Sistema para el gerenciamiento del riesgo asociado a movimientos en masa en corredores viales de zonas montañosas
dc.contributor.advisor | Martínez Carvajal, Hernán Eduardo | |
dc.contributor.author | Montoya Cañola, Sandra Marcela | |
dc.coverage.region | Nordeste antioqueño | |
dc.date.accessioned | 2025-02-21T12:49:13Z | |
dc.date.available | 2025-02-21T12:49:13Z | |
dc.date.issued | 2024-10-20 | |
dc.description | Ilustraciones, mapas, tablas | spa |
dc.description.abstract | Este estudio propone una metodología para la gestión de riesgos por movimientos en masa en corredores viales en zonas montañosas. El objetivo principal es desarrollar un modelo integral que permita evaluar la amenaza, vulnerabilidad y el riesgo por movimientos en masa del corredor vial, en cualquier etapa del ciclo de vida del proyecto, permitiendo al usuario visualizar el escenario de riesgo del corredor completo o de secciones específicas, según las capacidades gráficas del sistema de información geográfica utilizado. El sistema proporciona recomendaciones prácticas tanto para la reducción de la exposición como para el tratamiento de la amenaza. El método se aplicó en un segmento de vía en el Nordeste Antioqueño, entre los municipios de Vegachí y Remedios, donde se analizaron 69 secciones distribuidas a lo largo del tramo. Los resultados de la evaluación mostraron coherencia con las condiciones reales de la vía, y los indicadores numéricos de riesgo permitieron emitir recomendaciones prácticas de gestión a lo largo del segmento analizado. El sistema de gestión propuesto facilita la identificación de las zonas más críticas y la priorización de intervenciones, optimizando los recursos y mejorando la seguridad vial. Este enfoque es replicable en cualquier proyecto de infraestructura lineal, como ferrocarriles, ductos o canales. Finalmente, el modelo presentado recibe el nombre de METIS (GR) por sus siglas en inglés: Methodology for Transportation Infrastructure Geotechnical Risk Management. (Texto tomado de la fuente) | spa |
dc.description.abstract | This study proposes a methodology for landslide risk management in road corridors located in mountainous regions. The main objective is to develop a comprehensive model that allows the assessment of hazard, vulnerability, and risk from landslides in the road corridorat any stage of the project’s life cycle. It allows users to visualize the risk scenario for the entire corridor or specific sections, depending on the graphical capabilities of the geographic information system used. The system provides practical recommendations for both reducing exposure and mitigating the hazard. The method was applied to a road segment in northeastern Antioquia, between the municipalities of Vegachí and Remedios, where 69 sections distributed along the stretch were analyzed. The assessment results showed consistency with the actual road conditions, and the numerical risk indicators allowed for practical management recommendations along the analyzed segment. The proposed management system facilitates the identification of the most critical areas and the prioritization of interventions, optimizing resources and improving road safety. This approach is replicable in any linear infrastructure project, such as railways, pipelines, or canals. Finally, the model presented is called METIS (GR), which stands for Methodology for Transportation Infrastructure Geotechnical Risk Management. | eng |
dc.description.curriculararea | Área Curricular de Ingeniería Civil | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | spa |
dc.description.researcharea | Gestión del riesgo – Gestión de riesgos de origen geotécnico | spa |
dc.format.extent | 317 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87523 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | AASHTO. (2010). Highway Safety Manual (First Edit, Vol. 1). American Association of State Highway and Transportation Officials. | spa |
dc.relation.references | AASHTO. (2018). A Policy on Geometric Design of Highways and Streets: The Green Book. In American Association of State Highway and Transportation Officials (Ed.), American Association of State Highway and Transportation Officials (7th ed.). | spa |
dc.relation.references | Agencia Nacional de Infraestructura. (2024). Tráfico y Recaudo Peaje Puerto Berrio (Antioquia). https://aniscopio.ani.gov.co/reportes/carreteros/peajes-traficorecaudo/27 | spa |
dc.relation.references | Agliardi, F., Crosta, G. B., Zanchi, A., & Ravazzi, C. (2009). Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphology, 103(1), 113–129. https://doi.org/https://doi.org/10.1016/j.geomorph.2007.09.015 | spa |
dc.relation.references | AGS-Australian Geomechanics Society. (2000). Landslide Risk Management Concepts and Guidelines. Australian Geomechanics: Journal and News of the Australian Geomechanics Society. | spa |
dc.relation.references | Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58(1), 21–44. | spa |
dc.relation.references | Álvarez, V., Álvarez, J., Aristizábal, C., Jurado, J., Londoño, D., López, J., & León, V. (2014). De caminos y autopistas: Historia de la infraestructura vial en Antioquia. Universidad Eafit, Grupo de Historia Empresarial, GHE : Gobernación de Antioquia. | spa |
dc.relation.references | ANCOLD. (2003). Guidelines on Risk Assessment. Australian National Committee on Large Dams. | spa |
dc.relation.references | Arattano, M., & Marchi, L. (2008). Systems and Sensors for Debris-flow Monitoring and Warning. Sensors, 8(4), 2436–2452. https://doi.org/10.3390/s8042436 | spa |
dc.relation.references | Archetti, R., & Lamberti, A. (2003). Assessment of risk due to debris flow events. Natural Hazards Review, 4(3), 115–125. | spa |
dc.relation.references | Arias Valencia, S. (2021). Desarrollo de un sistema de identificación y análisis de riesgo geotécnico para corredores viales (Trabajo de grado, Ed.). Universidad de Antioquia. | spa |
dc.relation.references | Aristizábal, E., Gamboa, M. F., & Leoz, F. J. (2010). Sistema de alerta temprana por movimientos en masa inducidos por lluvia para el valle de Aburrá, Colombia. Revista EIA, 13, 155–169. | spa |
dc.relation.references | Aristizábal, E., García, E., & Martínez, C. (2015). Susceptibility assessment of shallow landslides triggered by rainfall in tropical basins and mountainous terrains. Natural Hazards, 78(1), 621–634. https://doi.org/10.1007/s11069-015-1736-4 | spa |
dc.relation.references | Aristizábal Giraldo, E. V. (2013). SHIA_Landslide: Developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments (p. 75). Universidad Nacional de Colombia. | spa |
dc.relation.references | Aristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016). Influencia de la lluvia antecedente y la conductividad hidráulica en la ocurrencia de deslizamientos detonados por lluvias utilizando el modelo SHIA_Landslide. Revista EIA, 26, 31–46. https://doi.org/10.24050/reia.v13i26.863 | spa |
dc.relation.references | Aristizábal, López, S., Sánchez, O., Vásquez, M., Rincón, F., Ruiz-Vásquez, D., Restrepo, S., & Valencia, J. S. (2019). Evaluación de la amenaza por movimientos en masa detonados por lluvias para una región de los Andes colombianos estimando la probabilidad espacial, temporal, y magnitud. Boletin de Geologia, 41(3), 85–105. | spa |
dc.relation.references | Auflič, M. J., Herrera, G., Mateos, R. M., Poyiadji, E., Quental, L., Severine, B., Peternel, T., Podolszki, L., Calcaterra, S., Kociu, A., Warmuz, B., Jelének, J., Hadjicharalambous, K., Becher, G. P., Dashwood, C., Ondrus, P., Minkevičius, V., Todorović, S., Møller, J. J., & Marturia, J. (2023). Landslide monitoring techniques in the Geological Surveys of Europe. Landslides, 20(5), 951–965. https://doi.org/10.1007/s10346-022-02007-1 | spa |
dc.relation.references | Augusti, G., Borri, A., & Ciampoli, M. (1994). Optimal allocation of resources in reduction of the seismic risk of highway networks. Engineering Structures, 16(7), 485–497. https://doi.org/https://doi.org/10.1016/0141-0296(94)90085-X | spa |
dc.relation.references | Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15–31. https://doi.org/https://doi.org/10.1016/j.geomorph.2004.06.010 | spa |
dc.relation.references | Baecher, G. B., & Christian, J. T. (2003). Reliability and Statistics in Geotechnical Engineering. In Technometrics (1st ed., Vol. 47). John Wiley & Sons. | spa |
dc.relation.references | Ball, D. J., & Floyd, P. J. (1998). Societal risks: a report prepared for the Health and Safety Executive. Health and Safety Executive. | spa |
dc.relation.references | Banco Mundial. (2012). Análisis de la gestión del riesgo de desastres en Colombia: un aporte para la construcción de políticas públicas. Sistema Nacional de Información Para La Gestión Del Riesgo de Desastres, 438. | spa |
dc.relation.references | Bandle, T. (2013). Tolerability of risk: the regulator’s story. In The Tolerability of Risk (pp. 93–103). Routledge. | spa |
dc.relation.references | Barredo, JoséI., Benavides, A., Hervás, J., & van Westen, C. J. (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2(1), 9–23. https://doi.org/https://doi.org/10.1016/S0303-2434(00)85022-9 | spa |
dc.relation.references | Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189–236. | spa |
dc.relation.references | Basharat, M., & Rohn, J. (2015). Effects of volume on travel distance of mass movements triggered by the 2005 Kashmir earthquake, in the Northeast Himalayas of Pakistan. Natural Hazards, 77(1), 273–292. https://doi.org/10.1007/s11069-015-1590-4 | spa |
dc.relation.references | BCMWRPRC. (1995). Mined rock and overburden piles. Runout Characteristics of Debris from Dump Failures in Mountainous Terrain Stage 2 analysis, modelling and prediction. Golder Associates Ltd and O. Hungr Geotechnical Research Ltd. | spa |
dc.relation.references | Bell, R., & Glade, T. (2004). Quantitative risk analysis for landslides ‒ Examples from Bíldudalur, NW-Iceland. Natural Hazards and Earth System Sciences, 4(1), 117–131. https://doi.org/10.5194/nhess-4-117-2004 | spa |
dc.relation.references | Berdica, K. (2002). An introduction to road vulnerability: what has been done, is done and should be done. Transport Policy, 9(2), 117–127. https://doi.org/https://doi.org/10.1016/S0967-070X(02)00011-2 | spa |
dc.relation.references | Bernabeu Garcia, M., & Diaz Torres, J. A. (2014). Methodologies for risk analysis in slope instability. Ingenieria Civil (Madrid), 175, 17–25. | spa |
dc.relation.references | Berti, M., & Simoni, A. (2014). DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow. Computers & Geosciences, 67, 14–23. https://doi.org/https://doi.org/10.1016/j.cageo.2014.02.002 | spa |
dc.relation.references | Bieniaski, Z. (1993). Classification of rock masses for engineering: The RMR system and future trends. In Pergamon Press (Ed.), J. Hudson, Comprehensive Rock Engineering, Volume 3 (pp. 553–573). | spa |
dc.relation.references | Bieniawski, Z. T. (1979). The geomechanics classification in rock engineering applications. Proceedings of the 4th International Congress on Rock Mechanics, 41–48. | spa |
dc.relation.references | Birkmann, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S., Kienberger, S., Keiler, M., Alexander, D., Zeil, P., & Welle, T. (2013). Framing vulnerability, risk and societal responses: the MOVE framework. Natural Hazards, 67(2), 193–211. https://doi.org/10.1007/s11069-013-0558-5 | spa |
dc.relation.references | BLS. (2023). Consumer Price Index, 1913-Historical data from the era of the modern U.S. consumer price index (CPI). The U.S. Bureau of Labor Statistics (BLS). https://www.minneapolisfed.org/about-us/monetary-policy/inflation-calculator/consumer-price-index-1913- | spa |
dc.relation.references | Blunck, T. (2024). Record thunderstorm losses and deadly earthquakes: the natural disasters of 2023. Munich RE. https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2024/natural-disaster-figures-2023.html | spa |
dc.relation.references | Bonachea, J., Remondo, J., Gonzalez-Diez, A., Diaz de Teran, J. R., & Cendrero, A. (2009). Landslide risk modelling: an experience in northern Spain. Landslide Processes: From Geomorphologic Mapping to Dynamic Modelling, Edited by: Malet, JP, Remaitre, A., and Bogaard, T., Strasbourg, European Centre on Geomorphological Hazards (CERG), ISBN, 2–95183317. | spa |
dc.relation.references | Bordoni, M., Giuseppina Persichillo, M., Meisina, C., Crema, S., Cavalli, M., Bartelletti, C., Galanti, Y., Barsanti, M., Giannecchini, R., & D’Amato Avanzi, G. (2018). Estimation of the susceptibility of a road network to shallow landslides with the integration of the sediment connectivity. Natural Hazards and Earth System Sciences, 18(6), 1735–1758. https://doi.org/10.5194/nhess-18-1735-2018 | spa |
dc.relation.references | Briones-Bitar, J., Carrión-Mero, P., Montalván-Burbano, N., & Morante-Carballo, F. (2020). Rockfall research: A bibliometric analysis and future trends. Geosciences, 10(10), 403. | spa |
dc.relation.references | Budetta, P. (2002). Risk assessment from debris flows in pyroclastic deposits along a motorway, Italy. Bulletin of Engineering Geology and the Environment, 61, 293–301. | spa |
dc.relation.references | Bunce, C. M., Cruden, D. M., & Morgenstern, N. R. (1997). Assessment of the hazard from rock fall on a highway. Canadian Geotechnical Journal, 34(3), 344–356. https://doi.org/10.1139/t97-009 | spa |
dc.relation.references | Cal, R., & Cárdenas, J. (2018). Ingeniería de tránsito: fundamentos y aplicaciones (Novena). Alpha Editorial. | spa |
dc.relation.references | Cámara Colombiana de Infraestructura. (2021). Colombia: el porqué de las concesiones viales. https://infraestructura.org.co/colombia-el-porque-de-las-concesiones-viales | spa |
dc.relation.references | Cardona A., O. D. (2004). Sistema nacional para la prevención y atención de desastres. IDEA UNAL. | spa |
dc.relation.references | Cardona Giraldo, I. K. (2016). Validación de modelos de predicción de deslizamientos mediante el uso de inventarios en escalas sub-regionales. Universidad Nacional de Colombia. | spa |
dc.relation.references | Carrara, A. (1993). Uncertainty in Evaluating Landslide Hazard and Risk BT - Prediction and Perception of Natural Hazards: Proceedings Symposium, 22–26 October 1990, Perugia, Italy (J. Nemec, J. M. Nigg, & F. Siccardi, Eds.; pp. 101–109). Springer Netherlands. https://doi.org/10.1007/978-94-015-8190-5_12 | spa |
dc.relation.references | Casadei, M., Dietrich, W. E. Jr., & Miller, N. L. (2003). Testing a model for predicting the timing and location of shallow landslide initiation in soil‐mantled landscapes. Earth Surface Processes and Landforms, 28. | spa |
dc.relation.references | Casagli, N., Intrieri, E., Tofani, V., Gigli, G., & Raspini, F. (2023). Landslide detection, monitoring and prediction with remote-sensing techniques. Nature Reviews Earth & Environment, 4(1), 51–64. https://doi.org/10.1038/s43017-022-00373-x | spa |
dc.relation.references | Catani, F., Casagli, N., Ermini, L., Righini, G., & Menduni, G. (2005). Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides, 2, 329–342. | spa |
dc.relation.references | Ceballos-Moreno, C. A. (2019). Índice de qualidade de encostas : uma metodologia de suscetibilidade ao deslizamento para corredores de transporte. Universidade de Brasília. | spa |
dc.relation.references | Chica-Sánchez, A. (1989). Notes on Geotechnical engineering for a short course on geotechnical practices (1st Ed. In Spanish ed.). Medellín: National Faculty of Mines. National University of Colombia at Medellin. | spa |
dc.relation.references | Congreso de la República de Colombia. (2002). Ley 769 de 2002 - Código Nacional de Tránsito Terrestre. https://www.funcionpublica.gov.co/eva/gestornormativo/norma_pdf.php?i=5557 | spa |
dc.relation.references | Contreras Ortiz, Y. (2017). 20 años de ordenamiento territorial en Colombia: experiencias, desafíos y herramientas para los actores territoriales. Instituto de Estudios Urbanos (IEU), 211. | spa |
dc.relation.references | Corominas, J. (1996). The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33(2), 260–271. | spa |
dc.relation.references | Corominas, J., Copons, R., Moya, J., Vilaplana, J. M., Altimir, J., & Amigó, J. (2005). Quantitative assessment of the residual risk in a rockfall protected area. Landslides, 2, 343–357. | spa |
dc.relation.references | Corominas, J., Einstein, H., Davis, T., Strom, A., Zuccaro, G., Nadim, F., & Verdel, T. (2015). Glossary of terms on landslide hazard and risk. Engineering Geology for Society and Territory-Volume 2: Landslide Processes, 1775–1779. | spa |
dc.relation.references | Corominas, J., & Mavrouli, J. (2011). Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies. Documento Técnico, SafeLand. 7th Framework Programme Cooperation Theme, 6. | spa |
dc.relation.references | Corominas, J., Van Westen, C. ., Frattini, P., Cascini, L., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Smith, J. . T., & Herva, J. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. https://doi.org/10.1007/s10064-013-0538-8 | spa |
dc.relation.references | Cruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology - Bulletin de l’Association Internationale de Géologie de l’Ingénieur, 43(1), 27–29. https://doi.org/10.1007/BF02590167 | spa |
dc.relation.references | Cruden, D. M., & Varnes, D. J. (1996). Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation Research Board Special Report, 247. | spa |
dc.relation.references | Cuanalo Campos, O. A., & Gallardo Amaya, R. J. (2016). Acciones para reducir la vulnerabilidad y el riesgo*. Vector, 11, 30–38. | spa |
dc.relation.references | Cuanalo-Campos, O. A., & Melgarejo-Palafox, G. (2002). Inestabilidad de laderas sierras norte y nororiental del estado de Puebla. Elementos: Ciencia y Cultura, 9(47), 51–55. | spa |
dc.relation.references | Curtis, J. A., Dailey, J. S., D ’angelo, D., Dewitt, S. D., Graf, M. J., Henkel, T. A., Miller, J. B., Milton, J. C., Molenaar, K. R., Richardson, D. M., & Rocco, R. E. (2012). Transportation Risk Management: International Practices for Program Development and Project Delivery (Issue August). u.S. department of Transportation Federal Highway, Administration American Association of State Highway and Transportation Officials National Cooperative Highway Research Program. | spa |
dc.relation.references | Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65–87. https://doi.org/https://doi.org/10.1016/S0013-7952(01)00093-X | spa |
dc.relation.references | de Vilder, S. J., Kelly, S. D., R.B., B., Allan, S., & Glassey, P. J. (2024). LANDSLIDE PLANNING GUIDANCE : REDUCING LANDSLIDE RISK THROUGH LAND USE PLANNING (G. Science., Ed.; GNS Scienc). https://doi.org/10.21420/R2X8-FJ49 | spa |
dc.relation.references | ERM. (1998). Landslides and Boulder Falls from Natural Terrain : Interim Risk Guidelines. | spa |
dc.relation.references | Federal Highway Administration. (2013). Highway Functional Classification Concepts, Criteria and Procedures. | spa |
dc.relation.references | Fell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31(2), 261–272. https://doi.org/10.1139/t94-031 | spa |
dc.relation.references | Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3–4), 85–98. | spa |
dc.relation.references | Fell, R., & Hartford, D. (1997). Landslide risk management. In Landslide risk assessment. Proceedings of the workshop on landslide risk assessment. (pp. 51–109). | spa |
dc.relation.references | Fell, R., Ho, K. K. S., Lacasse, S., & Leroi, E. (2005). A framework for landslide risk assessment and management. In Landslide risk management (pp. 13–36). CRC Press. | spa |
dc.relation.references | Finlay, P. J., & Fell, R. (1997). Landslides: risk perception and acceptance. Canadian Geotechnical Journal, 34(2), 169–188. https://doi.org/10.1139/t96-108 | spa |
dc.relation.references | Finlay, P. J., Mostyn, G. R., & Fell, R. (1999a). Landslide risk assessment: prediction of travel distance. Canadian Geotechnical Journal, 36(3), 556–562. | spa |
dc.relation.references | Finlay, P. J., Mostyn, G. R., & Fell, R. (1999b). Landslides: Prediction of Travel Distance and Guidelines for Vulnerability of Persons. In Proceedings 8th Australia New Zealand Conference on Geomechanics: Consolidating Knowledge (pp. 105–113). Australian Geomechanics Society. | spa |
dc.relation.references | Frias Betancur, J. P. (2016). Planteamiento de lineamientos geotécnicos útiles con miras a la adaptación frente al cambio climático de la red vial carretera primaria colombiana. Universidad Nacional de Colombia. | spa |
dc.relation.references | Griswold, J. P., & Iverson, R. M. (2008). Mobility statistics and automated hazard mapping for debris flows and rock avalanches. US Geological Survey. | spa |
dc.relation.references | Guimaraes-Silva. (2015). Avaliação Quantitativa Da Vulnerabilidade de Edificações Associada a Processos de Deslizamentos de Encostas. Tese de Doutorado, Publicação G. TD-113/15, Departamento de Engenharia Civil | spa |
dc.relation.references | Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973. https://doi.org/https://doi.org/10.1016/j.earscirev.2019.102973 | spa |
dc.relation.references | Harwood, D. W., Cook, D. J., Coakley, R. C., & Polk, C. (2021). National Cooperative Highway Research Program Report 876: Guidelines for Integrating Safety and Cost-Effectiveness into Resurfacing, Restoration, and Rehabilitation (3R) Projects. In Transportation Research Board. National Research Council (Ed.), Guidelines for Integrating Safety and Cost-Effectiveness into Resurfacing, Restoration, and Rehabilitation (3R) Projects. https://doi.org/10.17226/25206 | spa |
dc.relation.references | Hovius, N., Stark, C. P., & Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide mapping. Geology, 25(3), 231–234. https://doi.org/10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2 | spa |
dc.relation.references | Hungr, O., Clague, J., Morgenstern, N. R., VanDine, D., & Stadel, D. (2016). A review of landslide risk acceptability practices in various countries. In Associazione Geotecnica Italiana (Ed.), Landslides and engineered slopes. Experience, theory and practice (pp. 1121–1128). CRC Press. | spa |
dc.relation.references | Hunter, G., & Fell, R. (2003). Travel distance angle for “rapid” landslides in constructed and natural soil slopes. Canadian Geotechnical Journal, 40(6), 1123–1141. | spa |
dc.relation.references | IEC. (1995). 60300-3-9:1995. Dependability management - Part 3: Application guide - Section 9: Risk analysis of technological systems (International Electrotechnical Commission, Ed.). | spa |
dc.relation.references | IEC. (2019). ISO 31010: Risk Management—Risk Assessment Techniques. International Electrotechnical Commission. Geneva, Switzerland. | spa |
dc.relation.references | International Organization for Standardization. (2018). ISO 31000: Risk management Guidelines. | spa |
dc.relation.references | INVÍAS. (2022). Actualización Plan de Gestión del Riesgo de Desastres Decreto 2157 de 2017. | spa |
dc.relation.references | INVÍAS-UNAL. (2006). Manual para la Inspección visual de Obras de estabilización. Estudio e investigación del estado actual de las obras de la Red Nacional de carreteras. In Convenio Interadministrativo 0587-03 (Convenio I). | spa |
dc.relation.references | Isaza Restrepo, P. A. (2011). Avaliação do risco aceitavel por escorregamentos de encostas em regiões tropicais montanhosas: caso de aplicação, Medellin - Colombia. (Departamento de Engenharia Civil e Ambiental, Ed.; Dissertaçã). Universidade de Brasilia. | spa |
dc.relation.references | Jaiswal, P., van Westen, C. J., & Jetten, V. (2011). Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India. Natural Hazards and Earth System Sciences, 11(6), 1723–1743. https://doi.org/10.5194/nhess-11-1723-2011 | spa |
dc.relation.references | Jiménez, J. A., & Aristizábal, E. (2018). A methodological proposal for landslide susceptibility mapping in linear projects: A study case, Medellin – Turbo highway, Section 2. Boletín de Ciencias de La Tierra, 43, 14–23. | spa |
dc.relation.references | Kang, H., & Kim, Y. (2016). The physical vulnerability of different types of building structure to debris flow events. Natural Hazards, 80(3), 1475–1493. https://doi.org/10.1007/s11069-015-2032-z | spa |
dc.relation.references | Larsen, M. C. (2008). Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies. Advances in Geosciences, 14, 147–153. https://doi.org/http://dx.doi.org/10.5194/adgeo-14-147-2008 | spa |
dc.relation.references | Li, Z., Nadim, F., Huang, H., Uzielli, M., & Lacasse, S. (2010). Quantitative vulnerability estimation for scenario-based landslide hazards. Landslides, 7(2), 125–134. https://doi.org/10.1007/s10346-009-0190-3 | spa |
dc.relation.references | Liu, Q., Zhang, B., & Tang, A. (2023). Landslide risk of regional roads: Consider the road mileage of expected losses. Transportation Research Part D: Transport and Environment, 120, 103771. https://doi.org/https://doi.org/10.1016/j.trd.2023.103771 | spa |
dc.relation.references | Liu, X., & Lei, J. (2003). A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China). Geomorphology, 52(3), 181–191. https://doi.org/https://doi.org/10.1016/S0169-555X(02)00242-8 | spa |
dc.relation.references | Lombardo, L., Tanyas, H., Huser, R., Guzzetti, F., & Castro-Camilo, D. (2021). Landslide size matters: A new data-driven, spatial prototype. Engineering Geology, 293, 106288. https://doi.org/https://doi.org/10.1016/j.enggeo.2021.106288 | spa |
dc.relation.references | López, R. E., Zuluaga, A. D., Gómez, F., & Tapia, L. (2020). Aplicación del método Mora-Vahrson para evaluar la susceptibilidad a deslizamiento en el municipio de Manaure, Cesar, Colombia. Revista de Estudios Latinoamericanos Sobre Reducción Del Riesgo de Desastres REDER, 4(2), 57–70. | spa |
dc.relation.references | Lu, M., Zhang, J., Zhang, L., & Zhang, L. (2020). Assessing the annual risk of vehicles being hit by a rainfall-induced landslide: a case study on Kennedy Road in Wan Chai, Hong Kong. Natural Hazards and Earth System Sciences, 20(6), 1833–1846. https://doi.org/10.5194/nhess-20-1833-2020 | spa |
dc.relation.references | Macciotta, R., Gräpel, C., Keegan, T., Duxbury, J., & Skirrow, R. (2019). Quantitative risk assessment of rock slope instabilities that threaten a highway near Canmore, Alberta, Canada: managing risk calculation uncertainty in practice. Canadian Geotechnical Journal, 57(3), 337–353. https://doi.org/10.1139/cgj-2018-0739 | spa |
dc.relation.references | Macciotta, R., Martin, C. D., Cruden, D. M., Hendry, M., & Edwards, T. (2017). Rock fall hazard control along a section of railway based on quantified risk. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 11(3), 272–284. https://doi.org/10.1080/17499518.2017.1293273 | spa |
dc.relation.references | Malamud, B. D., Heijenk, R. A., Taylor, F. E., & Wood, J. L. (2022). Road influences on landslide inventories. EGU General Assembly Conference Abstracts, EGU22-7616. | spa |
dc.relation.references | Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004a). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687–711. https://doi.org/10.1002/esp.1064 | spa |
dc.relation.references | Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004b). Landslides, earthquakes, and erosion. Earth and Planetary Science Letters, 229(1–2), 45–59. https://doi.org/10.1016/j.epsl.2004.10.018 | spa |
dc.relation.references | Martínez Carvajal, H. M. (2021). Probabilidad de tamaño para movimientos en masa. Comunicación verbal y notas de clase. Curso Riesgos Geotécnicos. Universidad de Antioquia. | spa |
dc.relation.references | Martínez, H. E., de Moraes Guimarães Silva, M. T., García Aristizábal, E. F., Aristizábal-Giraldo, E. V, & Larios Benavides, M. A. (2018). A mathematical approach for assessing landslide vulnerability. Earth Sciences Research Journal, 22(4), 251–273. | spa |
dc.relation.references | Martínez-Carvajal, H. E. (2014). Manuscrito - Adaptación metodología HsQI. | spa |
dc.relation.references | McDougall, S. (2017). 2014 Canadian Geotechnical Colloquium: Landslide runout analysis—current practice and challenges. Canadian Geotechnical Journal, 54(5), 605–620. | spa |
dc.relation.references | Mejía-Pérez, M. F. (2023). Incorporación del análisis pseudoestático al sistema HsQI para la clasificación geotécnica de taludes en corredores viales. Universidad Nacional de Colombia. | spa |
dc.relation.references | Meneses, B. M., Pereira, S., & Reis, E. (2019). Effects of different land use and land cover data on the landslide susceptibility zonation of road networks. Natural Hazards and Earth System Sciences, 19(3), 471–487. https://doi.org/10.5194/nhess-19-471-2019 | spa |
dc.relation.references | Ministerio de Transporte. (2009a). Manual para el manejo de bases de datos de vehículos automotores de carga y pasajeros que sean registrados a partir de la entrada en operación del Registro Nacional Automotor del RUNT. | spa |
dc.relation.references | Ministerio de Transporte. (2009b). Resolución 5443. https://rndc.mintransporte.gov.co/LinkClick.aspx?fileticket=nSq_Y8qQnaw%253d&tabid=204&language=es-MX | spa |
dc.relation.references | Ministerio de Transporte. (2023). Transporte en cifras 2022. Anuario Nacional de Transporte. In Transporte en cifras - Estadísticas 2019. | spa |
dc.relation.references | Moncayo, S., & Ávila, G. (2023). Landslide travel distances in Colombia from national landslide database analysis. In Progress in Landslide Research and Technology, Volume 1 Issue 1, 2022 (pp. 315–325). Springer. | spa |
dc.relation.references | Montero Olarte, J. (2017). Clasificación de movimiento en masa y su distribución en terrenos geológicos de Colombia. In Correspondencias & Análisis (Libros del, Issue 15018). https://doi.org/https://doi.org/10.32685/9789585978218 | spa |
dc.relation.references | Montgomery, D. R., Schmidt, K. M., Greenberg, H. M., & Dietrich, W. E. (2000). Forest clearing and regional landsliding. Geology, 28(4), 311–314. https://doi.org/10.1130/0091-7613(2000)28<311:FCARL>2.0.CO;2 | spa |
dc.relation.references | Montoya-Cañola, S. M., Ortiz-Giraldo, L., Martínez-Carvajal, H. E., & Rodríguez, L. S. (2021). Practical application of HsQI system to quantitative geotechnical zonation of road corridors in mountain areas. 13th Landslides and Engineered Slopes. Experience, Theory and Practice, ISL. | spa |
dc.relation.references | Mora C, S., & Vahrson, W. G. (1994). Macrozonation methodology for landslide hazard determination. Bulletin of the Association of Engineering Geologists, 31(1), 49–58. https://doi.org/10.2113/gseegeosci.xxxi.1.49 | spa |
dc.relation.references | Mora, S., & Vahrson, W. G. (1993). Determinación" a priori" de la amenaza de deslizamientos utilizando indicadores morfodinámicos. Tecnología ICE, 3(1), 32–42. | spa |
dc.relation.references | Moreno-Ceballos, C. A. (2015). A System for geotechnical classification of hillslopes for road projects, based on the HsQI: methodological proposal and validation. : Master Degree Thesis, In Portuguese. Publication number G.DM-256/15. Department of Civil & Environmental. University of Brasilia. | spa |
dc.relation.references | Muñoz, E., Martínez-Carvajal, H., Arévalo, J., & Alvira, D. (2014). Quantification of the effect of precipitation as a triggering factor for landslides on the surroundings of Medellín-Colombia. Dyna, 81(187), 115–121. | spa |
dc.relation.references | Nogal, M., O’Connor, A., Caulfield, B., & Brazil, W. (2016). A Multidisciplinary Approach for Risk Analysis of Infrastructure Networks in Response to Extreme Weather. Transportation Research Procedia, 14, 78–85. https://doi.org/10.1016/j.trpro.2016.05.043 | spa |
dc.relation.references | Ocampo-Araya, M. del C. (2016). Sistema de classificação geotécnica de encostas para projetos de estradas baseado no índice de qualidade HSQI: aplicação na Costa Rica [Universidade de Brasília]. https://doi.org/http://dx.doi.org/10.26512/2016.03.D.22542 | spa |
dc.relation.references | Papathoma-Köhle, M., Gems, B., Sturm, M., & Fuchs, S. (2017). Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth-Science Reviews, 171, 272–288. | spa |
dc.relation.references | Peila, D., & Guardini, C. (2008). Use of the event tree to assess the risk reduction obtained from rockfall protection devices. Natural Hazards and Earth System Sciences, 8(6), 1441–1450. https://doi.org/10.5194/nhess-8-1441-2008 | spa |
dc.relation.references | Pellicani, R., Argentiero, I., & Spilotro, G. (2017). GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors. Geomatics, Natural Hazards and Risk, 8(2), 1012–1033. https://doi.org/10.1080/19475705.2017.1292411 | spa |
dc.relation.references | Quan Luna, B., Blahut, J., van Westen, C. J., Sterlacchini, S., van Asch, T. W. J., & Akbas, S. O. (2011). The application of numerical debris flow modelling for the generation of physical vulnerability curves. Natural Hazards and Earth System Sciences, 11(7), 2047–2060. https://doi.org/10.5194/nhess-11-2047-2011 | spa |
dc.relation.references | Ragozin, A. L., & Tikhvinsky, I. O. (2000). Landslide hazard, vulnerability and risk assessment. Proceedings of the 8th International Symposium on Landslides, Cardiff, 1257–1262. | spa |
dc.relation.references | Romana, M., Seron, J. B., & Montalar, E. (2003). SMR Geomechanics Classification: Application, experience, and validation: ISRM. ISRM 2003 – Technology Roadmap for Rock Mechanics, South African Institute of Mining and Metallurgy, 4. | spa |
dc.relation.references | Ruiz Peña, G. L., Navarro Alarcón, S. del R., Chaparro Cordón, J. L., Gamboa Rodríguez, C. A., Ramírez Hernández, K. C., Camargo Holguín, B. L., Trejos González, G. A., & Pérez Cerón, R. (2017). Las amenazas por movimientos en masa de Colombia. Una visión a escala 1:100.000. Libros del Servicio Geológico Colombiano. In Structure. https://doi.org/https://doi.org/10.32685/9789589952887 | spa |
dc.relation.references | Schuster, R. L., & Krizek, R. (1978). Landslides. Analysis and control. Special Reports 176. In Transport Research Board. National Reaserch Council, National Academy of Sciences. National Academy of Sciences. | spa |
dc.relation.references | Smith, K., & Petley, D. N. (2009). Environmental hazards: Assessing risk and reducing disaster. In Environmental Hazards: Assessing Risk and Reducing Disaster (FIFTH EDIT). Routledge. https://doi.org/10.4324/9780203884805 | spa |
dc.relation.references | SGC. (2023). ¿Quiénes somos? Misión, Visión y Objetivos estratégicos. Servicio Geológico Colombiano. https://www2.sgc.gov.co/Nosotros/AcercaDelSgc/Paginas/Quienes-Somos.aspx | spa |
dc.relation.references | SGC. (2017). GUÍA METODOLÓGICA PARA LA ZONIFICACIÓN DE AMENAZA POR MOVIMIENTOS EN MASA, ESCALA 1: 25.000 (Servicio Geológico Colombiano, Ed.). | spa |
dc.relation.references | Strouth, A. B. (2024). Quantitative life-loss risk evaluation for landslides. University of British Columbia. | spa |
dc.relation.references | Strouth, A., & McDougall, S. (2021). Societal risk evaluation for landslides: historical synthesis and proposed tools. Landslides, 18(3), 1071–1085. https://doi.org/10.1007/s10346-020-01547-8 | spa |
dc.relation.references | Strouth, A., & McDougall, S. (2022). Individual risk evaluation for landslides: key details. Landslides, 19(4), 977–991. https://doi.org/10.1007/s10346-021-01838-8 | spa |
dc.relation.references | Swedish Geotechnical Society. (2014). Risk management in geotechnical engineering projects – requirements Methodology. SSGF Report 1:2014E, 1–84. | spa |
dc.relation.references | Tanyaş, H., van Westen, C. J., Persello, C., & Alvioli, M. (2019). Rapid prediction of the magnitude scale of landslide events triggered by an earthquake. Landslides, 16(4), 661–676. https://doi.org/10.1007/s10346-019-01136-4 | spa |
dc.relation.references | Tsai, Y.-B., Yu, T.-M., Chao, H.-L., & Lee, C.-P. (2001). Spatial Distribution and Age Dependence of Human-Fatality Rates from the Chi-Chi, Taiwan, Earthquake of 21 September 1999. Bulletin of the Seismological Society of America, 91(5), 1298–1309. https://doi.org/10.1785/0120000740 | spa |
dc.relation.references | UNGRD. (2020a). Guía para la integración de la gestión del riesgo de desastres en los planes de desarrollo territorial 2020-2023. Unidad Nacional para la Gestión del Riesgo de Desastres. | spa |
dc.relation.references | UNDRR. (2023). The disaster risk reduction (DRR) glossary. https://www.undrr.org/drr-glossary | spa |
dc.relation.references | UNGRD. (2020b). Memorias de encuentros académicos en gestión del riesgo de desastres. Intercambios de experiencias en investigación 2019. Metodología Para La Zonificación de La Susceptibilidad al Desarrollo de Movimientos En Masa Para El Municipio de Miraflores, Boyacá, Mediante La Aplicación de La Metodología Del SGC y La Técnica Shaltab -Tobia, 73. | spa |
dc.relation.references | United Nations Office for Disaster Risk Reduction. (2023). The last 60 years: Achievements in DRR by the UN General Assembly. https://www.undrr.org/our-work/history | spa |
dc.relation.references | Vallejo Chocué, M. A. (2010). La gestión de riesgo en Colombia como herramienta de intervención pública. In Statewide Agricultural Land Use Baseline 2015 (Vol. 1). Quito: FLACSO-Sede Ecuador: Abya-Yala. | spa |
dc.relation.references | van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3), 112–131. https://doi.org/https://doi.org/10.1016/j.enggeo.2008.03.010 | spa |
dc.relation.references | Veloza Cuadros, A. Y., & Zambrano Moreno, S. A. (2012). Metodología para la cuantificación de pérdidas económicas en corredores viales por deslizamientos y avalanchas. Caso piloto aplicado a tres tramos de la vía concesionada Bogotá-Villavicencio para deslizamientos superficiales. | spa |
dc.relation.references | Wieczorek, G. F. (1996). Landslide triggering mechanisms. In A. K. and S. R. L. (eds. ) Turner (Ed.), Report 247 Landslides Investigation and Mitigation (Issue 247, pp. 76–90). TRBNRC National Academy Press. | spa |
dc.relation.references | Wilson, R. A., Moon, A. T., Hendricks, M., & Stewart, I. E. (2005). Application of quantitative risk assessment to the Lawrence Hargrave Drive Project, New South Wales, Australia. Landslide Risk Management. Proceedings of the International Conference on Landslide Risk Management, Vancouver, Canada, 31 May-3 June 2005, 589–598. | spa |
dc.relation.references | Winter, M. G. (2014). A strategic approach to landslide risk reduction. International Journal of Landslide and Environment, 2(1), 14–23. | spa |
dc.relation.references | Winter, M. G. (2016). A Strategic Approach to Debris Flow Risk Reduction on the Road Network. Procedia Engineering, 143, 759–768. https://doi.org/https://doi.org/10.1016/j.proeng.2016.06.121 | spa |
dc.relation.references | Winter, M. G., & Bromhead, E. N. (2012). Landslide risk: some issues that determine societal acceptance. Natural Hazards, 62(2), 169–187. https://doi.org/10.1007/s11069-011-9987-1 | spa |
dc.relation.references | Winter, M. G., Harrison, M., Macgregor, F., & Shackman, L. (2013). Landslide hazard and risk assessment on the Scottish road network. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 166(6), 522–539. https://doi.org/10.1680/geng.12.00063 | spa |
dc.relation.references | Winter, M. G., Kinnear, N., & Helman, S. (2020). Evaluation of a novel road-based landslide early warning system. Proceedings of the Institution of Civil Engineers - Transport, 00138, 1–38. https://doi.org/10.1680/jtran.19.00138 | spa |
dc.relation.references | Winter, M. G., Macgregor, F., & Shackman, L. (2009). Scottish road network landslides study : implementation. Transport Scotland. | spa |
dc.relation.references | Winter, M. G., Smith, J. . T., Fotopoulou, S., Pitilakis, K., Mavrouli, O., Corominas, J., & Agyroudis, S. (2013). The physical vulnerability of roads to debris flow. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 3, 2281–2284. | spa |
dc.relation.references | Yamín, L., Ghesquiere, F., Darío, O., Mario, C., & Ordaz, G. (2013). Modelación probabilista para la gestión del riesgo de desastre. El caso de Bogotá, Colombia. Banco Mundial, Universidad de los Andes. | spa |
dc.relation.references | You, X., & Tonon, F. (2012). Event-tree analysis with imprecise probabilities. Risk Analysis : An Official Publication of the Society for Risk Analysis, 32(2), 330–344. https://doi.org/10.1111/j.1539-6924.2011.01721.x | spa |
dc.relation.references | Zêzere, J. L., Garcia, R. A. C., Oliveira, S. C., & Reis, E. (2008). Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology, 94(3), 467–495. https://doi.org/https://doi.org/10.1016/j.geomorph.2006.10.040 | spa |
dc.relation.references | Zhang, H., & Yao, Y. (2019). An Integrative Vulnerability Evaluation Model to Urban Road Complex Network. Wireless Personal Communications, 107(1), 193–204. https://doi.org/10.1007/s11277-019-06248-7 | spa |
dc.relation.references | Zou, Q., Cui, P., Zeng, C., Tang, J., & Deep Regmi, A. (2016). Dynamic process-based risk assessment of debris flow on a local scale. Physical Geography, 37(2), 132–152. https://doi.org/10.1080/02723646.2016.1169477 | spa |
dc.relation.references | Zou, Q., Cui, P., Zhou, G. G. D., Li, S., Tang, J., & Li, S. (2018). A new approach to assessing vulnerability of mountain highways subject to debris flows in China. Progress in Physical Geography: Earth and Environment, 42(3), 305–329. https://doi.org/10.1177/0309133318770985 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | Gestión de riesgos por movimientos en masa | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.ddc | Geotecnia | spa |
dc.subject.ddc | 550 - Ciencias de la tierra | spa |
dc.subject.lemb | Movimientos tectónicos | |
dc.subject.lemb | Riesgo sísmico | |
dc.subject.lemb | Amenaza sísmica | |
dc.subject.proposal | Gestión de riesgos | spa |
dc.subject.proposal | Riesgos de origen geotécnico | spa |
dc.subject.proposal | Movimientos en masa | spa |
dc.subject.proposal | Corredores viales | spa |
dc.subject.proposal | Amenaza | spa |
dc.subject.proposal | Vulnerabilidad | |
dc.subject.proposal | Consecuencias | spa |
dc.subject.proposal | Risk Management | eng |
dc.subject.proposal | Geotechnical risks | eng |
dc.subject.proposal | Landslides | eng |
dc.subject.proposal | Road corridors | eng |
dc.subject.proposal | Hazard | eng |
dc.subject.proposal | Vulnerability | eng |
dc.subject.proposal | Consequences | eng |
dc.subject.proposal | Nordeste antioqueño | spa |
dc.title | Sistema para el gerenciamiento del riesgo asociado a movimientos en masa en corredores viales de zonas montañosas | spa |
dc.title.translated | Risk management system for Landslides in road corridors within mountainous regions | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: