Almidón de papa var. Ratona blanca (Solanum phureja) como sustituto de harina de trigo en la elaboración de cupcakes

dc.contributor.advisorOrdoñez Santos, Luis Eduardo
dc.contributor.authorChaves Morillo, Diana Melisa
dc.contributor.educationalvalidatorMejía España, Diego Fernando
dc.contributor.researchgroupGrupo de Investigación en Procesos Agroindustriales (Gipa)spa
dc.date.accessioned2022-03-24T16:31:42Z
dc.date.available2022-03-24T16:31:42Z
dc.date.issued2022-03-23
dc.descriptionIlustraciones, tablasspa
dc.description.abstractEl objetivo de esta investigación fue evaluar el almidón de papa nativa (Solanum phureja) variedad Ratona blanca, como sustituto de la harina de trigo en un producto de panificación de masa batida como los cupcakes. Para ello, inicialmente se realizó una comparación de las propiedades fisicoquímicas, funcionales y bromatológicas del almidón de papa nativa, con almidones comerciales. Se evaluó también, el efecto de la sustitución de harina de trigo por almidón de papa en algunas propiedades tanto en masas como en producto horneado. Se optimizaron las proporciones de harina de trigo y almidón de papa para obtener un cupcake con mejores características y se evaluaron sensorialmente. Se obtuvo que las masas con almidón de papa fueron bien aireadas sin embargo su viscosidad era más baja que las masas con mayor proporción de harina de trigo, el almidón tuvo una influencia antagónica en todas las propiedades evaluadas, a excepción de la luminosidad (L*) la cual fue mayor a medida que aumentaba la sustitución. Por otro lado, el almidón exhibió un efecto positivo en variables como contenido de almidón resiste (AR), fibra dietaria total (FDT), masticabilidad y luminosidad de la corteza del cupcake (L*), mientras que tuvo efecto contrario en el resto de propiedades. De acuerdo a la optimización realizada, la proporción 49,3% harina de trigo y 50,7% almidón de papa, exhibió las mejores características en cuanto a masas y producto horneado. El análisis de perfil de textura sensorial demostró que no hay diferencias estadísticamente significativas entre el testigo (100% harina de trigo) y la mezcla optimizada. Con ello, se concluye que el almidón de papa variedad Ratona blanca, presenta características potenciales para lograr un producto de panificación de buena calidad. (Texto tomado de la fuente)spa
dc.description.abstractThe objective of this research was to evaluate the native potato starch (Solanum phureja) variety Ratona blanca, as a substitute for wheat flour in a whipped batter bakery product such as cupcakes. To do this, initially a comparison of the physicochemical, functional and nutritional properties of native potato starch with commercial starches was made. The effect of substituting wheat flour for potato starch on some properties in both batter and baked product was also evaluated. The proportions of wheat flour and potato starch were optimized to obtain a cupcake with better characteristics and they were sensory evaluated. It was obtained that the batters with potato starch were well aerated, however their viscosity was lower than the batters with a higher proportion of wheat flour, the starch had an antagonistic influence on all the evaluated properties, except for the luminosity (L *) which was greater as the substitution increased. On the other hand, starch exhibited a positive effect on variables such as resistant starch content (RS), total dietary fiber (TDF), chewiness and lightness of the cupcake crust (L *), while it had the opposite effect on the rest of properties. According to the optimization carried out, the proportion 49,7% wheat flour and 50,7% potato starch exhibited the best characteristics in terms of batter and baked product,. The sensory texture profile analysis showed that there are no statistically significant differences between the control (100% wheat flour) and the optimized mixture. With this, it is concluded that the potato starch variety "Ratona blanca" has potential characteristics to achieve a good quality bakery product.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería agroindustrialspa
dc.format.extentxvi, 162 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81363
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmiraspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrialspa
dc.relation.referencesAACC. (2000). Rapeesed displacement-Baking quality. Approved Methods of Analysis. http://methods.aaccnet.org/summaries/10-05-01.aspxspa
dc.relation.referencesbadia, B., Abbate, P. E., Álvarez, C., Aramburu Merlos, F., Barraco, M., Bartosik, R., Bujan, J., Campaña, L. E., Cardos, M. J., Cardoso, L., Carmona, D., Calviño, P., Correndo, A. A., de la Torre, D., Divito, G., Ernst, O., Faberi, A. J., Fraschina, J. A., García, F. O., … Tulli, M. C. (2017). Manual del Cultivo del Trigo. In G. Divito & F. García (Eds.), Instituto Internacional de Nutrición y Plantas (1st ed.). Instituto Internacional de Nutrición y Plantas. http://lacs.ipni.netspa
dc.relation.referencesAbera, G., Woldeyes, B., Dessalegn Demash, H., & Miyake, G. M. (2019). Comparison of physicochemical properties of indigenous Ethiopian tuber crop (Coccinia abyssinica) starch with commercially available potato and wheat starches. International Journal of Biological Macromolecules, 140, 43–48. https://doi.org/10.1016/j.ijbiomac.2019.08.118spa
dc.relation.referencesAgama-Acevedo, E., Flores-Silva, P. C., & Bello-Perez, L. A. (2019). Cereal starch production for food applications. In Starches for Food Application: Chemical, Technological and Health Properties. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00003-4spa
dc.relation.referencesAgama-Acevedo, E., Islas-Hernández, J. J., Pacheco-Vargas, G., Osorio-Díaz, P., & Bello-Pérez, L. A. (2012). Starch digestibility and glycemic index of cookies partially substituted with unripe banana flour. LWT - Food Science and Technology, 46(1), 177–182. https://doi.org/10.1016/j.lwt.2011.10.010spa
dc.relation.referencesAhuja, A., Lee, R., Latshaw, A., & Foster, P. (2020). Rheology of starch dispersions at high temperatures. Journal of Texture Studies. https://doi.org/10.1111/jtxs.12517spa
dc.relation.referencesAi, J., Witt, T., Cowin, G., Dhital, S., Turner, M. S., Stokes, J. R., & Gidley, M. J. (2018). Anti-staling of high-moisture starchy food: Effect of hydrocolloids, emulsifiers and enzymes on mechanics of steamed-rice cakes. Food Hydrocolloids, 83, 454–464. https://doi.org/10.1016/j.foodhyd.2018.05.028spa
dc.relation.referencesAi, Y., & Jane, J. L. (2015). Gelatinization and rheological properties of starch. Starch/Staerke, 67(3–4), 213–224. https://doi.org/10.1002/star.201400201spa
dc.relation.referencesAi, Y., & Jane, J. L. (2018). Understanding Starch Structure and Functionality. In Starch in Food: Structure, Function and Applications: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100868-3.00003-2spa
dc.relation.referencesAleman, R. S., Paz, G., Morris, A., Prinyawiwatkul, W., Moncada, M., & King, J. M. (2021). High protein brown rice flour, tapioca starch & potato starch in the development of gluten-free cupcakes. Lwt, 152(August), 112326. https://doi.org/10.1016/j.lwt.2021.112326spa
dc.relation.referencesAlonso-Gomez, L., Niño-López, A., Romero-Garzón, A., Pineda-Gomez, P., Real-López, A., & Rodriguez-García, M. (2016). Physicochemical transformation of cassava starch during fermentation for production of sour starch in Colombia. Starch/Staerke, 68, 1–9. https://doi.org/10.1002/star.201600059spa
dc.relation.referencesAlsaffar, A. A. (2011). Effect of food processing on the resistant starch content of cereals and cereal products – a review. International Journal of Food Science & Technology, 46(3), 455–462. https://doi.org/10.1111/J.1365-2621.2010.02529.Xspa
dc.relation.referencesAlvani, K., Qi, X., Tester, R. F., & Snape, C. E. (2011). Physico-chemical properties of potato starches. Food Chemistry, 125(3), 958–965. https://doi.org/10.1016/j.foodchem.2010.09.088spa
dc.relation.referencesÁlvarez, D., & Chaves, D. (2017). The wheat crop in Colombia: Its agony and possible disappearance. Cienc. Agr. Julio-Diciembre, 34(2), 125–137. https://doi.org/10.22267/rcia.173402.77spa
dc.relation.referencesAlvarez, M. D., Herranz, B., Fuentes, R., Cuesta, F. J., & Canet, W. (2017). Replacement of Wheat Flour by Chickpea Flour in Muffin Batter: Effect on Rheological Properties. Journal of Food Process Engineering, 40(2), 1–13. https://doi.org/10.1111/jfpe.12372spa
dc.relation.referencesAlvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis físico-químico y morfológico de almidones de ñame, yuca y papa y determinación de la viscosidad de las pastas. Informacion Tecnologica, 19(1), 19–28. https://doi.org/10.4067/s0718-07642008000100004spa
dc.relation.referencesAmaral, O., Guerreiro, C. S., Gomes, A., & Cravo, M. (2016). Resistant starch production in wheat bread: effect of ingredients, baking conditions and storage. European Food Research and Technology, 242(10), 1747–1753. https://doi.org/10.1007/s00217-016-2674-4spa
dc.relation.referencesAnderson, R., Conway, H., Pheiser, V., & Griffin, E. (1969). Gelatinization of corn grits by roll and extrusion cooking. Cereal Science Today, 14, 4–12.spa
dc.relation.referencesAnwar Saeed, M., Ma, H., Yue, S., Wang, Q., & Tu, M. (2018). Concise review on ethanol production from food waste: development and sustainability. Environmental Science and Pollution Research 2018 25:29, 25(29), 28851–28863. https://doi.org/10.1007/S11356-018-2972-4spa
dc.relation.referencesAnzaldúa, A. (1994). La evaluación sensorial de los alimentos en la teoría y la práctica. Editorial Acribia, S.A.spa
dc.relation.referencesAristizábal, J., Sánchez, T., & Mejía-Lorío, D. (2007). Análisis fisicoquímico del almidón. In FAO (Ed.), Guía técnica para producción y análisis de almidón de yuca (FAO, p. 153). FAO. http://www.fao.org/genetic-resources/es/%0Ahttp://faostat3.fao.org/browse/Q/*/S%5Cnhttp://faostat3.fao.org/download/Q/QC/S%0Ahttp://www.fao.org/about/who-we-are/es/spa
dc.relation.referencesAristizabal, J., Sánchez, T., & Mejía, D. (2007). Guía técnica para producción y análisis de almidón de yuca. FAO.spa
dc.relation.referencesAshwar, B. A., Gani, A., Shah, A., Wani, I. A., & Masoodi, F. A. (2016). Preparation, health benefits and applications of resistant starch - A review. Starch/Staerke, 68(3–4), 287–301. https://doi.org/10.1002/star.201500064spa
dc.relation.referencesAwuchi, C. G., Godswill, C., Somtochukwu, V., & Kate, C. (2019). The Functional Properties of Foods and Flours. International Journal of Advanced Academic Research | Sciences, 5(11), 2488–9849.spa
dc.relation.referencesAydogdu, A., Sumnu, G., & Sahin, S. (2018). Effects of addition of different fibers on rheological characteristics of cake batter and quality of cakes. Journal of Food Science and Technology, 55(2), 667–677. https://doi.org/10.1007/s13197-017-2976-yspa
dc.relation.referencesAzari-Anpar, M., Khomeiri, M., Ghafouri-Oskuei, H., & Aghajani, N. (2017). Response surface optimization of low-fat ice cream production by using resistant starch and maltodextrin as a fat replacing agent. Journal of Food Science and Technology, 54(5), 1175–1183. https://doi.org/10.1007/s13197-017-2492-0spa
dc.relation.referencesBae, I. Y., Lee, H. I., Ko, A., & Lee, H. G. (2013). Substituting whole grain flour for wheat flour: Impact on cake quality and glycemic index. Food Science and Biotechnology, 22(5), 1–7. https://doi.org/10.1007/s10068-013-0216-4spa
dc.relation.referencesBahanawan, A., Kusumah, S. S., Darmawan, T., Masruchin, N., Pramasari, D. A., Triwibowo, D., Kusumaningrum, W. B., Wibowo, E. S., Syamani, F. A., R A Krishanti, N. P., Lestari, E., Amin, Y., Sufiandi, S., Syahrir, A., & Dwianto, W. (2019). Moisture content, color quantification and starch content of oil palm trunk (Elaeis guineensis Jacq.). IOP Conference : Earth and Environmental Science, 374, 1–48. https://doi.org/10.1088/1755-1315/374/1/012041spa
dc.relation.referencesBaixauli, R., Sanz, T., Salvador, A., & Fiszman, S. M. (2008). Muffins with resistant starch: Baking performance in relation to the rheological properties of the batter. Journal of Cereal Science, 47(3), 502–509. https://doi.org/10.1016/j.jcs.2007.06.015spa
dc.relation.referencesBajaj, R., Singh, N., & Kaur, A. (2019). Effect of native and gelatinized starches from various sources on sponge cake making characteristics of wheat flour. Journal of Food Science and Technology, 2016. https://doi.org/10.1007/s13197-019-03632-wspa
dc.relation.referencesBajaj, R., Singh, N., Kaur, A., & Inouchi, N. (2018). Structural, morphological, functional and digestibility properties of starches from cereals, tubers and legumes: a comparative study. Journal of Food Science and Technology, 55(9), 3799–3808. https://doi.org/10.1007/s13197-018-3342-4spa
dc.relation.referencesBalet, S., Guelpa, A., Fox, G., & Manley, M. (2019). Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: a Review. Food Analytical Methods, 12(10), 2344–2360. https://doi.org/10.1007/s12161-019-01581-wspa
dc.relation.referencesBao, J., & Bergman, C. J. (2017). Rice Flour and Starch Functionality. In Starch in Food: Structure, Function and Applications: Second Edition (pp. 373–419). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100868-3.00010-Xspa
dc.relation.referencesBejarano-Luján, D. L., & Netto, F. M. (2010). Effect of alternative processes on the yield and physicochemical characterization of protein concentrates from Amaranthus cruentus. LWT - Food Science and Technology, 43(5), 736–743. https://doi.org/10.1016/J.LWT.2009.11.013spa
dc.relation.referencesBelhadi, B., Djabali, D., Souilah, R., Yousfi, M., & Nadjemi, B. (2013). Three small-scale laboratory steeping and wet-milling procedures for isolation of starch from sorghum grains cultivated in Sahara of Algeria. Food and Bioproducts Processing, 91(3), 225–232. https://doi.org/10.1016/j.fbp.2012.09.008spa
dc.relation.referencesBeMiller, J. N. (2019). Starches: Molecular and granular structures and properties. In Carbohydrate Chemistry for Food Scientists (pp. 159–189). Elsevier. https://doi.org/10.1016/B978-0-12-812069-9.00006-6spa
dc.relation.referencesBent, A. J., Bennion, E. B., & Bamford, G. S. . (1997). The Technology of Cake Baking (6th ed.). Springer US. https://doi.org/10.1007/978-1-4757-6690-5spa
dc.relation.referencesBlennow, A., Bay-Smidt, A. M., Olsen, C. E., & Møller, B. L. (2000). The distribution of covalently bound phosphate in the starch granule in relation to starch crystallinity. International Journal of Biological Macromolecules, 27(3), 211–218. https://doi.org/10.1016/S0141-8130(00)00121-5spa
dc.relation.referencesBonierbale, M., Amoros, W., Espinoza, J., Mihovilich, E., Roca, W., & Gomez, R. (2004). Recursos Genéticos de la papa: don del pasado, legado para el futuro. Suplementeo Revista Latinoamericana de La Papa, 1, 9–12.spa
dc.relation.referencesBozdogan, N., Kumcuoglu, S., & Tavman, S. (2019). Investigation of the effects of using quinoa flour on gluten-free cake batters and cake properties. Journal of Food Science and Technology, 56(2), 683–694. https://doi.org/10.1007/s13197-018-3523-1spa
dc.relation.referencesBuléon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85–112. https://doi.org/10.1016/S0141-8130(98)00040-3spa
dc.relation.referencesBurmeister, A., Bondiek, S., Apel, L., Kühne, C., Hillebrand, S., & Fleischmann, P. (2011). Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. Journal of Food Composition and Analysis, 24(6), 865–872. https://doi.org/10.1016/j.jfca.2011.03.006spa
dc.relation.referencesCáceres, M., Mestres, C., Pons, B., Gibert, O., Amoros, W., Salas, E., Dufour, D., Bonierbale, M., & Pallet, D. (2012). Physico-chemical characterization of starches extracted from potatoes of the group Phureja. Starch/Staerke, 64(8), 621–630. https://doi.org/10.1002/star.201100166spa
dc.relation.referencesCamire, M. E. (2016). Potatoes and Human Health. Advances in Potato Chemistry and Technology: Second Edition, 8398(January), 685–704. https://doi.org/10.1016/B978-0-12-800002-1.00023-6spa
dc.relation.referencesCao, M., & Gao, Q. (2020). Effect of dual modification with ultrasonic and electric field on potato starch. International Journal of Biological Macromolecules, 150, 637–643. https://doi.org/10.1016/j.ijbiomac.2020.02.008spa
dc.relation.referencesCarrero, M., & Armendariz, J. (2013). Elaboraciones de pastelería y repostería (A. Cerviño & N. Duarte (eds.); 1st ed.). Ediciones Paraninfo S.A.spa
dc.relation.referencesCasas, N., & Pardo, D. (2005). Análisis de perfil de textura y propiedades de relajacion de geles de mezclas de almidón de maíz cersos entrecruzado-Gelana. Revista Mexicana de Ingeniería Química, 4(1), 107–121.spa
dc.relation.referencesCauvain, S. (2015a). Other Cereals in Breadmaking. In Technology of Breadmaking (pp. 377–397). Springer International Publishing. https://doi.org/10.1007/978-3-319-14687-4_13spa
dc.relation.referencesCauvain, S. (2015b). Technology of breadmaking. In Technology of Breadmaking (pp. 1–408). Springer, Cham. https://doi.org/10.1007/978-3-319-14687-4spa
dc.relation.referencesCentro Internacional de la papa. (1984). Informe anual 1984 (CIP (ed.); 1st ed.). CIP.spa
dc.relation.referencesCevolia, C., Balestra, F., Ragnia, L., & Fabbri, A. (2013). Rheological characterisation of selected food hydrocolloids by traditional and simplified techniques. Food Hydrocolloids, 33(1), 142–150.spa
dc.relation.referencesChen, W., Zhou, H., Yang, H., & Cui, M. (2015). Effects of charge-carrying amino acids on the gelatinization and retrogradation properties of potato starch. Food Chemistry, 167, 180–184. https://doi.org/10.1016/j.foodchem.2014.06.089spa
dc.relation.referencesChompoorat, P., Rayas-Duarte, P., Hernández-Estrada, Z. J., Phetcharat, C., & Khamsee, Y. (2018). Effect of heat treatment on rheological properties of red kidney bean gluten free cake batter and its relationship with cupcake quality. Journal of Food Science and Technology, 55(12), 4937–4944. https://doi.org/10.1007/s13197-018-3428-zspa
dc.relation.referencesCisneros, F. H., Zevillanos, R., Figueroa, M., Gonzalez, G., & Cisneros-Zevallos, L. (2018). Characterization of Starch from Two Andean Potatoes: Ccompis (Solanum tuberosum spp. andigena) and Huayro (Solanum x chaucha). Starch/Staerke, 70(3–4), 1–8. https://doi.org/10.1002/star.201700134spa
dc.relation.referencesCobana, M., & Antezana, R. (2007). Proceso de extraccion de almidon de yuca por via seca. Revista Boliviana de Quimica , 24(1), 77–83.spa
dc.relation.referencesCorgneau, M., Gaiani, C., Petit, J., Nikolova, Y., Banon, S., Ritié-Pertusa, L., Le, D. T. L., & Scher, J. (2019). Digestibility of common native starches with reference to starch granule size, shape and surface features towards guidelines for starch-containing food products. International Journal of Food Science and Technology, 54(6), 2132–2140. https://doi.org/10.1111/ijfs.14120spa
dc.relation.referencesCorrea, N., Perez, A., & Villegas, A. (2016). Caracterización morfológica y perfil viscoamilográfico de almidón nativo de ñame (Dioscorea bulbifera L.). Saber, 28(2), 250–256.spa
dc.relation.referencesCosta, M., Landi, C., Soares, M., & Caliari, M. (2015). Structural characteristics and gelatinization properties of sour cassava starch. Journal of Thermal Analysis Calorimetry, 123(2), 919–926. https://doi.org/10.1007/s10973-015-4990-5spa
dc.relation.referencesCraig, S., Maningat, C., Seib, P., & Hoseney, R. (1942). Starch paste clarity. Cereal Chemistry, 66(3), 173–182. https://www.cerealsgrains.org/publications/cc/backissues/1989/Documents/66_173.pdfspa
dc.relation.referencesCruz, G., Ribotta, P., Ferrero, C., & Iturriaga, L. (2016). Physicochemical and rheological characterization of Andean tuber starches: Potato (Solanum tuberosum ssp. Andigenum), Oca (Oxalis tuberosa Molina) and Papalisa (Ullucus tuberosus Caldas). Starch/Staerke, 68(11–12), 1084–1094. https://doi.org/10.1002/star.201600103spa
dc.relation.referencesde Oliveira do Nascimento, K., do Nascimento Dias Paes, S., & Maria Augusta, I. (2018). A Review “Clean Labeling”: Applications of Natural Ingredients in Bakery Products. Journal of Food and Nutrition Research, 6(5), 285–294. https://doi.org/10.12691/jfnr-6-5-2spa
dc.relation.referencesDe Piero, A., Bassett, N., Rossi, A., & Sammán, N. (2015). Tendencia en el consumo de alimentos de estudiantes universitarios. Nutr Hosp, 31(4), 1824–1831. https://doi.org/10.3305/nh.2015.31.4.8361spa
dc.relation.referencesDhingra, D., Michael, M., Rajput, H., & Patil, R. T. (2012). Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255. https://doi.org/10.1007/S13197-011-0365-5spa
dc.relation.referencesDhital, S., Brennan, C., & Gidley, M. J. (2019). Location and interactions of starches in planta : Effects on food and nutritional functionality. Trends in Food Science & Technology, 93(September), 158–166. https://doi.org/10.1016/j.tifs.2019.09.011spa
dc.relation.referencesDíaz, A., Dini, C., Viña, S. Z., & García, M. A. (2016). Starch extraction process coupled to protein recovery from leguminous tuberous roots (Pachyrhizus ahipa). Carbohydrate Polymers, 152, 231–240. https://doi.org/10.1016/j.carbpol.2016.07.004spa
dc.relation.referencesDos Santos, T., Leonel, M., Garcia, É., do Carmo, E., & Franco, C. (2016). Crystallinity, thermal and pasting properties of starches from different potato cultivars grown in Brazil. International Journal of Biological Macromolecules, 82, 144–149.spa
dc.relation.referencesDupuis, J. H., & Liu, Q. (2019). Potato Starch: a Review of Physicochemical, Functional and Nutritional Properties. American Journal of Potato Research, 96(2), 127–138. https://doi.org/10.1007/s12230-018-09696-2spa
dc.relation.referencesDuta, D. E., & Culetu, A. (2015). Evaluation of rheological, physicochemical, thermal, mechanical and sensory properties of oat-based gluten free cookies. Journal of Food Engineering, 162, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.04.002spa
dc.relation.referencesEdwards, W. (2007). The Science of Bakery Products. In The Science of Bakery Products (1st ed.). The Royal Society of Chemistry. https://doi.org/10.1039/9781847557797spa
dc.relation.referencesElgadir, M. A., Bakar, J., Zaidul, I. S. M., Rahman, R. A., Abbas, K. A., Hashim, D. M., & Karim, R. (2009). Thermal behavior of selected starches in presence of other food ingredients studied by differential scanning calorimetery (DSC)-review. Comprehensive Reviews in Food Science and Food Safety, 8(3), 195–201. https://doi.org/10.1111/j.1541-4337.2009.00078.xspa
dc.relation.referencesEliasson, A.-C., & Larsson, K. (1993). Cereals in breadmaking : a molecular colloidal approach. Marcel Dekker. https://www.crcpress.com/Cereals-in-Breadmaking-A-Molecular-Colloidal-Approach/liasson/p/book/9780824788162spa
dc.relation.referencesEliasson, A., & Ryang, H. (1992). Changes in rheological properties of hydroxipropyl potato starch paste during freeze-thaw treatments. Journal of Texture Studies, 23(3), 279–296.spa
dc.relation.referencesEllis, R. P., Cochrane, M. P., Dale, M. F. B., Duþus, C. M., Lynn, A., Morrison, I. M., Prentice, R. D. M., Swanston, J. S., & Tiller, S. a. (1998). Starch Production and Industrial Use. Journal of the Science of Food and Agriculture, 77, 289–311. https://doi.org/10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-Dspa
dc.relation.referencesEncina-zelada, C. R., Cadavez, V., & Teixeira, J. A. (2019). Bread by a Mixture Design of Xanthan, Guar, and Hydroxypropyl Methyl Cellulose Gums Christian. Foods, 8(156), 1–23.spa
dc.relation.referencesEnglyst, K. N., Hudson, G. J., & Englyst, H. N. (2006). Starch Analysis in Food. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027318.a1029spa
dc.relation.referencesEspinal, C., Martínez, H., & Prieto, L. (2006). La Cadena del trigo en Colombia (No. 126). www.agrocadenas.gov.co Esteller, M. S., & Lannes, S. C. S. (2008). Production and characterization of sponge-dough bread using scalded rye. Journal of Texture Studies, 39(1), 56–67. https://doi.org/10.1111/J.1745-4603.2007.00130.Xspa
dc.relation.referencesEzekiel, R., Rana, G., Singh, N., & Singh, S. (2010). Physico-chemical and pasting properties of starch from stored potato tubers. Journal of Food Science and Technology, 47(2), 195–201. https://doi.org/10.1007/s13197-010-0025-1spa
dc.relation.referencesFadda, C., Sanguinetti, A. M., Caro, A. Del, Collar, C., & Piga, A. (2014). Bread Staling: Updating the View. Comprehensive Reviews in Food Science and Food Safety, 13(4), 473–492. https://doi.org/10.1111/1541-4337.12064spa
dc.relation.referencesFAO-Organización de las Naciones Unidas para la alimentación y la agricultura. (2017). Food Outlook - Biannual Report on Global Food Markets. Rome, Italy. https://www.fao.org/3/i7343e/i7343e.pdfspa
dc.relation.referencesFAO-Organización de las Naciones Unidas para la alimentación y la agricultura. (2021). Estadísticas de producción de cultivos. FAOSTAT.spa
dc.relation.referencesFAO. (1999). Análisis físicoquimico del almidón. Guía Técnica Para La Producción y Análisis de Almidon de Yuca., 140, 61–134.spa
dc.relation.referencesFedepapa. (2012). La papa, alimento esencial y saludable. Revista Papa, 11-17(26)., 11, 17(26).spa
dc.relation.referencesFerreira, L. F., de Oliveira, A. C. S., Begali, D. de O., Neto, A. R. de S., Martins, M. A., de Oliveira, J. E., Borges, S. V., Yoshida, M. I., Tonoli, G. H. D., & Dias, M. V. (2021). Characterization of cassava starch/soy protein isolate blends obtained by extrusion and thermocompression. Industrial Crops and Products, 160(March 2020), 113092. https://doi.org/10.1016/j.indcrop.2020.113092spa
dc.relation.referencesFlores, E., García, F., Flores, E., Núñez, M., González, R., & Bello, L. (2004). Rendimiento del proceso de extracción de almidón a partir de frutos de platano ( Musa paradisiaca ). Acta Cientifica Venezolana, 55, 86–90.spa
dc.relation.referencesFood and Agriculture Organization of the United Nations. (2019). OECD‑FAO Agricultural Outlook 2019‑2028 (FAO (ed.); 1st ed.). OECD/FAO. https://doi.org/https://doi.org/10.1787/agr_outlook-2019-enspa
dc.relation.referencesFuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E., & Pérez-Álvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43(4), 931–942. https://doi.org/10.1016/j.foodres.2010.02.004spa
dc.relation.referencesGallant, D. J., Bouchet, B., & Baldwin, P. M. (1997). Microscopy of starch: Evidence of a new level of granule organization. Carbohydrate Polymers, 32(3–4), 177–191. https://doi.org/10.1016/S0144-8617(97)00008-8spa
dc.relation.referencesGalliard, T., & Bowler, P. (1987). Morphology and Composition of Starch. In John Wiley & Sons (Ed.), Starch: Properties and Potential (1st ed., pp. 280–291). https://doi.org/10.4236/fns.2014.53035spa
dc.relation.referencesGao, Y., Janes, M. E., Chaiya, B., Brennan, M. A., Brennan, C. S., & Prinyawiwatkul, W. (2018). Gluten-free bakery and pasta products: prevalence and quality improvement. International Journal of Food Science and Technology, 53(1), 19–32. https://doi.org/10.1111/ijfs.13505spa
dc.relation.referencesGarcia, E. L., do Carmo, E. L., de Pádua, J. G., Franco, C. M. L., & Leonel, M. (2019). Potato cultivars as a source of starch in brazil: Physicochemical characteristics of the starches and their correlations. Australian Journal of Crop Science, 13(11), 1786–1792. https://doi.org/10.21475/ajcs.19.13.11.p1567spa
dc.relation.referencesGarnica, A., Romero, A., Cerón, M., & Prieto, L. (2010). Características funcionales de almidones nativos extraídos de clones promisorios de papa (Solanum tuberosum l. subespecie andigena ) para la industria de alimentos. Revista Alimentos Hoy, 19(21), 3–15. http://alimentoshoy.acta.org.co/index.php/hoy/article/view/1/10spa
dc.relation.referencesGhaboos, H., Ardabili, S., & Kashaninejad, M. (2016). Physico-chemical, textural and sensory evaluation of sponge cake supplemented with pumpkin flour. International Food Research Journal, 25(April), 854–860.spa
dc.relation.referencesGómez, M., Manchón, L., Oliete, B., Ruiz, E., & Caballero, P. A. (2010). Adequacy of wholegrain non-wheat flours for layer cake elaboration. LWT - Food Science and Technology, 43(3), 507–513. https://doi.org/10.1016/J.LWT.2009.09.019spa
dc.relation.referencesGómez, M., Ronda, F., Caballero, P. A., Blanco, C. A., & Rosell, C. M. (2007). Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes. Food Hydrocolloids, 21(2), 167–173. https://doi.org/10.1016/J.FOODHYD.2006.03.012spa
dc.relation.referencesGoñi, I., García-Diz, L., Mañas, E., & Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. Food Chemistry, 56(4), 445–449. https://doi.org/10.1016/0308-8146(95)00222-7spa
dc.relation.referencesGray, J. A., & Bemiller, J. N. (2003). Bread Staling: Molecular Basis and Control. Comprehensive Reviews in Food Science and Food Safety, 2(1), 1–21. https://doi.org/10.1111/j.1541-4337.2003.tb00011.xspa
dc.relation.referencesGuadarrama-Lezama, A. Y., Carrillo-Navas, H., Pérez-Alonso, C., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2016). Thermal and rheological properties of sponge cake batters and texture and microstructural characteristics of sponge cake made with native corn starch in partial or total replacement of wheat flour. LWT - Food Science and Technology, 70, 46–54. https://doi.org/10.1016/j.lwt.2016.02.031spa
dc.relation.referencesGuinesi, L. S., da Róz, A. L., Corradini, E., Mattoso, L. H. C., Teixeira, E. de M., & Curvelo, A. A. d. S. (2006). Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochimica Acta, 447(2), 190–196. https://doi.org/10.1016/J.TCA.2006.06.002spa
dc.relation.referencesHadnadev, M., Dapcevic-hadnadev, T., & Dokic, L. (2018). Functionality of Starch Derivatives in Bakery and Confectionery Products. In A. Mihai Grumezescu & M. Holban (Eds.), Bakery and Confectionary Products (Vol. 20, pp. 279–311). https://doi.org/10.1016/B978-0-12-811449-0/00009-8spa
dc.relation.referencesHallström, E., Sestili, F., Lafiandra, D., Björck, I., & Ostman, E. (2011). A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects. Food & Nutrition Research, 55(7074), 1–8. https://doi.org/10.3402/FNR.V55I0.7074spa
dc.relation.referencesHedayati, S., Majzoobi, M., & Farahnaky, A. (2018). Batter Rheology and Quality of Sponge Cake Enriched with High Percentage of Resistant Starch (Hi-maize). International Journal of Food Engineering, 14(5–6), 1–10. https://doi.org/10.1515/ijfe-2017-0293spa
dc.relation.referencesHedayati, S., & Tehrani, M. M. (2018). Effect of total replacement of egg by soymilk and lecithin on physical properties of batter and cake. Food Science & Nutrition, 6(4), 1154–1161. https://doi.org/10.1002/FSN3.656spa
dc.relation.referencesHernández, M., Torruco, J. G., Chel, L., & Betancur, D. (2008). Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/S0101-20612008000300031spa
dc.relation.referencesHesso, N., Garnier, C., Loisel, C., Chevallier, S., Bouchet, B., & Le-Bail, A. (2015). Formulation effect study on batter and cake microstructure: Correlation with rheology and texture. Food Structure, 5, 31–41. https://doi.org/10.1016/J.FOOSTR.2015.03.002spa
dc.relation.referencesHijmans, R., Spooner, D. ., Salas, A. ., Guarino, L., & de la Cruz, J. (2002). Atlas of wild potatoes. Systematic and Ecogeographic Studies on Crop Genepools. No. 10 (I. P. R. I. (IPGRI). Genetic (ed.); 1st ed.).spa
dc.relation.referencesHirslchler, R. (2012). Whiteness, Yellowness, and Browning in Food Colorimetry: A Critical Review. In J. Caivano & M. Buera (Eds.), Color in food: Technological and psychophysical aspects (p. 478). CRC press, Taylor y Francis group.spa
dc.relation.referencesHoover, R., & Vasanthan, T. (1994). Effect of Heat-Moisture Treatment on the Structure and Physicochemical Properties of cereal, legume and tubers starches. Carbohydrate Research, 242, 33–53.spa
dc.relation.referencesHorstmann, S., Lynch, K., & Arendt, E. (2017). Starch Characteristics Linked to Gluten-Free Products. Foods, 6(12), 29. https://doi.org/10.3390/foods6040029spa
dc.relation.referencesHouben, A., Höchstötter, A., & Becker, T. (2012). Possibilities to increase the quality in gluten-free bread production: an overview. European Food Research and Technology, 235(2), 195–208. https://doi.org/10.1007/s00217-012-1720-0spa
dc.relation.referencesHui, Y. (2006). Bakery Products science and technology (H. Corke, I. De Leyn, W. Nip, & N. Cross (eds.); 3rd ed.). Blackwell Publishing. https://doi.org/10.1002/9781118827123spa
dc.relation.referencesHüttner, E. K., Bello, F. D., & Arendt, E. K. (2010). Rheological properties and bread making performance of commercial wholegrain oat flours. Journal of Cereal Science, 52(1), 65–71. https://doi.org/10.1016/J.JCS.2010.03.004spa
dc.relation.referencesNTC 3932. Análisis sensorial. Identificación y selección de descriptores para establecer un perfil sensorial por una aproximación multidimensional., Pub. L. No. 3932, 35 (1996).spa
dc.relation.referencesNTC 4489. Análisis sensorial. Metodología. Perfil de textura., 24 (1998). https://ecollection-icontec-org.ezproxy.unal.edu.co/pdfview/viewer.aspx?locale=fr-FR&Q=71B2C9528576FBC0E7679457E0A84EB8312408EA304CDFA9&Req=spa
dc.relation.referencesGTC 280. Análisis sensorial. Directrices para la selección, entrenamiento y seguimiento de evaluadores sensoriales seleccionados y expertos, Pub. L. No. 280, 45 (2017).spa
dc.relation.referencesNTC 341-Papa para consumo. Clasificación, 5 (2018).spa
dc.relation.referencesGTC 232. Análisis sensorial. Metodología. Guía general para el establecimiento de un perfil sensorial, Pub. L. No. 242, 52 (2020).spa
dc.relation.referencesNorma ISO 6647: Determination de la teneur en amylose., 3 (1987).spa
dc.relation.referencesJagadeesan, S., Govindaraju, I., & Mazumder, N. (2020). An Insight into the Ultrastructural and Physiochemical Characterization of Potato Starch: a Review. American Journal of Potato Research, 97(5), 464–476. https://doi.org/10.1007/s12230-020-09798-wspa
dc.relation.referencesJan, K. N., Panesar, P. S., & Singh, S. (2017). Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. Journal of Food Measurement and Characterization, 11(4), 1919–1927. https://doi.org/10.1007/s11694-017-9574-6spa
dc.relation.referencesJan, R., Saxena, D. C., & Singh, S. (2016). Pasting, thermal, morphological, rheological and structural characteristics of Chenopodium (Chenopodium album) starch. LWT - Food Science and Technology, 66, 267–274. https://doi.org/10.1016/J.LWT.2015.10.040spa
dc.relation.referencesJane, J. (2006). Current understanding on starch granule structures. Journal of Applied Glycoscience, 53, 205–213.spa
dc.relation.referencesJerome, R. E., Singh, S. K., & Dwivedi, M. (2019). Process analytical technology for bakery industry: A review. Journal of Food Process Engineering, 25(May), 1–21. https://doi.org/10.1111/jfpe.13143spa
dc.relation.referencesJuarez, J. (2012). Extensión de vida de anaquel en productos de pastelería para una industria panificadora. Universidad Nacional Autónoma de México.spa
dc.relation.referencesJyotsna, R., Soumya, C., Swati, S., & Prabhasankar, P. (2016). Rheology, texture, quality characteristics and immunochemical validation of millet based gluten free muffins. Journal of Food Measurement and Characterization, 10(4), 762–772. https://doi.org/10.1007/s11694-016-9361-9spa
dc.relation.referencesKasim, R., & Kasim, M. U. (2015). Biochemical changes and color properties of fresh-cut green bean (Phaseolus vulgaris L. cv.gina) treated with calcium chloride during storage. Food Science and Technology, 35(2), 266–272. https://doi.org/10.1590/1678-457X.6523spa
dc.relation.referencesKaur, A., Shevkani, K., Singh, N., Sharma, P., & Kaur, S. (2015). Effect of guar gum and xanthan gum on pasting and noodle-making properties of potato, corn and mung bean starches. Journal of Food Science and Technology, 52(12), 8113–8121. https://doi.org/10.1007/s13197-015-1954-5spa
dc.relation.referencesKaur, A., Singh, N., Ezekiel, R., & Guraya, H. S. (2007). Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry, 101(2), 643–651. https://doi.org/10.1016/j.foodchem.2006.01.054spa
dc.relation.referencesKaur, M., Sandhu, K. S., Arora, A. P., & Sharma, A. (2015). Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: Physicochemical and sensory properties. LWT - Food Science and Technology, 62(1), 628–632. https://doi.org/10.1016/j.lwt.2014.02.039spa
dc.relation.referencesKim, H., & Yokohama, W. (2014). Nutritional Attributes of Bakery Products. In Bakery Products Science and Technology: Second Edition (2nd ed., pp. 409–414). Wiley-Blackwell.spa
dc.relation.referencesKim, J. H., Kim, H. R., Choi, S. J., Park, C.-S., & Moon, T. W. (2016). Production of an in Vitro Low-Digestible Starch via Hydrothermal Treatment of Amylosucrase-Modified Normal and Waxy Rice Starches and Its Structural Properties. Journal of Agricultural and Food Chemistry, 64(24), 5045–5052. https://doi.org/10.1021/ACS.JAFC.6B01055spa
dc.relation.referencesKirbaş, Z., Kumcuoglu, S., & Tavman, S. (2019). Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. Journal of Food Science and Technology, 56(2), 914–926. https://doi.org/10.1007/s13197-018-03554-zspa
dc.relation.referencesKlostermann, C. E., Buwalda, P. L., Leemhuis, H., de Vos, P., Schols, H. A., & Bitter, J. H. (2021). Digestibility of resistant starch type 3 is affected by crystal type, molecular weight and molecular weight distribution. Carbohydrate Polymers, 265, 118069. https://doi.org/10.1016/J.CARBPOL.2021.118069spa
dc.relation.referencesKossmann, J., & Lloyd, J. (2000). Understanding and influencing starch biochemistry. Critical Reviews in Plant Sciences, 19(3), 171–226. https://doi.org/10.1080/07352680091139204spa
dc.relation.referencesKrupa-kozak, U., Drabinska, N., Rosell, C., Fadda, C., Anders, A., Jelinski, T., & Ostaszyk, A. (2018). Broccoli leaf powder as an attractive by-product ingredient : effect on batter behaviour , technological properties and sensory quality of gluten-free mini sponge cake. International Journal of Food Science and Technology, 54(4), 1121–1129. https://doi.org/10.1111/ijfs.13972spa
dc.relation.referencesKumar, A., Sahoo, U., Baisakha, B., Okpani, O. A., Ngangkham, U., Parameswaran, C., Basak, N., Kumar, G., & Sharma, S. G. (2018). Resistant starch could be decisive in determining the glycemic index of rice cultivars. Journal of Cereal Science, 79, 348–353. https://doi.org/10.1016/j.jcs.2017.11.013spa
dc.relation.referencesLagos-Burbano, T., Mejía-España, D., Martínez-Moncayp, C., Andrade-Díaz, D., Latorre-Vasquez, L., Trejo-Escobar, D., & Valencia-Flórez, L. F. (2021). Avances en el mejoramiento genético de la papa para el sur de Colombia (Tulio Lagos-Burbano (ed.); 1st ed.). Universidad de Nariño.spa
dc.relation.referencesLakshminarayan, S. M., Rathinam, V., & KrishnaRau, L. (2006). Effect of maltodextrin and emulsifiers on the viscosity of cake batter and on the quality of cakes. Journal of the Science of Food and Agriculture, 86(5), 706–712. https://doi.org/10.1002/jsfa.2400spa
dc.relation.referencesLe-Bail, P., Hesso, N., & Le-Bail, A. (2018). Starch in Baked Products. In Starch in Food: Structure, Function and Applications: Second Edition (Issue 1972). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100868-3.00015-9spa
dc.relation.referencesLe, T. M. T., Hoang, D. A., Nguyen, H. P., Trhin, V. Van, Tran, T. H., Dang, T. M. A., & Ha, T. Q. (2020). Using cassava waste of the cassava starch processing as food for raising African Nightcrawler (Eudrilus eugeniae) to obtain vermicomposting and earthworm biomass. Journal of Vietnamese Environment, 12(2), 169–176. https://doi.org/10.13141/JVE.VOL12.NO2.PP169-176spa
dc.relation.referencesLeonel, M., do Carmo, E. L., Fernandes, A. M., Soratto, R. P., Ebúrneo, J. A. M., Garcia, É. L., & Dos Santos, T. P. R. (2017). Chemical composition of potato tubers: the effect of cultivars and growth conditions. Journal of Food Science and Technology, 54(8), 2372–2378. https://doi.org/10.1007/s13197-017-2677-6spa
dc.relation.referencesLi, G., & Zhu, F. (2017). Physicochemical properties of quinoa flour as affected by starch interactions. Food Chemistry, 221, 1560–1568. https://doi.org/10.1016/j.foodchem.2016.10.137spa
dc.relation.referencesLi, S., Zhang, Y., Zhang, W., & Zhang, B. (2014). Thermal, Pasting and Gel Textural Properties of Commercial Starches from Different Botanical Sources. Journal of Bioprocessing & Biotechniques, 04(04), 1–6. https://doi.org/10.4172/2155-9821.1000161spa
dc.relation.referencesLigarreto, G., & Suárez, M. (2003). Evaluación del potencial de los recursos genéticos de papa criolla (solanum phureja) por calidad industrial. Agronomía Colombiana, 21(1–3), 83–94.spa
dc.relation.referencesLim, C. J., Basri, M., Ee, G. C. L., & Omar, D. (2017). Phytoinhibitory activities and extraction optimization of potent invasive plants as eco-friendly weed suppressant against Echinochloa colona (L.) Link. Industrial Crops and Products, 100, 19–34. https://doi.org/10.1016/J.INDCROP.2017.01.025spa
dc.relation.referencesLin, L., Yang, J., Ni, S., Wang, X., Bian, H., & Dai, H. (2020). Resource utilization and ionization modification of waste starch from the recycling process of old corrugated cardboard paper. Journal of Environmental Management, 271, 111031. https://doi.org/10.1016/J.JENVMAN.2020.111031spa
dc.relation.referencesLindeboom, N., Chang, P. R., & Tyler, R. T. (2004). Analytical, Biochemical and Physicochemical Aspects of Starch Granule Size, with Emphasis on Small Granule Starches: A Review. Starch - Stärke, 56(34), 89–99. https://doi.org/10.1002/star.200300218spa
dc.relation.referencesLiu, Q., Tarn, R., Lynch, D., & Skjodt, N. M. (2007). Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chemistry, 105(3), 897–907. https://doi.org/10.1016/j.foodchem.2007.04.034spa
dc.relation.referencesLiu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H., & Li, X. (2013). Thermal degradation and stability of starch under different processing conditions. Starch/Staerke, 65(1–2), 48–60. https://doi.org/10.1002/star.201200198spa
dc.relation.referencesLostie, M., Peczalski, R., Andrieu, J., & Laurent, M. (2002). Study of sponge cake batter baking process. Part I: Experimental data. Journal of Food Engineering, 51(2), 131–137. https://doi.org/10.1016/S0260-8774(01)00049-8spa
dc.relation.referencesLuyts, A., Wilderjans, E., Van Haesendonck, I., Brijs, K., Courtin, C. M., & Delcour, J. A. (2013). Relative importance of moisture migration and amylopectin retrogradation for pound cake crumb firming. Food Chemistry, 141(4), 3960–3966. https://doi.org/10.1016/j.foodchem.2013.06.110spa
dc.relation.referencesMa, Z., & Boye, J. I. (2018). Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Critical Reviews in Food Science and Nutrition, 58(7), 1059–1083. https://doi.org/10.1080/10408398.2016.1230537spa
dc.relation.referencesMajzoobi, M., Hedayati, S., Habibi, M., Ghiasi, F., & Farahnaky, A. (2014). Effects of Corn Resistant Starch on the Physicochemical Properties of Cake. Journal of Agricutural Science and Technology, 16, 569–576.spa
dc.relation.referencesMajzoobi, M., Poor, Z. V., Jamalian, J., & Farahnaky, A. (2016). Improvement of the quality of gluten-free sponge cake using different levels and particle sizes of carrot pomace powder. International Journal of Food Science and Technology, 51(6), 1369–1377. https://doi.org/10.1111/ijfs.13104spa
dc.relation.referencesMancebo, C. M., Merino, C., Martínez, M. M., & Gómez, M. (2015). Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality. Journal of Food Science and Technology, 52(10), 6323. https://doi.org/10.1007/S13197-015-1769-4spa
dc.relation.referencesManiglia, B. C., & Tapia-Blácido, D. R. (2016). Isolation and characterization of starch from babassu mesocarp. Food Hydrocolloids, 55, 47–55. https://doi.org/10.1016/j.foodhyd.2015.11.001spa
dc.relation.referencesManingat, C., Seib, P., Bassi, S., Woo, K., & Lasater, D. (2009). Wheat Starch: Production, Properties, Modification and Uses. In Starch (Third Edit, pp. 441–510). Elsevier Inc. https://doi.org/10.1016/B978-0-12-746275-2.00010-0spa
dc.relation.referencesMarchetti, L., Andrés, S. C., Cerruti, P., & Califano, A. N. (2020). Effect of bacterial nanocellulose addition on the rheological properties of gluten-free muffin batters. Food Hydrocolloids, 98(March 2019). https://doi.org/10.1016/j.foodhyd.2019.105315spa
dc.relation.referencesMarín, C., & Cárdenas, Y. (2013). Procesos básicos de pastelería y repostería (Brief Ediciones (ed.); 3rd ed.). Brief Ediciones.spa
dc.relation.referencesMartín, D., Cárdenas, O., & Cárdenas, A. (2013). Almidón de papa , agente gelificante alternativo en medios de cultivo para propagación in-vitro de lulo (Solanum quitoense lam). Revista de Ciencias Agrículas, 30(1), 3–11.spa
dc.relation.referencesMartinez, D. G., Feiden, A., Bariccatti, R., & Zara, K. R. de F. (2018). Ethanol Production from Waste of Cassava Processing. Applied Sciences 2018, Vol. 8, Page 2158, 8(11), 2158. https://doi.org/10.3390/APP8112158spa
dc.relation.referencesMartínez, H., Espinal, C., Pinzón, N., & Barrios, C. (2006). La papa en Colombia. Una mirada global a su estructura y dinámica 1991-2005. Ministerio de Agricultura y Desarrollo Rural. Documento de Trabajo, N° 100, Observatorio Agrocadenas Colombia, 30.spa
dc.relation.referencesMartínez, J., Hernández, J., & Arias, A. (2017). Propiedades fisicoquímicas y funcionales del almidón de arroz ( Oryza sativa L ) blanco e integral. Asociación Colombiana de Ciencia y Tecnología de Alimentos, 25(41), 15–30. http://alimentoshoy.acta.org.co/index.php/hoy/article/viewFile/446/364spa
dc.relation.referencesMartínez, P., Málaga, A., Betalleluz, I., Ibarz, A., & Velezmoro, C. (2015). Functional characterization on native starch of Peruvian native potatoes (Solanum phureja). Scientia Agropecuaria, 6(4), 291–301. https://doi.org/10.17268/sci.agropecu.2015.04.06spa
dc.relation.referencesMartínez, P, Peña, F., Bello-Pérez, L. A., Núñez-Santiago, C., Yee-Madeira, H., & Velezmoro, C. (2019). Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chemistry: X, 2(April), 100030. https://doi.org/10.1016/j.fochx.2019.100030spa
dc.relation.referencesMartínez, Patricia, Vilcarromero, D., Pozo, D., Peña, F., Cervantes, J., Uribe-Calderon, J., & Velezmoro, C. (2021). Characterization of starches obtained from several native potato varieties grown in Cusco (Peru). Journal of Food Science, 86(3), 907–914. https://doi.org/10.1111/1750-3841.15650spa
dc.relation.referencesMasmoudi, M., Besbes, S., Bouaziz, M. A., Khlifi, M., Yahyaoui, D., & Attia, H. (2020). Optimization of acorn (Quercus suber L.) muffin formulations: Effect of using hydrocolloids by a mixture design approach. Food Chemistry, 328(May), 127082. https://doi.org/10.1016/j.foodchem.2020.127082spa
dc.relation.referencesMatignon, A., & Tecante, A. (2017). Starch retrogradation: From starch components to cereal products. Food Hydrocolloids, 68, 43–52. https://doi.org/10.1016/j.foodhyd.2016.10.032spa
dc.relation.referencesMatz, S. (1996). Ingredients for Bakers (Pan-Tech International (ed.); 2nd ed.). Pan-Tech International.spa
dc.relation.referencesMedina, J., & Salas, J. (2008). Caracterización morfológica del granulo de almidón nativo: Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, 27, 56–62. http://www.scielo.org.co/pdf/ring/n27/n27a7.pdfspa
dc.relation.referencesMegahey, E. K., McMinn, W. A. M., & Magee, T. R. A. (2005). Experimental Study of Microwave Baking of Madeira Cake Batter. Food and Bioproducts Processing, 83(4), 277–287. https://doi.org/10.1205/FBP.05033spa
dc.relation.referencesMejía-España, Di. F., Trejo-Escobar, D., Latorre-Vásquez, L., Chaves-Morillo, D., Córdoba-Solarte, L., & Valencia, L. F. (2017). Caracteristicas agroindustriales de 32 variedades de papas nativas de Nariño. 30.spa
dc.relation.referencesMendoza, R. (2012). Evaluación de los procesos de precocción/congelación de tres presentaciones de papa criolla [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/8830/1/107445.2012.pdfspa
dc.relation.referencesMiñarro, B., Normahomed, I., Guamis, B., & Capellas, M. (2010). Influence of unicellular protein on gluten-free bread characteristics. European Food Research and Technology 2010 231:2, 231(2), 171–179. https://doi.org/10.1007/S00217-010-1269-8spa
dc.relation.referencesMinisterio de agricultura y desarrollo rural-MADR. (2019). Producción Nacional por Producto. Agronet. http://www.agronet.gov.co/Paginas/estadisticas.aspxspa
dc.relation.referencesDecreto 1944, 6 (1996). https://www.icbf.gov.co/cargues/avance/docs/decreto_1944_1996.htmspa
dc.relation.referencesMonteros, C., & Reinoso, I. (2010). Biodiversidad y oportunidades de mercado para las papas nativas ecuatorianas. INIAP, 1(1), 1–12.spa
dc.relation.referencesMorais, E. C. de, Cruz, A. G., & Bolini, H. M. A. (2013). Gluten-free bread: multiple time–intensity analysis, physical characterisation and acceptance test. International Journal of Food Science & Technology, 48(10), 2176–2184. https://doi.org/10.1111/IJFS.12202spa
dc.relation.referencesMoreno, J. D., Cerón, M. del S., & Valbuena, R. I. (2010). Caracterización morfológica de germoplasma de papa nativa de colombia. C. I. Tibaitata, Corpoica, 15.spa
dc.relation.referencesMurniece, I., Karklina, D., Galoburda, R., Santare, D., Skrabule, I., & Costa, H. S. (2011). Nutritional composition of freshly harvested and stored Latvian potato (Solanum tuberosum L.) varieties depending on traditional cooking methods. Journal of Food Composition and Analysis, 24(4–5), 699–710. https://doi.org/10.1016/J.JFCA.2010.09.005spa
dc.relation.referencesNasaruddin, F., Chin, N. L., & Yusof, Y. A. (2012). Effect of processing on instrumental textural properties of traditional dodol using back extrusion. International Journal of Food Properties, 15(3), 495–506. https://doi.org/10.1080/10942912.2010.491932spa
dc.relation.referencesNaushad, M., & Taylor, J. (2013). Morphology, physical, chemical, and functional properties of starches from cereals, legumes, and tubers cultivated in Africa: A review. Starch/Staerke, 65(9–10), 715–729. https://doi.org/10.1002/star.201200263spa
dc.relation.referencesNivelle, M. A., Remmerie, E., Bosmans, G. M., Vrinten, P., Nakamura, T., & Delcour, J. A. (2019). Amylose and amylopectin functionality during baking and cooling of bread prepared from flour of wheat containing unusual starches: A temperature-controlled time domain 1H NMR study. Food Chemistry, 295(May), 110–119. https://doi.org/10.1016/j.foodchem.2019.05.049spa
dc.relation.referencesNoda, T., Kottearachchi, N. S., Tsuda, S., Mori, M., Takigawa, S., Matsuura-Endo, C., Kim, S. J., Hashimoto, N., & Yamauchi, H. (2007). Starch phosphorus content in potato (Solanum tuberosum L.) cultivars and its effect on other starch properties. Carbohydrate Polymers, 68(4), 793–796. https://doi.org/10.1016/j.carbpol.2006.08.005spa
dc.relation.referencesNoda, T., Tsuda, S., Mori, M., Takigawa, S., Matsuura-Endo, C., Saito, K., Arachichige Mangalika, W. H., Hanaoka, A., Suzuki, Y., & Yamauchi, H. (2004). The effect of harvest dates on the starch properties of various potato cultivars. Food Chemistry, 86(1), 119–125. https://doi.org/10.1016/j.foodchem.2003.09.035spa
dc.relation.referencesOliveira, C., Ramíres, J., Hidalgo, D., & Piler, C. (2018). Ultrasound assisted extraction of yam (Discoreae bulbifera) starch: effecto on morphology and functional properties. Starch - Stärke, 70(5–6), 24–33. https://doi.org/https://doi.org/10.1002/star.201700185spa
dc.relation.referencesOluwaseyi, K., Tai, M., Jing, C., & Fu, D. (2013). Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloids, 33(2), 169–175.spa
dc.relation.referencesOmoregie Egharevba, H. (2019). Chemical Properties of Starch and Its Application in the Food Industry. In Intech (Ed.), Chemical properties of starch (1st ed., p. 27). https://doi.org/10.1016/j.colsurfa.2011.12.014spa
dc.relation.referencesORMET Red de Observatorios Regionales del Mercado de Trabajo. (2012). Diagnóstico socioeconómico y del mercado de trabajo Ciudad de Pasto.spa
dc.relation.referencesOzkoc, S. O., & Seyhun, N. (2015). Effect of Gum Type and Flaxseed Concentration on Quality of Gluten-Free Breads Made from Frozen Dough Baked in Infrared-Microwave Combination Oven. Food and Bioprocess Technology 2015 8:12, 8(12), 2500–2506. https://doi.org/10.1007/S11947-015-1615-8spa
dc.relation.referencesPacheco, E., & Techeira, N. (2010). Propiedades químicas y funcionales del almidón nativo y modificado de ñame (Dioscorea alata). Acta Cientifica Venezolana, 61(1–2), 38–46.spa
dc.relation.referencesParada, J., & Aguilera, J. M. (2011). LWT - Food Science and Technology Microstructure , mechanical properties , and starch digestibility of a cooked dough made with potato starch and wheat gluten. LWT - Food Science and Technology, 44(8), 1739–1744. https://doi.org/10.1016/j.lwt.2011.03.012spa
dc.relation.referencesParimala, K., & Sudha, L. (2012). Effect of hydrocolloids on the rheological, microscopic, mass transfer characteristics during frying and quality characteristics of puri. Food Hydrocolloids, 27(1), 191–200. https://doi.org/10.1016/j.foodhyd.2011.07.005spa
dc.relation.referencesParimalavalli, R., Babu, As., & Rao, Js. (2014). A study on comparison between cereal (wheat) and non cereal (chickpea) flour characteristics. Int. J. Int. J.Cur. Tr. Res, 3(2), 70–76. www.injctr.comspa
dc.relation.referencesPathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2012). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology 2012 6:1, 6(1), 36–60. https://doi.org/10.1007/S11947-012-0867-9spa
dc.relation.referencesPeña, C. B., & Restrepo, L. P. (2013). Compuestos fenólicos y carotenoides en la papa : revisión . Phenolic Compounds and Carotenoids in Potatoes – Revision . Actualizacion En Nutricion, 14, 25–32.spa
dc.relation.referencesPérez, E., & Pacheco, E. (2005). Características químicas, físicas y reológicas de la harina y el almidón nativo aislado de Ipomoea batatas Lam. Tecnología de Alimentos, 56(1), 9–15.spa
dc.relation.referencesPineda, P., Coral, D., Ramos, D., Rosales, A., & Rodríguez, M. (2011). Thermo-alkaline treatment. A process that changes the thermal properties of corn starch. Procedia Food Science, 1, 370–378.spa
dc.relation.referencesPingmuanglek, P., Jakrawatana, N., & Gheewala, S. H. (2017). Supply chain analysis for cassava starch production: Cleaner production opportunities and benefits. Journal of Cleaner Production, 162, 1075–1084. https://doi.org/10.1016/j.jclepro.2017.06.148spa
dc.relation.referencesPozo-Bayón, M., Ruíz-Rodríguez, A., Pernin, K., & Cayot, N. (2007). Influence of Eggs on the Aroma Composition of a Sponge Cake and on the Aroma Release in Model Studies on Flavored Sponge Cakes. Journal of Agricultural and Food Chemistry, 55, 1418–1426.spa
dc.relation.referencesPruska-Kędzior, A., Kędzior, Z., Gorący, M., Pietrowska, K., Przybylska, A., & Spychalska, K. (2008). Comparison of rheological, fermentative and baking properties of gluten-free dough formulations. European Food Research and Technology, 227(5), 1523–1536. https://doi.org/10.1007/s00217-008-0875-1spa
dc.relation.referencesPycia, K., Juszczak, L., Gałkowska, D., & Witczak, M. (2012). Physicochemical properties of starches obtained from Polish potato cultivars. Starch - Stärke, 64(2), 105–114. https://doi.org/10.1002/star.201100072spa
dc.relation.referencesPyler, E. J., & Gorton, L. A. (2009). Baking Science & Technology (4th ed.). Sosland Pub Co.spa
dc.relation.referencesRached, L. B., Vizcarrondo, C., Rincón, A., & Padilla, F. (2006). Evaluación de harinas y almidones de mapuey (Dioscorea trifida), variedades blanco y morado. Archivos Latinoamericanos de Nutrición, 56(4), 2006.spa
dc.relation.referencesRaigond, P., Ezekiel, R., & Raigond, B. (2015). Resistant starch in food: A review. Journal of the Science of Food and Agriculture, 95(10), 1968–1978. https://doi.org/10.1002/jsfa.6966spa
dc.relation.referencesRaija-Liisa, H. (2014). Sensory Attributes of Bakery Products. In Bakery Products Science and Technology: Second Edition (2nd ed., pp. 391–397). Wiley-Blackwell.spa
dc.relation.referencesRamirez, L. M., & Zarate, L. M. (2012). CARACTERIZACIÓN DE ALMIDÓN NATIVO DE CLONES PROMISORIOS DE PAPA CRIOLLA (Solanum phureja) PARA SU APLICACIÓN EN UN DERIVADO CÁRNICO [UNIVERSIDAD DE LA SALLE]. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesRamírez, L., Zárate, L., & Otálora, N. (2011). Caracterización de almidón nativo extraído de clones promisorios de papa criolla (Solanum phureja) para su aplicación en un derivado cárnico.spa
dc.relation.referencesRidout, M. J., Gunning, A. P., Parker, M. L., Wilson, R. H., & Morris, V. J. (2002). Using AFM to image the internal structure of starch granules. Carbohydrate Polymers, 50(2), 123–132. https://doi.org/10.1016/S0144-8617(02)00021-8spa
dc.relation.referencesRipoll, M. (2014). La Industria Molinera de Trigo en Colombia: El caso del molino tres castillos, 1940-2012. Economia y Region, 8(2), 213–265.spa
dc.relation.referencesRivas, M., Méndez, G., Sánchez, M., Núñez, C., & Bello, L. (2008). Caracterización morfológica, molecular y fisicoquímica del almidón de plátano oxidado y lintnerizado. Agrociencia, 42(5), 487–497.spa
dc.relation.referencesRobyt, J. (2009). Starch: Structure, properties, chemistry and enzymology. In Glycoscience. Chemistry and chemical biology (1st ed., Vol. 74, Issue 11, pp. 1289–1289). https://doi.org/10.1134/s0006297909110170spa
dc.relation.referencesRodriguez-Sandoval, E., Lascano, A., & Sandoval, G. (2012). Influencia de la sustitución parcial de la harina de trigo por harina de quinua y papa en las propiedades termomecánicas y de panificación de masas. U.D.C.A, 15(1), 199–207.spa
dc.relation.referencesRodriguez-Sandoval, Eduardo, Prasca-Sierra, I., & Hernandez, V. (2017). Effect of modified cassava starch as a fat replacer on the texture and quality characteristics of muffins. Journal of Food Measurement and Characterization, 11(4), 1630–1639. https://doi.org/10.1007/s11694-017-9543-0spa
dc.relation.referencesRodriguez, E., Lascano, A., & Sandoval, G. (2012). Influencia De La Sustitucion Parcial De La Harina De Trigo Por Harina De Quinua Y Papa En Las Propiedades Termomecanicas Y De Panificacion De Masas. 1(15), 199–207.spa
dc.relation.referencesRohm, H., Schäper, C., & Zahn, S. (2017). Interesterified fats in chocolate and bakery products: A concise review. LWT - Food Science and Technology, 87(1), 379–384.spa
dc.relation.referencesRojas, L. P., & Seminario, J. F. (2014). Productividad de diez cultivares promisorios de papa chaucha (Solanum tuberosum, grupo Phureja) de la región Cajamarca. Scientia Agropecuaria, 5, 165–175. https://doi.org/10.17268/sci.agropecu.2014.04.01spa
dc.relation.referencesRonda, F., Oliete, B., Gómez, M., Caballero, P. A., & Pando, V. (2011). Rheological study of layer cake batters made with soybean protein isolate and different starch sources. Journal of Food Engineering, 102(3), 272–277. https://doi.org/10.1016/j.jfoodeng.2010.09.001spa
dc.relation.referencesRonda, F., & Roos, Y. H. (2008). Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels. Carbohydrate Research, 343(5), 903–911. https://doi.org/10.1016/J.CARRES.2008.01.026spa
dc.relation.referencesRozo, D., & Ramírez, L. (2011). La agroindustria de la papa criolla en Colombia. Situación actual y retos para su desarrollo. Gest.Soc, 4(2), 17–30.spa
dc.relation.referencesSahi, S. S., & Alava, J. M. (2003). Functionality of emulsifiers in sponge cake production. Journal of the Science of Food and Agriculture, 83(14), 1419–1429. https://doi.org/10.1002/jsfa.1557spa
dc.relation.referencesSaito, H., Tamura, M., & Ogawa, Y. (2019). Starch digestibility of various Japanese commercial noodles made from different starch sources. Food Chemistry, 283, 390–396. https://doi.org/10.1016/j.foodchem.2019.01.026spa
dc.relation.referencesSajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant Starch–A Review. Comprehensive Reviews in Food Science and Food Safety, 5(1), 1–17. https://doi.org/10.1111/J.1541-4337.2006.TB00076.Xspa
dc.relation.referencesSalehi, F. (2017). Rheological and physical properties and quality of the new formulation of apple cake with wild sage seed gum (Salvia macrosiphon). Journal of Food Measurement and Characterization, 11(4), 2006–2012. https://doi.org/10.1007/s11694-017-9583-5spa
dc.relation.referencesSalehi, F. (2019). Improvement of gluten-free bread and cake properties using natural hydrocolloids: A review. Food Science and Nutrition, 7(11), 3391–3402. https://doi.org/10.1002/fsn3.1245spa
dc.relation.referencesSanchez-González, J. A., Echeverria, C., Lescano, L., Linares, G., Arteaga-Miñano, H. L., Soriano-Colchado, J., & Barraza-Jáuregui, G. (2019). Physico-chemical, thermal and rheological characteristics of starch isolated from four commercial potatoes cultivars. Scientia Agropecuaria, 10(1), 63–71. https://doi.org/10.17268/sci.agropecu.2019.01.07spa
dc.relation.referencesSandhu, K. S., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507. https://doi.org/10.1016/J.FOODCHEM.2006.01.060spa
dc.relation.referencesSarabjit, S., Kim, L., & Ananingsih, K. (2014). Quality control. In Bakery Products Science and Technology: Second Edition (2nd ed., pp. 490–507). Wiley-Blackwell.spa
dc.relation.referencesScazzina, F., Dall’Asta, M., Pellegrini, N., & Brighenti, F. (2015). Glycaemic index of some commercial gluten-free foods. European Journal of Nutrition, 54(6), 1021–1026. https://doi.org/10.1007/s00394-014-0783-zspa
dc.relation.referencesSchmiele, M., Sampaio, U. M., Pedrosa, M. T., & Clerici, S. (2019). Basic Principles: Composition and Properties of Starch. In Starches for Food Application. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00001-0spa
dc.relation.referencesSchober, T. J., Bean, S. R., & Boyle, D. L. (2007). Gluten-Free Sorghum Bread Improved by Sourdough Fermentation: Biochemical, Rheological, and Microstructural Background. Journal of Agricultural and Food Chemistry, 55(13), 5137–5146. https://doi.org/10.1021/jf0704155spa
dc.relation.referencesSerinyel, G., & Öztürk, S. (2017). Investigation on potential utilization of native and modified starches containing resistant starch as a fat replacer in bakery products. Starch/Staerke, 69(3–4), 1–9. https://doi.org/10.1002/star.201600022spa
dc.relation.referencesShevkani, K., & Singh, N. (2014). Influence of kidney bean, field pea and amaranth protein isolates on the characteristics of starch-based gluten-free muffins. International Journal of Food Science & Technology, 49(10), 2237–2244. https://doi.org/10.1111/IJFS.12537spa
dc.relation.referencesShu, X., Jia, L., Gao, J., Song, Y., Zhao, H., Nakamura, Y., & Wu, D. (2007). The influences of chain length of amylopectin on resistant starch in rice (Oryza sativa L.). Starch/Staerke, 59(10), 504–509. https://doi.org/10.1002/star.200700640spa
dc.relation.referencesSingh, H., Sharma, B., & Singh, P. (2019). Utilization of flour from rice brokens in wheat flour chapatti: evaluation of dough rheology, starch digestibility, glycemic index and retrogradation behavior. Journal of Food Science and Technology, 56, 2490–2500. https://doi.org/10.1007/s13197-019-03726-5spa
dc.relation.referencesSingh, J., Dartois, A., & Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science and Technology, 21(4), 168–180. https://doi.org/10.1016/j.tifs.2009.12.001spa
dc.relation.referencesSingh, J., & Kaur, L. (2016). Advances in potato chemistry and technology (Nancy Maragioglio (ed.); 2nd ed.). Nikky Levy. https://books.google.es/books?hl=es&lr=&id=GO9eBwAAQBAJ&oi=fnd&pg=PP1&dq=potato&ots=ebA0_8W5_m&sig=K36C8NQ03r9Fi3HsdR-XAhqvKLs#v=onepage&q=potato&f=falsespa
dc.relation.referencesSingh, J., Kaur, L., & Singh, N. (2004). Effect of acetylation on some properties of corn and potato starches. Starch/Staerke, 56(12), 586–601. https://doi.org/10.1002/star.200400293spa
dc.relation.referencesSingh, J., McCarthy, O. J., & Singh, H. (2006). Physico-chemical and morphological characteristics of New Zealand Taewa (Maori potato) starches. Carbohydrate Polymers, 64(4), 569–581. https://doi.org/10.1016/j.carbpol.2005.11.013spa
dc.relation.referencesSingh, J., & Singh, N. (2001). Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chemistry, 75(1), 67–77. https://doi.org/10.1016/S0308-8146(01)00189-3spa
dc.relation.referencesSingh, N., Kaur, L., Sandhu, K. S., Kaur, J., & Nishinari, K. (2006). Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloids, 20(4), 532–542. https://doi.org/10.1016/j.foodhyd.2005.05.003spa
dc.relation.referencesSingh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219–231. https://doi.org/10.1016/S0308-8146(02)00416-8spa
dc.relation.referencesSolarte-Montúfar, J. G., Díaz-Murangal, A. E., Osorio-Mora, O., & Mejía-España, D. F. (2019). Propiedades Reológicas y Funcionales del Almidón. Procedente de Tres Variedades de Papa Criolla. Información Tecnológica, 30(6), 35–44. https://doi.org/10.4067/s0718-07642019000600035spa
dc.relation.referencesSouilah, R., Boudries, N., Djabali, D., Belhadi, B., & Nadjemi, B. (2014). Kinetic study of enzymatic hydrolysis of starch isolated from sorghum grain cultivars by various methods. Biotechnology and Conservation of Species from Arid Regions, 2–2(January), 401–410. https://doi.org/10.1007/s13197-013-0977-zspa
dc.relation.referencesSouza, P. F., Brancoli, P., Bolton, K., Zamani, A., & Taherzadeh, M. J. (2017). Techno-Economic and Life Cycle Assessment of Wastewater Management from Potato Starch Production: Present Status and Alternative Biotreatments. Fermentation 2017, Vol. 3, Page 56, 3(4), 56. https://doi.org/10.3390/FERMENTATION3040056spa
dc.relation.referencesSouza, P. F., Zamani, A., & Taherzadeh, M. J. (2017). Production of Edible Fungi from Potato Protein Liquor (PPL) in Airlift Bioreactor. Fermentation 2017, Vol. 3, Page 12, 3(1), 12. https://doi.org/10.3390/FERMENTATION3010012spa
dc.relation.referencesSrichuwong, S., Curti, D., Austin, S., King, R., Lamothe, L., & Gloria-Hernandez, H. (2017). Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry, 233, 1–10. https://doi.org/10.1016/j.foodchem.2017.04.019spa
dc.relation.referencesSrichuwong, S., Isono, N., Jiang, H., Mishima, T., & Hisamatsu, M. (2012). Freeze-thaw stability of starches from different botanical sources: Correlation with structural features. Carbohydrate Polymers, 87(2), 1275–1279. https://doi.org/10.1016/j.carbpol.2011.09.004spa
dc.relation.referencesSrichuwong, S., & Jane, J.-L. (2007). Physicochemical properties of starch affected by molecular composition and structures: a review. Food Science and Biotechnology, 16(5), 663–674.spa
dc.relation.referencesStantiall, S. E., & Serventi, L. (2017). Nutritional and sensory challenges of gluten-free bakery products: a review. Https://Doi.Org/10.1080/09637486.2017.1378626, 69(4), 427–436. https://doi.org/10.1080/09637486.2017.1378626spa
dc.relation.referencesSun, Q., Chu, L., Xiong, L., & Si, F. (2015). Effects of different isolation methods on the physicochemical properties of pea starch and textural properties of vermicelli. Journal of Food Science and Technology, 52(1), 327–334. https://doi.org/10.1007/s13197-013-0980-4spa
dc.relation.referencesSwinkels, J. J. M. (1985). Composition and Properties of Commercial Native Starches. Starch - Stärke, 37(1), 1–5. https://doi.org/10.1002/star.19850370102spa
dc.relation.referencesTeagasc. (2017). Starch Potatoes. Carlow, Ireland. https://www.teagasc.ie/%0Acrops/crops/research/research-programme/cropquest/starch-potatoes/spa
dc.relation.referencesTinjacá, S., & Rodriguez, L. (2015). Catálogo de papas nativas de Nariño, Colombia (1st ed.). Universidad Nacional de Colombia.spa
dc.relation.referencesTorres, A., Montero, P., & Duran, M. (2013). Propiedades fisicoquímicas, morfológicas y funcionales del almidón de malanga (Colocasia esculenta). Revista Lasallista de Investigacion, 10(2), 52–61.spa
dc.relation.referencesTsatsaragkou, K., Papantoniou, M., & Mandala, I. (2015). Rheological, Physical, and Sensory Attributes of Gluten-Free Rice Cakes Containing Resistant Starch. Journal of Food Science, 80(2), E341–E348. https://doi.org/10.1111/1750-3841.12766spa
dc.relation.referencesTsatsaragkou, K., Protonotariou, S., & Mandala, I. (2016). Structural role of fibre addition to increase knowledge of non-gluten bread. Journal of Cereal Science, 67, 58–67. https://doi.org/10.1016/J.JCS.2015.10.003spa
dc.relation.referencesVafina, A., Proskurina, V., Vorobiev, V., Evtugin, V. G., Egkova, G., & Nikitina, E. (2018). Physicochemical and morphological characterization of potato starch modified by bacterial amylases for food industry applications. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/1627540spa
dc.relation.referencesValencia-Flórez, L. F., Trejo-Escobar, D. M., Latorre-Vásquez, L. I., Hurtado-Benavides, A. M., & Mejía-España, D. F. (2019). Influence of storage conditions on the quality of two varieties of native potato (Solanum Tuberosum group phureja)•. DYNA, 86(209), 49–55. https://doi.org/10.15446/dyna.v86n209.72958spa
dc.relation.referencesVamadevan, V., & Bertoft, E. (2015). Structure-function relationships of starch components. Starch - Stärke, 67(1–2), 55–68. https://doi.org/10.1002/STAR.201400188spa
dc.relation.referencesVan Hung, P., Huong, N. T. M., Phi, N. T. L., & Tien, N. N. T. (2017). Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments. International Journal of Biological Macromolecules, 95, 299–305. https://doi.org/10.1016/j.ijbiomac.2016.11.074spa
dc.relation.referencesVelásquez Herrera, J. D., Lucas Aguirre, J. C., & Quintero Castaño, V. D. (2017). Physical-chemical characteristics determination of potato (Solanum phureja Juz. & Bukasov) starch. Acta Agronomica, 66(3), 323–330. https://doi.org/10.15446/acag.v66n3.52419spa
dc.relation.referencesVidaurre-Ruiz, J., Salas-Valerio, F., Schoenlechner, R., & Repo-Carrasco-Valencia, R. (2021). Rheological and textural properties of gluten-free doughs made from Andean grains. International Journal of Food Science and Technology, 56(1), 468–479. https://doi.org/10.1111/ijfs.14662spa
dc.relation.referencesViksø-Nielsen, A., Blennow, A., Jørgensen, K., Kristensen, K. H., Jensen, A., & Møller, B. L. (2001). Structural, physicochemical, and pasting properties of starches from potato plants with repressed r1-gene. Biomacromolecules, 2(3), 836–843. https://doi.org/10.1021/bm0155165spa
dc.relation.referencesVilpoux, O. F., Brito, V. H., & Cereda, M. P. (2018). Starch extracted from corms, roots, rhizomes, and tubers for food application. In Starches for Food Application: Chemical, Technological and Health Properties. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00004-6spa
dc.relation.referencesWaterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Staerke, 67(1–2), 14–29. https://doi.org/10.1002/star.201300238spa
dc.relation.referencesWaterschoot, J., Gomand, S. V., Willebrords, J. K., Fierens, E., & Delcour, J. A. (2014). Pasting properties of blends of potato, rice and maize starches. Food Hydrocolloids, 41, 298–308. https://doi.org/10.1016/j.foodhyd.2014.04.033spa
dc.relation.referencesWhistler, R., & BeMiller, J. (1997). Carbohydrate Chemistry for Food Scientists. In Starch - Stärke (Vol. 3, Issues 7–8). Wiley. https://doi.org/10.1002/star.19970490718spa
dc.relation.referencesWieser, H. (2007). Chemistry of gluten proteins. Food Microbiology, 24(2), 115–119. https://doi.org/10.1016/j.fm.2006.07.004spa
dc.relation.referencesWilderjans, E., Luyts, A., Goesaert, H., Brijs, K., & Delcour, J. A. (2010). A model approach to starch and protein functionality in a pound cake system. Food Chemistry, 120(1), 44–51. https://doi.org/10.1016/J.FOODCHEM.2009.09.067spa
dc.relation.referencesWitczak, M., Ziobro, R., Juszczak, L., & Korus, J. (2016). Starch and starch derivatives in gluten-free systems - A review. Journal of Cereal Science, 67, 46–57. https://doi.org/10.1016/j.jcs.2015.07.007spa
dc.relation.referencesXu, Y. (2013). Resistant starch content, molecular structure and physicochemical properties of starches in Virginia-grown corn, potato and mungbean. Journal of Cereals and Oilseeds, 4(1), 10–18. https://doi.org/10.5897/jco2012.0097spa
dc.relation.referencesYadav, B. S., Guleria, P., & Yadav, R. B. (2013). Hydrothermal modification of Indian water chestnut starch: Influence of heat-moisture treatment and annealing on the physicochemical, gelatinization and pasting characteristics. LWT - Food Science and Technology, 53(1), 211–217. https://doi.org/10.1016/J.LWT.2013.02.007spa
dc.relation.referencesYang, X., & Foegeding, E. A. (2010). Effects of sucrose on egg white protein and whey protein isolate foams: Factors determining properties of wet and dry foams (cakes). Food Hydrocolloids, 24(2–3), 227–238. https://doi.org/10.1016/J.FOODHYD.2009.09.011spa
dc.relation.referencesZaidul, I. S. M., Norulaini, N. A. N., Omar, A. K. M., Yamauchi, H., & Noda, T. (2007). RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydrate Polymers, 69(4), 784–791. https://doi.org/10.1016/j.carbpol.2007.02.021spa
dc.relation.referencesZaidul, I., Yamauchi, H., Matsuura, C., Suzuki, T., & Noda, T. (2007). Correlation between the compositional and pasting properties of various potato starches. Food Chemistry, 105, 164–172.spa
dc.relation.referencesZárate-Polanco, L., Ramírez-Suárez, L., Otálora-Santamaría, N., Garnica-Holguín, L., Prieto, L., Cerón-Lasso, M., & Argüelles, J. (2014). Extracción y caracterización de almidón de clones promisorios de papa criolla (Solanum tuberosum, Grupo Phureja). Revista Latinoamericana De La Papa, 18(1), 1–24. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesZhang, P., & Hamaker, B. R. (2012). Banana starch structure and digestibility. Carbohydrate Polymers, 87(2), 1552–1558. https://doi.org/10.1016/j.carbpol.2011.09.053spa
dc.relation.referencesZhao, X., Andersson, M., & Andersson, R. (2018). Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chemistry, 251(September 2017), 58–63. https://doi.org/10.1016/j.foodchem.2018.01.028spa
dc.relation.referencesZhou, F., Liu, Q., Zhang, H., Chen, Q., & Kong, B. (2016). Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. International Journal of Biological Macromolecules, 84, 410–417. https://doi.org/10.1016/j.ijbiomac.2015.12.050spa
dc.relation.referencesZhou, W., Hui, Y. H., De Leyn, I., Pagani, M. A., Rosell, C. M., Selman, J. D., & Therdthai, N. (2014). Bakery Products Science and Technology: Second Edition. In W. Zhou (Ed.), Bakery Products Science and Technology: Second Edition (2nd ed., Vol. 9781119967). Wiley-Blackwell. https://doi.org/10.1002/9781118792001spa
dc.relation.referencesZhou, W., Therdthai, N., & Hui, Y. H. (2014). Introduction to Baking and Bakery Products. In Bakery Products Science and Technology: Second Edition (2nd ed., pp. 4–16). Wiley-Blackwell.spa
dc.relation.referencesZhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, 122, 456–480. https://doi.org/10.1016/j.carbpol.2014.10.063spa
dc.relation.referencesZhu, F. (2017). Properties and Food Uses of Chestnut Flour and Starch. Food and Bioprocess Technology, 10(7), 1173–1191. https://doi.org/10.1007/s11947-017-1909-0spa
dc.relation.referencesZhu, F., & Cui, R. (2020). Comparison of physicochemical properties of oca (Oxalis tuberosa), potato, and maize starches. International Journal of Biological Macromolecules, 148, 601–607. https://doi.org/10.1016/j.ijbiomac.2020.01.028spa
dc.relation.referencesZhu, F., & Liu, P. (2020). Starch gelatinization, retrogradation, and enzyme susceptibility of retrograded starch: Effect of amylopectin internal molecular structure. Food Chemistry, 316(October 2019), 126036. https://doi.org/10.1016/j.foodchem.2019.126036spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocSolanum phureja
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalAlmidónspa
dc.subject.proposalpapa nativaspa
dc.subject.proposalcupcakespa
dc.subject.proposalharina de trigospa
dc.subject.proposalStarcheng
dc.subject.proposalNative potatoeng
dc.subject.proposalwhear floureng
dc.titleAlmidón de papa var. Ratona blanca (Solanum phureja) como sustituto de harina de trigo en la elaboración de cupcakesspa
dc.title.translatedPotato starch var. Ratona blanca (Solanum phureja) as a substitute for wheat flour in the preparation of cupcakeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_final_Diana_Chaves.pdf
Tamaño:
2.32 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: