. Journal of the Institute of Actuaries, 107 (1), 49–80. doi: 10.1017/S0020268100040257spa
dc.relation.referencesHuertas Campos, J. A. (2001). Cálculo actuarial: contingencias de vida individualspa
dc.relation.referencesHyman, J. M. (1983). Accurate monotonicity preserving cubic interpolation. SIAM Journal on Scientific and Statistical Computing, 4 (4), 645–654spa
dc.relation.referencesHyndman, R. (2023). demography: Forecasting mortality, fertility, migration and population data [Manual de software informático]. (https://pkg.robjhyndman.com/demography/, https://github.com/robjhyndman/demography)spa
dc.relation.referencesHyndman, R., Koehler, A. B., Ord, J. K., y Snyder, R. D. (2008). Forecasting with exponential smoothing: the state space approach. Springer Science & Business Mediaspa
dc.relation.referencesHyndman, R. J., y Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for r. Journal of statistical software, 27 , 1–22spa
dc.relation.referencesKhalaf-Allah, M., Haberman, S., y Verrall, R. (2006, 10). Measuring the effect of mortality improvements on the cost of annuities. Insurance: Mathematics and Economics, 39 , 231-249. doi: 10.1016/j.insmatheco.2006.02.005spa
dc.relation.referencesLee, y Carter, C. L. R., Ronald D. (1992). Modeling and forecasting u.s. mortality. Journal of the American Statistical Association, 87(419), 659–671. https://doi.org/10.1080/01621459.1992.10475265spa
dc.relation.referencesLiu, X. (2008). Stochastic mortality modelling. University of Torontospa
dc.relation.referencesLon Mu, L. (2009). Time series analysis and forecasting. Scientific Computing Associates Corp.; 2nd Editionspa
dc.relation.referencesMakeham, W. M. (1860). On the law of mortality and the construction of annuity tables. Journal of the Institute of Actuaries, 8 (6), 301–310spa
dc.relation.referencesMcKenzie, E., y Gardner Jr, E. S. (2010). Damped trend exponential smoothing: a modelling viewpoint. International Journal of Forecasting, 26 (4), 661–665spa
dc.relation.referencesMerovci, F. (2013). Transmuted lindley distribution. International Journal of Open Problems in Computer Science and Mathematics, 6(2), 63–72. https://doi.org/10.12816/0006170spa
dc.relation.referencesMoré, J. J. (2006). The levenberg-marquardt algorithm: implementation and theory. En Numerical analysis: Proceedings of the biennial conference held at dundee, june 28–july 1, 1977 (pp. 105–116)spa
dc.relation.referencesMoser, L. (1839). Die gesetze der lebensdauer: Nebst untersuchungen ¨uber dauer, fruchtbarkeit der ehen, ¨uber t¨odtlichkeit der krankheiten, verh¨altniss der geschlechter bei der geburt, ¨uber einfluss der witterung usw. De Gruyterspa
dc.relation.referencesNorman, G. G. (2017). Actuaría de contingencias de vida con aplicaciones en r. notas de clase. Escuela de Estadística. U. Nacional, sede Medellin, Sin publicarspa
dc.relation.referencesPascariu, M. D., y Canudas-Romo, V. (2020). Package ‘mortalitylaws’. R Package Versionspa
dc.relation.referencesPitacco, E. (2004). Survival models in a dynamic context: a survey. Insurance: Mathematics and Economics, 35 (2), 279-298. Descargado de https://www.sciencedirect.com/science/article/pii/S0167668704000472 (Papers presented at the 7th IME Conference) doi: https://doi.org/10.1016/j.insmatheco.2004.04.001spa
dc.relation.referencesPitacco, E., Denuit, M., Haberman, S., y Olivieri, A. (2009). Modelling longevity dynamics for pensions and annuity business. Oxford University Pressspa
dc.relation.referencesRenshaw, A., y Haberman, S. (2006). A cohort-based extension to the lee–carter model for mortality reduction factors. Insurance: Mathematics and Economics, 38 (3), 556-570. Descargado de https://www.sciencedirect.com/science/article/pii/S0167668705001678 doi: https://doi.org/10.1016/j.insmatheco.2005.12.001spa
dc.relation.referencesRichards, S., y Currie, I. (2009, 07). Longevity risk and annuity pricing with the lee-carter model. British Actuarial Journal, 15 . doi: 10.1017/S1357321700005675spa
dc.relation.referencesRichards, S. J., Currie, I. D., Kleinow, T., y Ritchie, G. P. (2020). Longevity trend risk over limited time horizons. Annals of Actuarial Science, 14 (2), 262–277spa
dc.relation.referencesRichter, A., y Weber, F. (2009). Mortality-indexed annuitiesspa
dc.relation.referencesRiebler, A., Held, L., y Rue, H. (2012). Estimation and extrapolation of time trends in registry data—borrowing strength from related populations. The Annals of Applied Statistics, 304–333spa
dc.relation.referencesSbrana, G., y Silvestrini, A. (2020). Forecasting with the damped trend model using the structural approach. International Journal of Production Economics, 226 , 107654spa
dc.relation.referencesScott, S. L., y Varian, H. R. (2013). Predicting the present with bayesian structural time seriesspa
dc.relation.referencesShaw, y Buckley, B. I. R. C., Shaw William T. (2009). The alchemy of probability distributions: beyond gram-charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. http://arxiv.org/abs/0901.0434spa
dc.relation.referencesSilva, E., y Ovin, A. (2019). Aproximación a curvas de mortalidad a través de una propuesta no paramétrica: el caso del modelo de heligman y pollard. Estudios demográficos y urbanos, 34 (1), 129–167spa
dc.relation.referencesTabeau, E., van den Berg Jeths, A., y Heathcote, C. (2001). Forecasting mortality in developed countries: Insights from a statistical, demographic and epidemiological perspective (Vol. 9). Springer Science & Business Mediaspa
dc.relation.referencesThiele, T. N. (1871). On a mathematical formula to express the rate of mortality throughout the whole of life, tested by a series of observations made use of by the danish life insurance company of 1871. Journal of the Institute of Actuaries, 16 (5), 313–329spa
dc.relation.referencesVillegas, A., Kaishev, V. K., y Millossovich, P. (2015). Stmomo: An r package for stochastic mortality modelling. En 7th australasian actuarial education and research symposiumspa
dc.relation.referencesWeibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18(3), 293–297. https://doi.org/10.1115/1.4010337spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc310 - Colecciones de estadística generalspa
dc.subject.ddc330 - Economíaspa
dc.subject.ddc360 - Problemas y servicios sociales; asociaciones::368 - Segurosspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembLife expectancyeng
dc.subject.lembExpetativa de vidaspa
dc.subject.proposalMortalidadspa
dc.subject.proposalCohorte de edadspa
dc.subject.proposalTransmutaciónspa
dc.subject.proposalModelo de espacio estadospa
dc.subject.proposalModelo de tendencia lineal local amortiguadaspa
dc.subject.proposalDistribución de supervivenciaspa
dc.subject.proposalTasas de mortalidad por edadspa
dc.subject.proposalRenta vitaliciaspa
dc.titleEstimación del riesgo de longevidad mediante distribuciones de supervivencia transmutadasspa
dc.title.translatedEstimation of longevity risk using transmuted survival distributionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1054565359.2023.pdf
Tamaño:
1.53 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Magíster en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: