Desarrollo de andamios de PMMA/YSZ obtenidos por manufactura aditiva biomiméticos a cartílago nativo

dc.contributor.advisorEstupiñan Duran, Hugo Armando
dc.contributor.authorEstrada Guerrero, Hernan Stiven
dc.contributor.orcidEstrada Guerrero, Hernan Stiven [0009000777168097]
dc.contributor.orcidEstupiñam Durán, Hugo Armando [0000000296073364]
dc.contributor.researchgroupGrupo de Investigación en Biosuperficies
dc.date.accessioned2026-01-21T21:33:04Z
dc.date.available2026-01-21T21:33:04Z
dc.date.issued2025-12-11
dc.descriptionIlustraciones
dc.description.abstractLas articulaciones son estructuras biomecánicas clave del cuerpo humano, pero también altamente vulnerables a lesiones. Entre lo que lo compone, el cartílago articular (CA) destaca por sus propiedades viscoelásticas, que permiten distribuir de manera uniforme las cargas y garantizar una fricción reducida. No obstante, múltiples factores de riesgo aumentan la susceptibilidad a lesiones. Debido a su naturaleza avascular e inervada, el CA tiene capacidad de autorreparación limitada, lo que ha impulsado numerosas investigaciones sin que aún se disponga de una solución definitiva. Ante esto, se desarrolló una biotinta tipo hidrogel compuesto por Polimetilmetacrilato (PMMA), Poli(etilenglicol)Dimetacrilato (PEGDMA) y componentes bioactivos, la cual se imprimió mediante Manufactura Aditiva (MA) sobre un sustrato biocerámico. La metodología incluyó caracterización fisicoquímica, mecánica y tribológica. El biomaterial alcanzó un hinchamiento del 16% a 30 minutos de reticulación, valor cercano al CA porcino. En degradación, el PMMA mantuvo estabilidad, mientras que el PEGDMA mostró vulnerabilidad por hidrólisis en condiciones experimentales inflamatorias. La incorporación de los componentes sulfatados bioactivos mantuvo el Coeficiente de Fricción (COF) entre 0,085 y 0,111 con cargas de 0,5 y 1 kg, a diferencia de los andamios sin sulfatos. A nivel mecánico, el AFM evidenció que bajas concentraciones de sulfatos redujeron el módulo elástico (0,39 GPa) y aumentaron la deformación, mientras que altas concentraciones lo reforzaron (6,57 GPa), con rigidez y adhesión próximas al CA porcino (440 GPa). En conjunto, se consolidó un material bioinspirado con propiedades fisicoquímicas, de fricción y mecánicas comparables al CA nativo, lo que respalda su potencial como material biomimético a CA nativo. (Texto tomado de la fuente)spa
dc.description.abstractJoints are key biomechanical structures of the human body but are also highly vulnerable to injury. Among their components, Articular Cartilage (AC) stands out for its viscoelastic properties, which enable uniform load distribution and reduced friction. However, multiple risk factors increase its susceptibility to damage. Due to its avascular and innervated nature, AC has limited self-repair capacity, which has led to many research efforts without a definitive solution. In this context, a hydrogel-type bio-ink composed of polymethyl methacrylate (PMMA), poly(ethylene glycol) dimethacrylate (PEGDMA), and bioactive components was developed and printed by Additive Manufacturing (AM) onto a bioceramic substrate. The methodology included physicochemical, mechanical, and tribological characterization. The biomaterial achieved a swelling ratio of 16% after 30 minutes of crosslinking, a value close to porcine AC. In degradation tests, PMMA maintained stability, while PEGDMA showed hydrolytic vulnerability under experimental inflammatory conditions. The incorporation of sulfated bioactive components maintained the Coefficient of Friction (COF) between 0.085 and 0.111 under loads of 0.5 and 1 kg, unlike scaffolds without sulfates. At the mechanical level, AFM analysis revealed that low sulfate concentrations reduced the elastic modulus (0.39 GPa) and increased deformation, whereas higher concentrations reinforced the network (6.57 GPa), with stiffness and adhesion values approaching those of porcine AC (440 GPa). Overall, a bioinspired material with physicochemical, friction, and mechanical properties comparable to native AC was achieved, supporting its potential as a biomimetic material to native AC.eng
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.methodsx
dc.description.researchareaBiomateriales
dc.format.extent1 recurso en línea (123 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89290
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.relation.referencesAgarwal, T., Chiesa, I., Presutti, D., Irawan, V., Vajanthri, K., Costantini, M., Nakagawa, Y., Tan, S., Makvandi, P., Zare, E., Sharifi, E., De Maria, C., Ikoma, T., & Maiti, T. (2021). Recent Advances in Bioprinting Technologies for Engineering Different Cartilage-based Tissues. Materials Science and Engineering: C, 123, 112005. https://doi.org/10.1016/j.msec.2021.112005
dc.relation.referencesAhmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121. https://doi.org/10.1016/J.JARE.2013.07.006
dc.relation.referencesAi, C., Liu, L., Wong, K., Tan, X. H., & Goh, J. C. H. (2023). The Effect of Chondroitin Sulfate Concentration and Matrix Stiffness on Chondrogenic Differentiation of Mesenchymal Stem Cells. Biomaterials Science, 11(13), 4557–4573. https://doi.org/10.1039/D2BM01980A
dc.relation.referencesAn, Y. H., Kim, J. A., Yim, H. G., Han, W. J., Park, Y. B., Jin Park, H., Young Kim, M., Jang, J., Koh, R. H., Kim, S. H., Hwang, N. S., & Ha, C. W. (2021). Meniscus Regeneration With Injectable Pluronic/PMMA-Reinforced Fibrin Hydrogels in a Rabbit Segmental Meniscectomy Model. Journal of Tissue Engineering, 12. https://doi.org/10.1177/20417314211050141
dc.relation.referencesAnsari, M., Darvishi, A., & Sabzevari, A. (2024). A Review of Advanced Hydrogels for Cartilage Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 12, 1340893. https://doi.org/10.3389/fbioe.2024.1340893
dc.relation.referencesArnold, K. M., Sicard, D., Tschumperlin, D. J., & Westendorf, J. J. (2023). Atomic Force Microscopy Micro-Indentation Methods for Determining the Elastic Modulus of Murine Articular Cartilage. Sensors, 23(4), 1835. https://doi.org/10.3390/s23041835
dc.relation.referencesAsmatulu, R., & Khan, W. S. (2019). Characterization of Electrospun Nanofibers. Synthesis and Applications of Electrospun Nanofibers, 257–281. https://doi.org/10.1016/B978-0-12-813914-1.00013-4
dc.relation.referencesBannuru, R., Osani, M., Vaysbrot, E., Arden, N., Bennell, K., Bierma-Zeinstra, S., Kraus, V., Lohmander, L., Abbott, J., Bhandari, M., Blanco, F., Espinosa, R., Haugen, I., Lin, J., Mandl, L., Moilanen, E., Nakamura, N., Snyder-Mackler, L., Trojian, T., … McAlindon, T. E. (2019). OARSI Guidelines For The Non-Surgical Management of Knee, Hip, and Polyarticular Osteoarthritis. Osteoarthritis and Cartilage, 27(11), 1578–1589. https://doi.org/10.1016/j.joca.2019.06.011
dc.relation.referencesBarthold, J., McCreery, K., Martinez, J., Bellerjeau, C., Ding, Y., Bryant, S., Whiting, G., & Neu, C. P. (2022). Particulate ECM Biomaterial Ink is 3D Printed and Naturally Crosslinked to Form Structurally-Layered and Lubricated Cartilage Tissue Mimics. Biofabrication, 14(2), 025021. https://doi.org/10.1088/1758-5090/AC584C
dc.relation.referencesBeddoes, C., Whitehouse, M., Briscoe, W., & Su, B. (2016). Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage. Materials 2016, Vol. 9, Page 443, 9(6), 443. https://doi.org/10.3390/ma9060443
dc.relation.referencesBhosale, A. M., & Richardson, J. B. (2008). Articular Cartilage: Structure, Injuries and Review of Management. British Medical Bulletin, 87(1), 77–95. https://doi.org/10.1093/bmb/ldn025
dc.relation.referencesBohannon, R. W., & Wang, Y. C. (2019). Four-Meter Gait Speed: Normative Values and Reliability Determined for Adults Participating in the NIH Toolbox Study. Archives of Physical Medicine and Rehabilitation, 100(3), 509–513. https://doi.org/10.1016/j.apmr.2018.06.031
dc.relation.referencesBuj-Corral, I., Sanz-Fraile, H., Tejo-Otero, A., Vidal, D., Padilla, J. A., Xuriguera, E., & Otero, J. (2024). Biocompatible 3D Printed Yttria-Stabilized Zirconia Parts Using Direct Ink Writing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 238(1–2), 347–352. https://doi.org/10.1177/0954405423116846
dc.relation.referencesCaterson, B., Flannery, C., Hughes, C., & Little, C. (2000). Mechanisms Involved in Cartilage Proteoglycan Catabolism. Matrix Biology, 19(4), 333–344. https://doi.org/10.1016/S0945-053X(00)00078-0
dc.relation.referencesChan, D., Cai, L., Butz, K., Trippel, S., Nauman, E., & Neu, C. (2016). In Vivo Articular Cartilage Deformation: Noninvasive Quantification of Intratissue Strain During Joint Contact in the Human Knee. Scientific Reports, 6(1), 1–14. https://doi.org/10.1038/srep19220
dc.relation.referencesChang, Y., Wang, Y., Liu, J., Chen, X., Ma, X., Hu, Y., Tian, H., Wang, X., & Mu, C. (2023). Glucosamine-Loaded Injectable Hydrogel Promotes Autophagy and Inhibits Apoptosis After Cartilage Injury. Heliyon, 9(9). https://doi.org/10.1016/j.heliyon.2023.e19879
dc.relation.referencesChen, S. G., Yang, J., Jia, Y. G., Lu, B., & Ren, L. (2019). TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications. Nanomaterials 2019, Vol. 9, Page 1049, 9(7), 1049. https://doi.org/10.3390/nano9071049
dc.relation.referencesChodák, I., & Zimányová, E. (1984). The Effect of Temperature on Peroxide Initiated Crosslinking of Polypropylene. European Polymer Journal, 20(1), 81–84. https://doi.org/10.1016/0014-3057(84)90228-3
dc.relation.referencesChuang, E. Y., Chiang, C. W., Wong, P. C., & Chen, C. H. (2018). Hydrogels for The Application of Articular Cartilage Tissue Engineering: A Review of Hydrogels. Advances in Materials Science and Engineering, 2018(1), 4368910. https://doi.org/10.1155/2018/4368910
dc.relation.referencesCona, C., Bailey, K., & Barker, E. (2024). Characterization Methods to Determine Interpenetrating Polymer Network (IPN) in Hydrogels. Polymers 2024, Vol. 16, Page 2050, 16(14), 2050. https://doi.org/10.3390/polym16142050
dc.relation.referencesCooke, M., Lawless, B., Jones, S., & Grover, L. (2018). Matrix Degradation in Osteoarthritis Primes the Superficial Region of Cartilage for Mechanical Damage. Acta Biomaterialia, 78, 320–328. https://doi.org/10.1016/j.actbio.2018.07.037
dc.relation.referencesCortes, M., Bushman, R., Beshay, P. E., Adorno, J. J., Menyhert, M. M., Hildebrand, R. M., Agarwal, S. S., Avendano, A., Friedman, A. K., & Song, J. W. (2024). Chondroitin Sulfate, Dermatan Dulfate, and Hyaluronic Acid Differentially Modify the Biophysical Properties of Collagen-based Hydrogels. Acta Biomaterialia, 174, 116–126. https://doi.org/10.1016/j.actbio.2023.12.018
dc.relation.referencesCowie, R. M., Macri-Pellizzeri, L., McLaren, J., Sanderson, W. J., Felfel, R. M., Scotchford, C. A., Scammell, B. E., Grant, D. M., Sottile, V., & Jennings, L. M. (2024). Functional performance of a bi-layered chitosan-nano-hydroxyapatite Osteochondral Scaffold: A Pre-Clinical in Vitro Tribological Study. Royal Society Open Science, 11(1). https://doi.org/10.1098/rsos.230431
dc.relation.referencesCui, A., Li, H., Wang, D., Zhong, J., Chen, Y., & Lu, H. (2020). Global, Regional Prevalence, Incidence and Risk Factors of Knee Osteoarthritis in Population-Based Studies. EClinicalMedicine, 29–30, 100587. https://doi.org/10.1016/j.eclinm.2020.100587
dc.relation.referencesDanielak, A., Ko, J., Islam, A., Pedersen, D. B., & Lee, J. (2023). Hydrophobic Surface for Direct PEGDA Micro-pattern Fabrication. Micro and Nano Systems Letters 2023 11:1, 11(1), 4-. https://doi.org/10.1186/S40486-023-00169-8
dc.relation.referencesDecker, R., Koyama, E., & Pacifici, M. (2015). Articular Cartilage: Structural and Developmental Intricacies and Questions. Current Osteoporosis Reports, 13(6), 407–414. https://doi.org/10.1007/s11914-015-0290-z
dc.relation.referencesDelgado, P. (2013). Cartílago Articular: Evaluación por Resonancia Magnética. Revista Chilena de Radiología, 19(3), 134–139. https://doi.org/10.4067/S0717-93082013000300008
dc.relation.referencesDufaud, M., Solé, L., Maumus, M., Simon, M., Perrier-Groult, E., Subra, G., Jorgensen, C., & Noël, D. (2022). 3D Bioprinting of Articular Cartilage: Recent Advances and Perspectives. Bioprinting, 28, e00253. https://doi.org/10.1016/j.bprint.2022.e00253
dc.relation.referencesDuong, V., Abdel Shaheed, C., Ferreira, M., Narayan, S., Venkatesha, V., Hunter, D., Zhu, J., Atukorala, I., Kobayashi, S., Goh, S., Briggs, A., Cross, M., Espinosa, R., Fu, K., Guillemin, F., Keefe, F., Stefan Lohmander, L., March, L., Milne, G., … Cooper, C. (2025). Risk Factors For The Development of Knee Osteoarthritis Across The Lifespan: A Systematic Review and Meta-Analysis. Osteoarthritis and Cartilage. https://doi.org/10.1016/j.joca.2025.03.003
dc.relation.referencesElhadad, A., Alcudia, A., Begines, B., Pérez, E., & Torres, Y. (2022). A Multidisciplinary Perspective on The Latest Trends in Artificial Cartilage Fabrication to Mimic Real Tissue. Applied Materials Today, 29, 101603. https://doi.org/10.1016/j.apmt.2022.101603
dc.relation.referencesElisseeff, J., Anseth, K., Sims, D., McIntosh, W., Randolph, M., Yaremchuk, M., & Langer, R. (1999). Transdermal Photopolymerization of Poly(ethylene oxide)-based Injectable Hydrogels for Tissue-Engineered Cartilage. Plastic and Reconstructive Surgery, 104(4), 1014–1022. https://doi.org/10.1097/00006534-199909040-00017
dc.relation.referencesErman, B., & Mark, J. E. (1997). Structures and Properties of Rubberlike Networks. Structures and Properties of Rubberlike Networks. https://doi.org/10.1093/oso/9780195082371.001.0001
dc.relation.referencesFarnham, M. S., Ortved, K. F., Burris, D. L., & Price, C. (2021). Articular Cartilage Friction, Strain, and Viability Under Physiological to Pathological Benchtop Sliding Conditions. Cellular and Molecular Bioengineering, 14(4), 349–363. https://doi.org/10.1007/s12195-021-00671-2
dc.relation.referencesFarrag, Y., Ait Eldjoudi, D., Farrag, M., González-Rodríguez, M., Ruiz-Fernández, C., Cordero, A., Varela-García, M., Torrijos Pulpón, C., Bouza, R., Lago, F., Pino, J., Alvarez-Lorenzo, C., & Gualillo, O. (2023). Poly(ethylene Glycol) Methyl Ether Methacrylate-Based Injectable Hydrogels: Swelling, Rheological, and In Vitro Biocompatibility Properties with ATDC5 Chondrogenic Lineage. Polymers 2023, Vol. 15, Page 4635, 15(24), 4635. https://doi.org/10.3390/polym15244635
dc.relation.referencesFeng, W., & Wang, Z. (2023). Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. Advanced Science, 10(28), 2303326. https://doi.org/10.1002/advs.202303326
dc.relation.referencesFerraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman Spectroscopy: Second Edition. Introductory Raman Spectroscopy: Second Edition, 1–434. https://doi.org/10.1016/B978-0-12-254105-6.X5000-8
dc.relation.referencesFisher, M., Ackley, T., Richard, K., Oei, B., & Dealy, C. (2019). Osteoarthritis at the Cellular Level: Mechanisms, Clinical Perspectives, and Insights From Development. Encyclopedia of Biomedical Engineering, 1–3, 660–676. https://doi.org/10.1016/B978-0-12-801238-3.64119-3
dc.relation.referencesGhosh, S., & Abanteriba, S. (2016). Status of Surface Modification Techniques for Artificial Hip implants. Science and Technology of Advanced Materials, 17(1), 715–735. https://doi.org/10.1080/14686996.2016.1240575
dc.relation.referencesGiannoulaki, M., & Christoforou, Z. (2024). Pedestrian Walking Speed Analysis: A Systematic Review. Sustainability 2024, Vol. 16, Page 4813, 16(11), 4813. https://doi.org/10.3390/su16114813
dc.relation.referencesGlyn-Jones, S., Palmer, A., Agricola, R., Price, A., Vincent, T., Weinans, H., & Carr, A. (2015). Osteoarthritis. The Lancet, 386(9991), 376–387. https://doi.org/10.1016/S0140-6736(14)60802-3
dc.relation.referencesGoldring, M., & Goldring, S. (2010). Articular Cartilage and Subchondral Bone in The Pathogenesis of Osteoarthritis. Annals of the New York Academy of Sciences, 1192(1), 230–237. https://doi.org/10.1111/j.1749-6632.2009.05240.x
dc.relation.referencesGolzar, H., Wu, Y., Ganguly, S., & Tang, X. (Shirley). (2023). Micro-Extrusion 3D Printing of Articular Cartilage Substitutes With a Multizonal Structure Using Hydrophilic and Rapidly Curing Silicone-Based Ink Materials. Additive Manufacturing, 73, 103691. https://doi.org/10.1016/j.addma.2023.103691
dc.relation.referencesGonella, S., Domingues, M. F., Miguel, F., Moura, C. S., Rodrigues, C. A. V., Ferreira, F. C., & Silva, J. C. (2024). Fabrication and Characterization of Porous PEGDA Hydrogels for Articular Cartilage Regeneration. Gels, 10(7), 422. https://doi.org/10.3390/gels10070422
dc.relation.referencesGong, J. P. (2010). Why Are Double Network Hydrogels so Tough? Soft Matter, 6(12), 2583–2590. https://doi.org/10.1039/B924290B
dc.relation.referencesGrigoryan, B., Paulsen, S., Corbett, D., Sazer, D., Fortin, C., Zaita, A., Greenfield, P., Calafat, N., Gounley, J., Ta, A., Johansson, F., Randles, A., Rosenkrantz, J., Louis-Rosenberg, J., Galie, P., Stevens, K., & Miller, J. (2019). Multivascular Networks and Functional Intravascular Topologies Within Biocompatible hydrogels. Science, 364(6439), 458–464. https://doi.org/10.1126/science.aav9750
dc.relation.referencesGu, Z., Fu, J., Lin, H., & He, Y. (2020). Development of 3D Bioprinting: From Printing Methods to Biomedical Applications. Asian Journal of Pharmaceutical Sciences, 15(5), 529–557. https://doi.org/10.1016/j.ajps.2019.11.003
dc.relation.referencesHan, B., Nia, H. T., Wang, C., Chandrasekaran, P., Li, Q., Chery, D. R., Li, H., Grodzinsky, A. J., & Han, L. (2017). AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of Cartilage and Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering. ACS Biomaterials Science and Engineering, 3(9), 2033–2049. https://doi.org/10.1021/acsbiomaterials.7b00307
dc.relation.referencesHan, E., Chen, S., Klisch, S., & Sah, R. (2011). Contribution of Proteoglycan Osmotic Swelling Pressure to the Compressive Properties of Articular Cartilage. Biophysical Journal, 101(4), 916–924. https://doi.org/10.1016/j.bpj.2011.07.006
dc.relation.referencesHashemi-Afzal, F., Fallahi, H., Bagheri, F., Collins, M., Eslaminejad, M. B., & Seitz, H. (2025). Advancements in Hydrogel Design for Articular Cartilage Regeneration: A Comprehensive review. Bioactive Materials, 43, 1–31. https://doi.org/10.1016/j.bioactmat.2024.09.005
dc.relation.referencesHe, Y., Jiang, W., & Wang, W. (2024). Global Burden of Osteoarthritis in Adults Aged 30 to 44 years, 1990 to 2019: Results From the Global Burden of Disease Study 2019. BMC Musculoskeletal Disorders, 25(1), 1–12. https://doi.org/10.1186/s12891-024-07442-w
dc.relation.referencesHong, E., & Reddi, A. (2013). Dedifferentiation and Redifferentiation of Articular Chondrocytes from Surface and Middle Zones: Changes in MicroRNAs-221/-222, -140, and -143/145 Expression. Tissue Engineering - Part A, 19(7–8), 1015–1022. https://doi.org/10.1089/ten.tea.2012.0055
dc.relation.referencesHou, X., Lin, L., Li, K., Jiang, F., Qiao, D., Zhang, B., & Xie, F. (2024). Towards Superior Biopolymer Gels by Enabling Interpenetrating Network Structures: A Review on Types, Applications, and Gelation strategies. Advances in Colloid and Interface Science, 325, 103113. https://doi.org/10.1016/j.cis.2024.103113
dc.relation.referencesHunter, D. J., March, L., & Chew, M. (2020). Osteoarthritis in 2020 and Beyond: a Lancet Commission. The Lancet, 396(10264), 1711–1712. https://doi.org/10.1016/S0140-6736(20)32230-3
dc.relation.referencesImere, A., Foster, N. C., Hajiali, H., Okur, K. E., Wright, A. L., Barroso, I. A., & Haj, A. J. E. (2024). Enhanced Chondrogenic Potential in GelMA-based 3D Cartilage Model Via Wnt3a Surface Immobilization. Scientific Reports 2024 14:1, 14(1), 1–12. https://doi.org/10.1038/s41598-024-65970-w
dc.relation.referencesIngavle, G. C., Dormer, N. H., Gehrke, S. H., & Detamore, M. S. (2011). Using Chondroitin Sulfate to Improve the Viability and Biosynthesis of Chondrocytes Encapsulated in Interpenetrating Network (IPN) Hydrogels of Agarose and Poly(ethylene glycol)diacrylate. Journal of Materials Science. Materials in Medicine, 23(1), 157. https://doi.org/10.1007/S10856-011-4499-9
dc.relation.referencesJoshi, P., Breaux, S., Naro, J., Wang, Y., Ahmed, M. S. U., Vig, K., & Auad, M. L. (2021). Synthesis and Characterization of Photopolymerizable Hydrogels Based on Poly (ethylene glycol) for Biomedical Applications. Journal of Applied Polymer Science, 138(21), 50489. https://doi.org/10.1002/APP.50489
dc.relation.referencesJung, J., Bang, C., Song, G., Kim, C., Kim, J., & Choi, S. (2019). Knee osteoarthritis and menopausal hormone therapy in postmenopausal women: A nationwide cross-sectional study. Menopause, 26(6), 598–602. https://doi.org/10.1097/GME.0000000000001280
dc.relation.referencesKnecht, S., Vanwanseele, B., & Stüssi, E. (2006). A Review on the Mechanical Quality of Articular Aartilage - Implications for The Diagnosis of Osteoarthritis. Clinical Biomechanics, 21(10), 999–1012. https://doi.org/10.1016/j.clinbiomech.2006.07.001
dc.relation.referencesLi, J., & Mooney, D. (2016). Designing Hydrogels for Controlled Drug Delivery. Nature Reviews Materials, 1(12), 1–17. https://doi.org/10.1038/natrevmats.2016.71
dc.relation.referencesLi, L., Yu, F., Zheng, L., Wang, R., Yan, W., Wang, Z., Xu, J., Wu, J., Shi, D., Zhu, L., Wang, X., & Jiang, Q. (2019). Natural Hydrogels for Cartilage Regeneration: Modification, Peparation and Application. Journal of Orthopaedic Translation, 17, 26–41. https://doi.org/10.1016/j.jot.2018.09.003
dc.relation.referencesLi, Moeinzadeh, S., Kim, C., Pan, C. C., Weale, G., Kim, S., Abrams, G., James, A. W., Choo, H. R., Chan, C., & Yang, Y. P. (2023). Development and Systematic Characterization of GelMA/alginate/PEGDMA/xanthan gum Hydrogel Bioink System for Extrusion Bioprinting. Biomaterials, 293, 121969. https://doi.org/10.1016/j.biomaterials.2022.121969
dc.relation.referencesLiao, S., Jia, S., Yue, Y., Zeng, H., Lin, J., & Liu, P. (2024). Advancements in pH-Responsive Nanoparticles for Osteoarthritis Treatment: Opportunities and Challenges. Frontiers in Bioengineering and Biotechnology, 12, 1426794. https://doi.org/10.3389/fbioe.2024.1426794
dc.relation.referencesLink, J., Salinas, E., Hu, J., & Athanasiou, K. (2020). The tribology of Cartilage: Mechanisms, Experimental Techniques, and Relevance to Translational Tissue Engineering. Clinical Biomechanics, 79, 104880. https://doi.org/10.1016/j.clinbiomech.2019.10.016
dc.relation.referencesLombardi, A., Ma, Y., Jang, H., Jerban, S., Tang, Q., Searleman, A., Meyer, R., Du, J., & Chang, E. (2022). AcidoCEST-UTE MRI Reveals an Acidic Microenvironment in Knee Osteoarthritis. International Journal of Molecular Sciences 2022, Vol. 23, Page 4466, 23(8), 4466. https://doi.org/10.3390/ijms23084466
dc.relation.referencesLondoño, J., Peláez, I., Cuervo, F., Angarita, I., Giraldo, R., Rueda, J., Ballesteros, J., Baquero, R., Forero, E., Cardiel, M., Saldarriaga, E., Vásquez, A., Arias, S., Valero, L., González, C., Ramírez, J., Toro, C., & Santos, A. (2018). Prevalencia de la Enfermedad Reumática en Colombia, Según Estrategia COPCORD-Asociación Colombiana de Reumatología. Revista Colombiana de Reumatología, 25(4), 245–256. https://doi.org/10.1016/j.rcreu.2018.08.003
dc.relation.referencesLong, H., Liu, Q., Yin, H., Wang, K., Diao, N., Zhang, Y., Lin, J., & Guo, A. (2022). Prevalence Trends of Site‐Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis & Rheumatology, 74(7), 1172–1183. https://doi.org//10.1002/art.42089
dc.relation.referencesLu, J., Gao, Y., Cao, C., Wang, H., Ruan, Y., Qin, K., Liu, H., Wang, Y., Yang, P., Liu, Y., Ma, Y., Yu, Z., Wang, Y., Zhong, Z., & Chang, F. (2025). 3D Bioprinted Scaffolds for Osteochondral Regeneration: Advancements and Applications. Materials Today Bio, 32, 101834. https://doi.org/10.1016/j.mtbio.2025.101834
dc.relation.referencesLu, P., Ruan, D., Huang, M., Tian, M., Zhu, K., Gan, Z., & Xiao, Z. (2024). Harnessing the Potential of Hydrogels for Advanced Therapeutic Applications: Current Achievements and Future Directions. In Signal Transduction and Targeted Therapy (Vol. 9, Issue 1). Springer Nature. https://doi.org/10.1038/s41392-024-01852-x
dc.relation.referencesMahmood, H., Eckold, D., Stead, I., Shepherd, D. E. T., Espino, D. M., & Dearn, K. D. (2020). A Method for the Assessment of The Coefficient of Friction of Articular Cartilage and a Replacement Biomaterial. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103580. https://doi.org/10.1016/j.jmbbm.2019.103580
dc.relation.referencesMajhy, B., Priyadarshini, P., & Sen, A. K. (2021). Effect of Surface Energy and Roughness on Cell Adhesion and Growth – Facile Surface Modification for Enhanced Cell Culture. RSC Advances, 11(25), 15467–15476. https://doi.org/10.1039/D1RA02402G
dc.relation.referencesManicone, P. F., Rossi Iommetti, P., & Raffaelli, L. (2007). An Overview of Zirconia Ceramics: Basic Properties and Clinical Applications. Journal of Dentistry, 35(11), 819–826. https://doi.org/10.1016/j.jdent.2007.07.008
dc.relation.referencesManna, S., Manna, M., & Jana, S. (2020). Interpenetrating Polymer Network in Microparticulate Systems: Drug Delivery and Biomedical Application. Interpenetrating Polymer Network: Biomedical Applications, 1–23. https://doi.org/10.1007/978-981-15-0283-5_1
dc.relation.referencesMarin, E., Mukai, M., Boschetto, F., Sunthar, T. P. M., Adachi, T., Zhu, W., Rondinella, A., Lanzutti, A., Kanamura, N., Yamamoto, T., Fedrizzi, L., & Pezzotti, G. (2021). Antibacterial 3D-Printed PMMA/ceramic Composites. BioRxiv, 2021.10.11.463892. https://doi.org/10.1101/2021.10.11.463892
dc.relation.referencesMedina, E. L., Vaca, J., Aperador, W., Ramtani, S., Falentin-Daudre, C., & Garzón, D. (2025). Review of Advanced Coatings for Metallic Implants: A Study/Proposal on Yttria-Stabilized Zirconia and Silver-Doped Hydroxyapatite. JOM 2025 77:7, 77(7), 5345–5361. https://doi.org/10.1007/s11837-025-07345-8
dc.relation.referencesMiddendorf, J., Griffin, D., Shortkroff, S., Dugopolski, C., Kennedy, S., Siemiatkoski, J., Cohen, I., & Bonassar, L. (2017). Mechanical Properties and Structure-function Relationships of Human Chondrocyte-seeded Cartilage Constructs After in Vitro Culture. Journal of Orthopaedic Research, 35(10), 2298–2306. https://doi.org/10.1002/jor.23535
dc.relation.referencesMihajlovic, M., Rikkers, M., Mihajlovic, M., Viola, M., Schuiringa, G., Ilochonwu, B. C., Masereeuw, R., Vonk, L., Malda, J., Ito, K., & Vermonden, T. (2022). Viscoelastic Chondroitin Sulfate and Hyaluronic Acid Double-Network Hydrogels with Reversible Cross-Links. Biomacromolecules, 23(3), 1350–1365. https://doi.org/10.1021/acs.biomac.1c01583
dc.relation.referencesMobarak, M. H., Islam, M. A., Hossain, N., Al Mahmud, M. Z., Rayhan, M. T., Nishi, N. J., & Chowdhury, M. A. (2023). Recent Advances of Additive Manufacturing in Implant Fabrication – A Review. Applied Surface Science Advances, 18, 100462. https://doi.org/10.1016/j.apsadv.2023.100462
dc.relation.referencesMobbs, L., Fernando, V., Fonseka, R. D., Natarajan, P., Maharaj, M., & Mobbs, R. J. (2025). Normative Database of Spatiotemporal Gait Metrics Across Age Groups: An Observational Case–Control Study. Sensors 2025, Vol. 25, Page 581, 25(2), 581. https://doi.org/10.3390/s25020581
dc.relation.referencesMokhtari, M., Schipper, D. J., Vleugels, N., & Noordermeer, J. W. M. (2016). Transversely Isotropic Viscoelastic Materials: Contact Mechanics and Friction. Tribology International, 97, 116–123. https://doi.org/10.1016/j.triboint.2016.01.010
dc.relation.referencesMoran, M. B., & Martin, G. C. (1983). The Laser Raman Spectrum of Polyethylene Glycol Dimethacrylate). Journal of Macromolecular Science—Chemistry, 19(4), 611–618. https://doi.org/10.1080/10601328308056538
dc.relation.referencesMostakhdemin, M., Nand, A., & Ramezani, M. (2021). Articular and Artificial Cartilage, Characteristics, Properties and Testing Approaches—A Review. Polymers 2021, Vol. 13, Page 2000, 13(12), 2000. https://doi.org/10.3390/polym13122000
dc.relation.referencesNesvadba, P. (2012). Radical Polymerization in Industry. Encyclopedia of Radicals in Chemistry, Biology and Materials. https://doi.org/10.1002/9781119953678.rad080
dc.relation.referencesNiedźwiedź, M. J., Demirci, G., Kantor-Malujdy, N., & El Fray, M. (2023). Influence of Photoinitiator Type and Curing Conditions on the Photocuring of Soft Polymer Network. Materials, 16(23), 7348. https://doi.org/10.3390/ma16237348
dc.relation.referencesNigro, V., Angelini, R., Bertoldo, M., Buratti, E., Franco, S., & Ruzicka, B. (2021). Chemical-Physical Behaviour of Microgels Made of Interpenetrating Polymer Networks of PNIPAM and Poly(acrylic Acid). Polymers 2021, Vol. 13, Page 1353, 13(9), 1353. https://doi.org/10.3390/polym13091353
dc.relation.referencesNing, L., Yang, B., Mohabatpour, F., Betancourt, N., Sarker, M. D., Papagerakis, P., & Chen, X. (2020). Process-induced Cell Damage: Pneumatic Versus Screw-driven Bioprinting. Biofabrication, 12(2), 025011. https://doi.org/10.1016/j.jare.2013.07.006
dc.relation.referencesOkuda, K., Shigemasa, R., Hirota, K., & Mizutani, T. (2022). In Situ Crystallization of Hydroxyapatite on Carboxymethyl Cellulose as a Biomimetic Approach to Biomass-Derived Composite Materials. ACS Omega, 7(14), 12127–12137. https://doi.org/10.1021/acsomega.2c00423
dc.relation.referencesO’Neill, B. (2023, October 31). Nozzle Diameter and Layer Height Explained. Wevolver. https://www.wevolver.com/article/3d-printer-nozzle-size?utm_source
dc.relation.referencesOungoulian, S., Chang, S., Bortz, O., Hehir, K., Zhu, K., Willis, C., Hung, C., & Ateshian, G. (2013). Articular Cartilage Wear Characterization With a Particle Sizing and Counting Analyzer. Journal of Biomechanical Engineering, 135(2). https://doi.org/10.1115/1.4023456
dc.relation.referencesPande, S., & Dhatrak, P. (2021). Recent Developments and Advancements in Knee Implants Materials, Manufacturing: a Review. Materials Today: Proceedings, 46, 756–762. https://doi.org/10.1016/j.matpr.2020.12.465
dc.relation.referencesPeel, A., Bennion, D., Horne, R., Hansen, M. R., & Guymon, C. A. (2024). Photografted Zwitterionic Hydrogel Coating Durability for Reduced Foreign Body Response to Cochlear Implants. ACS Applied Bio Materials, 7(5), 3124–3135. https://doi.org/10.1021/acsabm.4c00156
dc.relation.referencesPerera, K., Ivone, R., Natekin, E., Wilga, C., Shen, J., & Menon, J. (2021). 3D Bioprinted Implants for Cartilage Repair in Intervertebral Discs and Knee Menisci. Frontiers in Bioengineering and Biotechnology, 9, 754113. https://doi.org/10.3389/fbioe.2021.754113
dc.relation.referencesQin, Y., Liu, A., Guo, H., Shen, Y., Wen, P., Lin, H., Xia, D. D., Voshage, M., Tian, Y., & Zheng, Y. (2022). Additive Manufacturing of Zn-Mg Alloy Porous Scaffolds With Enhanced Osseointegration: In Vitro and in Vivo Studies. Acta Biomaterialia, 145, 403–415. https://doi.org/10.1016/j.actbio.2022.03.055
dc.relation.referencesQuan, Q., Gongping, X., Ruisi, N., & Shiwen, L. (2023). New Research Progress of Modified Bone Cement Applied to Vertebroplasty. World Neurosurgery, 176, 10–18. https://doi.org/10.1016/j.wneu.2023.04.048
dc.relation.referencesRajawasam, C. W. H., Dodo, O. J., Weerasinghe, M. A. S. N., Raji, I. O., Wanasinghe, S. V., Konkolewicz, D., & De Alwis Watuthanthrige, N. (2024). Educational series: Characterizing Crosslinked Polymer Networks. Polymer Chemistry, 15(4), 219–247. https://doi.org/10.1039/D3PY00914A
dc.relation.referencesRakovsky, A., Marbach, D., Lotan, N., & Lanir, Y. (2009). Poly(ethylene glycol)-based Hydrogels as Cartilage Substitutes: Synthesis and Mechanical Characteristics. Journal of Applied Polymer Science, 112(1), 390–401. https://doi.org/10.1002/app.29420
dc.relation.referencesRavi, S., Chokkakula, L. P. P., Giri, P. S., Korra, G., Dey, S. R., & Rath, S. N. (2023). 3D Bioprintable Hypoxia-Mimicking PEG-Based Nano Bioink for Cartilage Tissue Engineering. ACS Applied Materials and Interfaces, 15(16), 19921–19936. https://doi.org/10.1021/acsami.3c00389
dc.relation.referencesRizzo, R., Barber, D. M., Wilt, J. K., Ainscough, A. J., & Lewis, J. A. (2024). Photoinitiator-free Light-mediated Crosslinking of Dynamic Polymer and Pristine Protein Networks. Biomaterials Science, 13(1), 210–222. https://doi.org/10.1039/d4bm00849a
dc.relation.referencesRousselle, A., Ferrandon, A., Mathieu, E., Godet, J., Ball, V., Comperat, L., Oliveira, H., Lavalle, P., Vautier, D., & Arntz, Y. (2022). Enhancing Cell Survival in 3D Printing of Organoids Using Innovative Bioinks Loaded With Pre-Cellularized Porous Microscaffolds. Bioprinting, 28, e00247. https://doi.org/10.1016/j.bprint.2022.e00247
dc.relation.referencesSabahi, N., Roohani, I., Wang, C. H., & Li, X. (2025). Material Extrusion 3D Printing of Bioactive Smart Scaffolds for Bone Tissue Engineering. Additive Manufacturing, 98, 104636. https://doi.org/10.1016/j.addma.2024.104636
dc.relation.referencesSalam, O. A., Hamad, H. A., Eltokhy, M. A. R., Ali, A. I., Son, J. Y., & Ramzy, G. H. (2024). A Comparative Study of PMMA/PEG Polymer Nanocomposites Doped With Different Oxides Nanoparticles for Potential Optoelectronic Applications. Scientific Reports, 14(1), 1–17. https://doi.org/10.1038/s41598-024-63176-8
dc.relation.referencesSchuurmans, C. C. L., Mihajlovic, M., Hiemstra, C., Ito, K., Hennink, W. E., & Vermonden, T. (2021). Hyaluronic Acid and Chondroitin Sulfate (meth)acrylate-based Hydrogels for Tissue Engineering: Synthesis, Characteristics and Pre-clinical Evaluation. Biomaterials, 268, 120602. https://doi.org/10.1016/j.biomaterials.2020.120602
dc.relation.referencesSchwarz, S., Kuth, S., Distler, T., Gögele, C., Stölzel, K., Detsch, R., Boccaccini, A. R., & Schulze-Tanzil, G. (2020). 3D Printing and Characterization of Human Nasoseptal Chondrocytes Laden Dual Crosslinked Oxidized Alginate-Gelatin Hydrogels for Cartilage Repair Approaches. Materials Science and Engineering: C, 116, 111189. https://doi.org/10.1016/j.msec.2020.111189
dc.relation.referencesSennakesavan, G., Mostakhdemin, M., Dkhar, L. K., Seyfoddin, A., & Fatihhi, S. J. (2020). Acrylic Acid/acrylamide Based Hydrogels and Its Properties - A Review. Polymer Degradation and Stability, 180, 109308. https://doi.org/10.1016/j.polymdegradstab.2020.109308
dc.relation.referencesSeror, J., Zhu, L., Goldberg, R., Day, A., & Klein, J. (2015). Supramolecular Synergy in The Boundary Lubrication of Synovial Joints. Nature Communications 2015 6:1, 6(1), 1–7. https://doi.org/10.1038/ncomms7497
dc.relation.referencesShin, J., Chung, H., Kumar, H., Meadows, K., Park, S., Chun, J., & Kim, K. (2024). 3D Bioprinting of Human iPSC-Derived Kidney Organoids Using a Low-cost, High-throughput Customizable 3D Bioprinting system. Bioprinting, 38, e00337. https://doi.org/10.1016/j.bprint.2024.e00337
dc.relation.referencesSimińska-Stanny, J., Nicolas, L., Chafai, A., Jafari, H., Hajiabbas, M., Dodi, G., Gardikiotis, I., Delporte, C., Nie, L., Podstawczyk, D., & Shavandi, A. (2024). Advanced PEG-tyramine Biomaterial Ink for Precision Engineering of Perfusable and Flexible Small-diameter Vascular Constructs Via Coaxial Printing. Bioactive Materials, 36, 168. https://doi.org/10.1016/j.bioactmat.2024.02.019
dc.relation.referencesSivaperuman, M., Pradhan, R., Saleem, W., Smith, M. M., Gaharwar, A. K., Kalairaj, M. S., Pradhan, R., Saleem, W., Gaharwar, A. K., & Smith, M. M. (2024). Intra-Articular Injectable Biomaterials for Cartilage Repair and Regeneration. Advanced Healthcare Materials, 13(17), 2303794. https://doi.org/10.1002/adhm.202303794
dc.relation.referencesSonthithai, P., Kaewkong, P., Channasanon, S., & Tanodekaew, S. (2025). 3D-Printed PEG-PLA/Gelatin Hydrogel: Characterization toward In Vitro Chondrocyte Redifferentiation. ACS Biomaterials Science and Engineering, 11(4), 2157–2166. https://doi.org/10.1021/acsbiomaterials.4c02409
dc.relation.referencesSophia Fox, A., Bedi, A., & Rodeo, S. (2009). The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health, 1(6), 461–468. https://doi.org/10.1177/1941738109350438
dc.relation.referencesSpiller, K., Maher, S., & Lowman, A. (2011). Hydrogels For The Repair of Articular Cartilage Defects. Tissue Engineering - Part B: Reviews, 17(4), 281–299. https://doi.org/10.1089/ten.teb.2011.0077
dc.relation.referencesStillman, Z., Jarai, B. M., Raman, N., Patel, P., & Fromen, C. A. (2019). Degradation Profiles of Poly(ethylene glycol) diacrylate (PEGDA)-based Hydrogel Nanoparticles. Polymer Chemistry, 11(2), 568. https://doi.org/10.1039/C9PY01206K
dc.relation.referencesSzékely, A., & Klussmann, M. (2019). Molecular Radical Chain Initiators for Ambient- to Low-Temperature Applications. Chemistry – An Asian Journal, 14(1), 105–115. https://doi.org/10.1002/asia.201801636
dc.relation.referencesTan, G., Xu, J., Yu, Q., Zhang, J., Hu, X., Sun, C., & Zhang, H. (2022). Photo-Crosslinkable Hydrogels for 3D Bioprinting in the Repair of Osteochondral Defects: A Review of Present Applications and Future Perspectives. Micromachines 2022, Vol. 13, Page 1038, 13(7), 1038. https://doi.org/10.3390/mi13071038
dc.relation.referencesTomal, W., & Ortyl, J. (2020). Water-Soluble Photoinitiators in Biomedical Applications. Polymers 2020, Vol. 12, Page 1073, 12(5), 1073. https://doi.org/10.3390/polym12051073
dc.relation.referencesTong, A., Pham, Q. L., Abatemarco, P., Mathew, A., Gupta, D., Iyer, S., & Voronov, R. (2021). Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technology, 26(4), 333–366. https://doi.org/10.1177/24726303211020297
dc.relation.referencesUnagolla, J. M., Gaihre, B., & Jayasuriya, A. C. (2024). In Vitro and In Vivo Evaluation of 3D Printed Poly(Ethylene Glycol) Dimethacrylate-Based Photocurable Hydrogel Platform for Bone Tissue Engineering. Macromolecular Bioscience, 24(4), 2300414. https://doi.org/10.1002/mabi.202300414
dc.relation.referencesVaienti, E., Scita, G., Ceccarelli, F., & Pogliacomi, F. (2017). Understanding The Human Knee and Its Relationship to Total Knee Replacement. Acta Bio Medica : Atenei Parmensis, 88(Suppl 2), 6. https://pmc.ncbi.nlm.nih.gov/articles/PMC6178997/
dc.relation.referencesVan De Walle, E., Van Nieuwenhove, I., De Vos, W., Declercq, H., Dubruel, P., & Van Vlierberghe, S. (2017). Cell Response of Flexible PMMA-Derivatives: Supremacy of Surface Chemistry Over Substrate Stiffness. Journal of Materials Science: Materials in Medicine, 28(11), 1–11. https://doi.org/10.1007/s10856-017-5994-4
dc.relation.referencesWahid, F., Hu, X. H., Chu, L. Q., Jia, S. R., Xie, Y. Y., & Zhong, C. (2019). Development of Bacterial Cellulose/chitosan Based semi-Interpenetrating Hydrogels With Improved Mechanical and Antibacterial Properties. International Journal of Biological Macromolecules, 122, 380–387. https://doi.org/10.1016/j.ijbiomac.2018.10.105
dc.relation.referencesWahid, F., Khan, T., Hussain, Z., & Ullah, H. (2018). Nanocomposite Scaffolds for Tissue Engineering; Properties, Preparation and Applications. Applications of Nanocomposite Materials in Drug Delivery, 701–735. https://doi.org/10.1016/B978-0-12-813741-3.00031-5
dc.relation.referencesWahlquist, J., DelRio, F., Randolph, M., Aziz, A., Heveran, C., Bryant, S., Neu, C., & Ferguson, V. (2017). Indentation Mapping Revealed Poroelastic, but not Viscoelastic, Properties Spanning Native Zonal Articular Cartilage. Acta Biomaterialia, 64, 41–49. https://doi.org/10.1016/j.actbio.2017.10.003
dc.relation.referencesWalalawela, N., & Greer, A. (2018). Heterogeneous Photocatayltic Deperoxidation With UV and Visible Light. Journal of Physical Organic Chemistry, 31(6), e3807. https://doi.org/10.1002/poc.3807
dc.relation.referencesWallace, I., Worthington, S., Felson, D., Jurmain, R., Wren, K., Maijanen, H., Woods, R., & Lieberman, D. (2017). Knee Osteoarthritis Has Doubled in Prevalence Since The mid-20th Century. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9332–9336. https://doi.org/10.1073/pnas.1703856114
dc.relation.referencesWang, R., Cheng, C., Wang, H., & Wang, D. (2024). Swollen Hydrogel Nanotechnology: Advanced Applications of the Rudimentary Swelling Properties of Hydrogels. ChemPhysMater, 3(4), 357–375. https://doi.org/10.1016/j.chphma.2024.07.006
dc.relation.referencesWei, P., Ma, Y., Qin, K., & Fan, Z. (2024). A 3D Printed Biomimetic Scaffold For Cartilage Regeneration With Lubrication, Load-Bearing, and Adhesive Fixation Properties. Tribology International, 192, 109328. https://doi.org/10.1016/j.triboint.2024.109328
dc.relation.referencesWichterle, O., & Lím, D. (1960). Hydrophilic Gels for Biological Use. Nature, 185(4706), 117–118. https://doi.org/10.1038/185117a0
dc.relation.referencesWillis, H. A., Zichy, V. J. I., & Hendra, P. J. (1969). The laser-Raman and infra-red spectra of poly(methyl methacrylate). Polymer, 10(C), 737–746. https://doi.org/10.1016/0032-3861(69)90101-3
dc.relation.referencesWu, P.-J., Masouleh, M., Dini, D., Paterson, C., Török, P., Overby, D., & Kabakova, I. (2019). Detection of Proteoglycan Loss From Articular Cartilage Using Brillouin Microscopy, With Applications to Osteoarthritis. Biomedical Optics Express, Vol. 10, Issue 5, Pp. 2457-2466, 10(5), 2457–2466. https://doi.org/10.1364/boe.10.002457
dc.relation.referencesXu, W., Jambhulkar, S., Zhu, Y., Ravichandran, D., Kakarla, M., Vernon, B., Lott, D., Cornella, J., Shefi, O., Miquelard-Garnier, G., Yang, Y., & Song, K. (2021). 3D Printing for Polymer/Particle-Based Processing: A Review. Composites Part B: Engineering, 223, 109102. https://doi.org/10.1016/j.compositesb.2021.109102
dc.relation.referencesYang, F., Li, Y., Wang, L., Che, H., Zhang, X., Jahr, H., Wang, L., Jiang, D., Huang, H., & Wang, J. (2024). Full-thickness Osteochondral Defect Repair Using a Biodegradable Bilayered Scaffold of Porous Zinc and Chondroitin Sulfate Hydrogel. Bioactive Materials, 32, 400–414. https://doi.org/10.1016/J.BIOACTMAT.2023.10.014
dc.relation.referencesYu, X., Gholipourmalekabadi, | Mazaher, Wang, X., Yuan, C., & Lin, | Kaili. (2024). Three-dimensional Bioprinting Biphasic Multicellular Living Scaffold Facilitates Osteochondral Defect Regeneration. Interdisciplinary Materials, 3(5), 738–756. https://doi.org/10.1002/idm2.12181
dc.relation.referencesZaszczyńska, A., Kołbuk, D., Gradys, A., & Sajkiewicz, P. (2024). Development of Poly(methyl methacrylate)/nano-hydroxyapatite (PMMA/nHA) Nanofibers for Tissue Engineering Regeneration Using an Electrospinning Technique. Polymers 2024, Vol. 16, Page 531, 16(4), 531. https://doi.org/10.3390/polym16040531
dc.relation.referencesZevenbergen, L., Gsell, W., Cai, L., Chan, D., Famaey, N., Vander Sloten, J., Himmelreich, U., & Jonkers, I. (2018). Cartilage-on-Cartilage Contact: Effect of Compressive Loading on Tissue Deformations and Structural Integrity of Bovine Articular cartilage. Osteoarthritis and Cartilage, 26(12), 1699–1709. https://doi.org/10.1016/j.joca.2018.08.009
dc.relation.referencesZhan, Y., Fu, W., Xing, Y., Ma, X., & Chen, C. (2021). Advances in Versatile Anti-swelling Polymer Hydrogels. Materials Science and Engineering: C, 127, 112208. https://doi.org/10.1016/j.msec.2021.112208
dc.relation.referencesZhang, H., Huang, H., Hao, G., Zhang, Y., Ding, H., Fan, Z., & Sun, L. (2021). 3D Printing Hydrogel Scaffolds with Nanohydroxyapatite Gradient to Effectively Repair Osteochondral Defects in Rats. Advanced Functional Materials, 31(1), 2006697. https://doi.org/10.1002/adfm.202006697
dc.relation.referencesZhang, H., Wang, M., Wu, R., Guo, J., Sun, A., Li, Z., Ye, R., Xu, G., & Cheng, Y. (2023). From Materials to Clinical Use: Advances in 3D-printed Scaffolds for Cartilage Tissue Engineering. Physical Chemistry Chemical Physics, 25(36), 24244–24263. https://doi.org/10.1039/D3CP00921A
dc.relation.referencesZhang, L., Dai, W., Gao, C., Wei, W., Huang, R., Zhang, X., Yu, Y., Yang, X., & Cai, Q. (2023). Multileveled Hierarchical Hydrogel with Continuous Biophysical and Biochemical Gradients for Enhanced Repair of Full-Thickness Osteochondral Defect. Advanced Materials, 35(19), 2209565. https://doi.org/10.1002/adma.202209565
dc.relation.referencesZhang, R., Chang, S., Jing, Y., Wang, L. Y., Chen, C. J., & Liu, J. T. (2023). Application of Chitosan With Different Molecular Weights in Cartilage Tissue Engineering. Carbohydrate Polymers, 314, 120890. https://doi.org/10.1016/j.carbpol.2023.120890
dc.relation.referencesZhang, T., Chen, S., Dou, H., Liu, Q., Shu, G., Lin, J., Zhang, W., Peng, G., Zhong, Z., & Fu, H. (2021). Novel Glucosamine-Loaded Thermosensitive Hydrogels Based on Poloxamers for Osteoarthritis Therapy by Intra-Articular Injection. Materials Science and Engineering: C, 118, 111352. https://doi.org/1
dc.relation.referencesZhang, X., Wu, X., & Shi, J. (2020). Additive Manufacturing of Zirconia Ceramics: A State-of-the-art Review. Journal of Materials Research and Technology, 9(4), 9029–9048. https://doi.org/0.1016/j.jmrt.2020.05.131
dc.relation.referencesZhang, Y., Cui, Y., Tian, J., Chen, X., Xu, T., Liu, J., & Xu, Y. (2022). Nanohydroxyapatite Hydrogel Can Promote the Proliferation and Migration of Chondrocytes and Better Repair Talar Articular Cartilage. Computational and Mathematical Methods in Medicine, 2022, 8388473. https://doi.org/10.1155/2022/8388473
dc.relation.referencesZhao, X., Papadopoulos, A., Ibusuki, S., Bichara, D. A., Saris, D. B., Malda, J., Anseth, K. S., Gill, T. J., & Randolph, M. A. (2016). Articular Cartilage Generation Applying PEG-LA-DM/PEGDM Copolymer Hydrogels. BMC Musculoskeletal Disorders, 17(1), 1–10. https://doi.org/10.1186/s12891-016-1100-1
dc.relation.referencesZhou, B., Niu, L. N., Shi, W., Zhang, W., Arola, D. D., Breschi, L., Mao, J., Chen, J. H., Pashley, D. H., & Tay, F. R. (2014). Adopting the Principles of Collagen Biomineralization for Intrafibrillar Infiltration of Yttria-Stabilized Zirconia into Three-Dimensional Collagen Scaffolds. Advanced Functional Materials, 24(13), 1895–1903. https://doi.org/10.1002/adfm.201302920
dc.relation.referencesZhu, Y., Zhang, X., Chang, G., Deng, S., & Chan, H. F. (2025). Bioactive Glass in Tissue Regeneration: Unveiling Recent Advances in Regenerative Strategies and Applications. Advanced Materials, 37(2), 2312964. https://doi.org/10.1002/adma.202312964
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicos
dc.subject.lembMateriales biomédicos
dc.subject.proposalCartílagospa
dc.subject.proposalHidrogelspa
dc.subject.proposalBiomiméticospa
dc.subject.proposalCoeficiente de fricciónspa
dc.subject.proposalManufactura Aditivaspa
dc.subject.proposalCartilageeng
dc.subject.proposalHydrogeleng
dc.subject.proposalBiomimeticeng
dc.subject.proposalCoefficient of Frictioneng
dc.subject.proposalAdditive Manufacturingeng
dc.titleDesarrollo de andamios de PMMA/YSZ obtenidos por manufactura aditiva biomiméticos a cartílago nativospa
dc.title.translatedDevelopment of PMMA/YSZ scaffolds obtained by additive manufacturing biomimetic to native cartilageeng
dc.typeTrabajo de grado - Maestría
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Materiales y Procesos.pdf
Tamaño:
2.95 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Licencia para publicación de obras en el Repositorio Institucional UNAL v4.pdf
Tamaño:
217.54 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: