Sistema para el gerenciamiento del riesgo asociado a movimientos en masa en corredores viales de zonas montañosas

dc.contributor.advisorMartínez Carvajal, Hernán Eduardo
dc.contributor.authorMontoya Cañola, Sandra Marcela
dc.coverage.regionNordeste antioqueño
dc.date.accessioned2025-02-21T12:49:13Z
dc.date.available2025-02-21T12:49:13Z
dc.date.issued2024-10-20
dc.descriptionIlustraciones, mapas, tablasspa
dc.description.abstractEste estudio propone una metodología para la gestión de riesgos por movimientos en masa en corredores viales en zonas montañosas. El objetivo principal es desarrollar un modelo integral que permita evaluar la amenaza, vulnerabilidad y el riesgo por movimientos en masa del corredor vial, en cualquier etapa del ciclo de vida del proyecto, permitiendo al usuario visualizar el escenario de riesgo del corredor completo o de secciones específicas, según las capacidades gráficas del sistema de información geográfica utilizado. El sistema proporciona recomendaciones prácticas tanto para la reducción de la exposición como para el tratamiento de la amenaza. El método se aplicó en un segmento de vía en el Nordeste Antioqueño, entre los municipios de Vegachí y Remedios, donde se analizaron 69 secciones distribuidas a lo largo del tramo. Los resultados de la evaluación mostraron coherencia con las condiciones reales de la vía, y los indicadores numéricos de riesgo permitieron emitir recomendaciones prácticas de gestión a lo largo del segmento analizado. El sistema de gestión propuesto facilita la identificación de las zonas más críticas y la priorización de intervenciones, optimizando los recursos y mejorando la seguridad vial. Este enfoque es replicable en cualquier proyecto de infraestructura lineal, como ferrocarriles, ductos o canales. Finalmente, el modelo presentado recibe el nombre de METIS (GR) por sus siglas en inglés: Methodology for Transportation Infrastructure Geotechnical Risk Management. (Texto tomado de la fuente)spa
dc.description.abstractThis study proposes a methodology for landslide risk management in road corridors located in mountainous regions. The main objective is to develop a comprehensive model that allows the assessment of hazard, vulnerability, and risk from landslides in the road corridorat any stage of the project’s life cycle. It allows users to visualize the risk scenario for the entire corridor or specific sections, depending on the graphical capabilities of the geographic information system used. The system provides practical recommendations for both reducing exposure and mitigating the hazard. The method was applied to a road segment in northeastern Antioquia, between the municipalities of Vegachí and Remedios, where 69 sections distributed along the stretch were analyzed. The assessment results showed consistency with the actual road conditions, and the numerical risk indicators allowed for practical management recommendations along the analyzed segment. The proposed management system facilitates the identification of the most critical areas and the prioritization of interventions, optimizing resources and improving road safety. This approach is replicable in any linear infrastructure project, such as railways, pipelines, or canals. Finally, the model presented is called METIS (GR), which stands for Methodology for Transportation Infrastructure Geotechnical Risk Management.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Civilspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaGestión del riesgo – Gestión de riesgos de origen geotécnicospa
dc.format.extent317 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87523
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAASHTO. (2010). Highway Safety Manual (First Edit, Vol. 1). American Association of State Highway and Transportation Officials.spa
dc.relation.referencesAASHTO. (2018). A Policy on Geometric Design of Highways and Streets: The Green Book. In American Association of State Highway and Transportation Officials (Ed.), American Association of State Highway and Transportation Officials (7th ed.).spa
dc.relation.referencesAgencia Nacional de Infraestructura. (2024). Tráfico y Recaudo Peaje Puerto Berrio (Antioquia). https://aniscopio.ani.gov.co/reportes/carreteros/peajes-traficorecaudo/27spa
dc.relation.referencesAgliardi, F., Crosta, G. B., Zanchi, A., & Ravazzi, C. (2009). Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphology, 103(1), 113–129. https://doi.org/https://doi.org/10.1016/j.geomorph.2007.09.015spa
dc.relation.referencesAGS-Australian Geomechanics Society. (2000). Landslide Risk Management Concepts and Guidelines. Australian Geomechanics: Journal and News of the Australian Geomechanics Society.spa
dc.relation.referencesAleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58(1), 21–44.spa
dc.relation.referencesÁlvarez, V., Álvarez, J., Aristizábal, C., Jurado, J., Londoño, D., López, J., & León, V. (2014). De caminos y autopistas: Historia de la infraestructura vial en Antioquia. Universidad Eafit, Grupo de Historia Empresarial, GHE : Gobernación de Antioquia.spa
dc.relation.referencesANCOLD. (2003). Guidelines on Risk Assessment. Australian National Committee on Large Dams.spa
dc.relation.referencesArattano, M., & Marchi, L. (2008). Systems and Sensors for Debris-flow Monitoring and Warning. Sensors, 8(4), 2436–2452. https://doi.org/10.3390/s8042436spa
dc.relation.referencesArchetti, R., & Lamberti, A. (2003). Assessment of risk due to debris flow events. Natural Hazards Review, 4(3), 115–125.spa
dc.relation.referencesArias Valencia, S. (2021). Desarrollo de un sistema de identificación y análisis de riesgo geotécnico para corredores viales (Trabajo de grado, Ed.). Universidad de Antioquia.spa
dc.relation.referencesAristizábal, E., Gamboa, M. F., & Leoz, F. J. (2010). Sistema de alerta temprana por movimientos en masa inducidos por lluvia para el valle de Aburrá, Colombia. Revista EIA, 13, 155–169.spa
dc.relation.referencesAristizábal, E., García, E., & Martínez, C. (2015). Susceptibility assessment of shallow landslides triggered by rainfall in tropical basins and mountainous terrains. Natural Hazards, 78(1), 621–634. https://doi.org/10.1007/s11069-015-1736-4spa
dc.relation.referencesAristizábal Giraldo, E. V. (2013). SHIA_Landslide: Developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments (p. 75). Universidad Nacional de Colombia.spa
dc.relation.referencesAristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016). Influencia de la lluvia antecedente y la conductividad hidráulica en la ocurrencia de deslizamientos detonados por lluvias utilizando el modelo SHIA_Landslide. Revista EIA, 26, 31–46. https://doi.org/10.24050/reia.v13i26.863spa
dc.relation.referencesAristizábal, López, S., Sánchez, O., Vásquez, M., Rincón, F., Ruiz-Vásquez, D., Restrepo, S., & Valencia, J. S. (2019). Evaluación de la amenaza por movimientos en masa detonados por lluvias para una región de los Andes colombianos estimando la probabilidad espacial, temporal, y magnitud. Boletin de Geologia, 41(3), 85–105.spa
dc.relation.referencesAuflič, M. J., Herrera, G., Mateos, R. M., Poyiadji, E., Quental, L., Severine, B., Peternel, T., Podolszki, L., Calcaterra, S., Kociu, A., Warmuz, B., Jelének, J., Hadjicharalambous, K., Becher, G. P., Dashwood, C., Ondrus, P., Minkevičius, V., Todorović, S., Møller, J. J., & Marturia, J. (2023). Landslide monitoring techniques in the Geological Surveys of Europe. Landslides, 20(5), 951–965. https://doi.org/10.1007/s10346-022-02007-1spa
dc.relation.referencesAugusti, G., Borri, A., & Ciampoli, M. (1994). Optimal allocation of resources in reduction of the seismic risk of highway networks. Engineering Structures, 16(7), 485–497. https://doi.org/https://doi.org/10.1016/0141-0296(94)90085-Xspa
dc.relation.referencesAyalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15–31. https://doi.org/https://doi.org/10.1016/j.geomorph.2004.06.010spa
dc.relation.referencesBaecher, G. B., & Christian, J. T. (2003). Reliability and Statistics in Geotechnical Engineering. In Technometrics (1st ed., Vol. 47). John Wiley & Sons.spa
dc.relation.referencesBall, D. J., & Floyd, P. J. (1998). Societal risks: a report prepared for the Health and Safety Executive. Health and Safety Executive.spa
dc.relation.referencesBanco Mundial. (2012). Análisis de la gestión del riesgo de desastres en Colombia: un aporte para la construcción de políticas públicas. Sistema Nacional de Información Para La Gestión Del Riesgo de Desastres, 438.spa
dc.relation.referencesBandle, T. (2013). Tolerability of risk: the regulator’s story. In The Tolerability of Risk (pp. 93–103). Routledge.spa
dc.relation.referencesBarredo, JoséI., Benavides, A., Hervás, J., & van Westen, C. J. (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2(1), 9–23. https://doi.org/https://doi.org/10.1016/S0303-2434(00)85022-9spa
dc.relation.referencesBarton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189–236.spa
dc.relation.referencesBasharat, M., & Rohn, J. (2015). Effects of volume on travel distance of mass movements triggered by the 2005 Kashmir earthquake, in the Northeast Himalayas of Pakistan. Natural Hazards, 77(1), 273–292. https://doi.org/10.1007/s11069-015-1590-4spa
dc.relation.referencesBCMWRPRC. (1995). Mined rock and overburden piles. Runout Characteristics of Debris from Dump Failures in Mountainous Terrain Stage 2 analysis, modelling and prediction. Golder Associates Ltd and O. Hungr Geotechnical Research Ltd.spa
dc.relation.referencesBell, R., & Glade, T. (2004). Quantitative risk analysis for landslides ‒ Examples from Bíldudalur, NW-Iceland. Natural Hazards and Earth System Sciences, 4(1), 117–131. https://doi.org/10.5194/nhess-4-117-2004spa
dc.relation.referencesBerdica, K. (2002). An introduction to road vulnerability: what has been done, is done and should be done. Transport Policy, 9(2), 117–127. https://doi.org/https://doi.org/10.1016/S0967-070X(02)00011-2spa
dc.relation.referencesBernabeu Garcia, M., & Diaz Torres, J. A. (2014). Methodologies for risk analysis in slope instability. Ingenieria Civil (Madrid), 175, 17–25.spa
dc.relation.referencesBerti, M., & Simoni, A. (2014). DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow. Computers & Geosciences, 67, 14–23. https://doi.org/https://doi.org/10.1016/j.cageo.2014.02.002spa
dc.relation.referencesBieniaski, Z. (1993). Classification of rock masses for engineering: The RMR system and future trends. In Pergamon Press (Ed.), J. Hudson, Comprehensive Rock Engineering, Volume 3 (pp. 553–573).spa
dc.relation.referencesBieniawski, Z. T. (1979). The geomechanics classification in rock engineering applications. Proceedings of the 4th International Congress on Rock Mechanics, 41–48.spa
dc.relation.referencesBirkmann, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S., Kienberger, S., Keiler, M., Alexander, D., Zeil, P., & Welle, T. (2013). Framing vulnerability, risk and societal responses: the MOVE framework. Natural Hazards, 67(2), 193–211. https://doi.org/10.1007/s11069-013-0558-5spa
dc.relation.referencesBLS. (2023). Consumer Price Index, 1913-Historical data from the era of the modern U.S. consumer price index (CPI). The U.S. Bureau of Labor Statistics (BLS). https://www.minneapolisfed.org/about-us/monetary-policy/inflation-calculator/consumer-price-index-1913-spa
dc.relation.referencesBlunck, T. (2024). Record thunderstorm losses and deadly earthquakes: the natural disasters of 2023. Munich RE. https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2024/natural-disaster-figures-2023.htmlspa
dc.relation.referencesBonachea, J., Remondo, J., Gonzalez-Diez, A., Diaz de Teran, J. R., & Cendrero, A. (2009). Landslide risk modelling: an experience in northern Spain. Landslide Processes: From Geomorphologic Mapping to Dynamic Modelling, Edited by: Malet, JP, Remaitre, A., and Bogaard, T., Strasbourg, European Centre on Geomorphological Hazards (CERG), ISBN, 2–95183317.spa
dc.relation.referencesBordoni, M., Giuseppina Persichillo, M., Meisina, C., Crema, S., Cavalli, M., Bartelletti, C., Galanti, Y., Barsanti, M., Giannecchini, R., & D’Amato Avanzi, G. (2018). Estimation of the susceptibility of a road network to shallow landslides with the integration of the sediment connectivity. Natural Hazards and Earth System Sciences, 18(6), 1735–1758. https://doi.org/10.5194/nhess-18-1735-2018spa
dc.relation.referencesBriones-Bitar, J., Carrión-Mero, P., Montalván-Burbano, N., & Morante-Carballo, F. (2020). Rockfall research: A bibliometric analysis and future trends. Geosciences, 10(10), 403.spa
dc.relation.referencesBudetta, P. (2002). Risk assessment from debris flows in pyroclastic deposits along a motorway, Italy. Bulletin of Engineering Geology and the Environment, 61, 293–301.spa
dc.relation.referencesBunce, C. M., Cruden, D. M., & Morgenstern, N. R. (1997). Assessment of the hazard from rock fall on a highway. Canadian Geotechnical Journal, 34(3), 344–356. https://doi.org/10.1139/t97-009spa
dc.relation.referencesCal, R., & Cárdenas, J. (2018). Ingeniería de tránsito: fundamentos y aplicaciones (Novena). Alpha Editorial.spa
dc.relation.referencesCámara Colombiana de Infraestructura. (2021). Colombia: el porqué de las concesiones viales. https://infraestructura.org.co/colombia-el-porque-de-las-concesiones-vialesspa
dc.relation.referencesCardona A., O. D. (2004). Sistema nacional para la prevención y atención de desastres. IDEA UNAL.spa
dc.relation.referencesCardona Giraldo, I. K. (2016). Validación de modelos de predicción de deslizamientos mediante el uso de inventarios en escalas sub-regionales. Universidad Nacional de Colombia.spa
dc.relation.referencesCarrara, A. (1993). Uncertainty in Evaluating Landslide Hazard and Risk BT - Prediction and Perception of Natural Hazards: Proceedings Symposium, 22–26 October 1990, Perugia, Italy (J. Nemec, J. M. Nigg, & F. Siccardi, Eds.; pp. 101–109). Springer Netherlands. https://doi.org/10.1007/978-94-015-8190-5_12spa
dc.relation.referencesCasadei, M., Dietrich, W. E. Jr., & Miller, N. L. (2003). Testing a model for predicting the timing and location of shallow landslide initiation in soil‐mantled landscapes. Earth Surface Processes and Landforms, 28.spa
dc.relation.referencesCasagli, N., Intrieri, E., Tofani, V., Gigli, G., & Raspini, F. (2023). Landslide detection, monitoring and prediction with remote-sensing techniques. Nature Reviews Earth & Environment, 4(1), 51–64. https://doi.org/10.1038/s43017-022-00373-xspa
dc.relation.referencesCatani, F., Casagli, N., Ermini, L., Righini, G., & Menduni, G. (2005). Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides, 2, 329–342.spa
dc.relation.referencesCeballos-Moreno, C. A. (2019). Índice de qualidade de encostas : uma metodologia de suscetibilidade ao deslizamento para corredores de transporte. Universidade de Brasília.spa
dc.relation.referencesChica-Sánchez, A. (1989). Notes on Geotechnical engineering for a short course on geotechnical practices (1st Ed. In Spanish ed.). Medellín: National Faculty of Mines. National University of Colombia at Medellin.spa
dc.relation.referencesCongreso de la República de Colombia. (2002). Ley 769 de 2002 - Código Nacional de Tránsito Terrestre. https://www.funcionpublica.gov.co/eva/gestornormativo/norma_pdf.php?i=5557spa
dc.relation.referencesContreras Ortiz, Y. (2017). 20 años de ordenamiento territorial en Colombia: experiencias, desafíos y herramientas para los actores territoriales. Instituto de Estudios Urbanos (IEU), 211.spa
dc.relation.referencesCorominas, J. (1996). The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33(2), 260–271.spa
dc.relation.referencesCorominas, J., Copons, R., Moya, J., Vilaplana, J. M., Altimir, J., & Amigó, J. (2005). Quantitative assessment of the residual risk in a rockfall protected area. Landslides, 2, 343–357.spa
dc.relation.referencesCorominas, J., Einstein, H., Davis, T., Strom, A., Zuccaro, G., Nadim, F., & Verdel, T. (2015). Glossary of terms on landslide hazard and risk. Engineering Geology for Society and Territory-Volume 2: Landslide Processes, 1775–1779.spa
dc.relation.referencesCorominas, J., & Mavrouli, J. (2011). Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies. Documento Técnico, SafeLand. 7th Framework Programme Cooperation Theme, 6.spa
dc.relation.referencesCorominas, J., Van Westen, C. ., Frattini, P., Cascini, L., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Smith, J. . T., & Herva, J. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. https://doi.org/10.1007/s10064-013-0538-8spa
dc.relation.referencesCruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology - Bulletin de l’Association Internationale de Géologie de l’Ingénieur, 43(1), 27–29. https://doi.org/10.1007/BF02590167spa
dc.relation.referencesCruden, D. M., & Varnes, D. J. (1996). Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation Research Board Special Report, 247.spa
dc.relation.referencesCuanalo Campos, O. A., & Gallardo Amaya, R. J. (2016). Acciones para reducir la vulnerabilidad y el riesgo*. Vector, 11, 30–38.spa
dc.relation.referencesCuanalo-Campos, O. A., & Melgarejo-Palafox, G. (2002). Inestabilidad de laderas sierras norte y nororiental del estado de Puebla. Elementos: Ciencia y Cultura, 9(47), 51–55.spa
dc.relation.referencesCurtis, J. A., Dailey, J. S., D ’angelo, D., Dewitt, S. D., Graf, M. J., Henkel, T. A., Miller, J. B., Milton, J. C., Molenaar, K. R., Richardson, D. M., & Rocco, R. E. (2012). Transportation Risk Management: International Practices for Program Development and Project Delivery (Issue August). u.S. department of Transportation Federal Highway, Administration American Association of State Highway and Transportation Officials National Cooperative Highway Research Program.spa
dc.relation.referencesDai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65–87. https://doi.org/https://doi.org/10.1016/S0013-7952(01)00093-Xspa
dc.relation.referencesde Vilder, S. J., Kelly, S. D., R.B., B., Allan, S., & Glassey, P. J. (2024). LANDSLIDE PLANNING GUIDANCE : REDUCING LANDSLIDE RISK THROUGH LAND USE PLANNING (G. Science., Ed.; GNS Scienc). https://doi.org/10.21420/R2X8-FJ49spa
dc.relation.referencesERM. (1998). Landslides and Boulder Falls from Natural Terrain : Interim Risk Guidelines.spa
dc.relation.referencesFederal Highway Administration. (2013). Highway Functional Classification Concepts, Criteria and Procedures.spa
dc.relation.referencesFell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31(2), 261–272. https://doi.org/10.1139/t94-031spa
dc.relation.referencesFell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3–4), 85–98.spa
dc.relation.referencesFell, R., & Hartford, D. (1997). Landslide risk management. In Landslide risk assessment. Proceedings of the workshop on landslide risk assessment. (pp. 51–109).spa
dc.relation.referencesFell, R., Ho, K. K. S., Lacasse, S., & Leroi, E. (2005). A framework for landslide risk assessment and management. In Landslide risk management (pp. 13–36). CRC Press.spa
dc.relation.referencesFinlay, P. J., & Fell, R. (1997). Landslides: risk perception and acceptance. Canadian Geotechnical Journal, 34(2), 169–188. https://doi.org/10.1139/t96-108spa
dc.relation.referencesFinlay, P. J., Mostyn, G. R., & Fell, R. (1999a). Landslide risk assessment: prediction of travel distance. Canadian Geotechnical Journal, 36(3), 556–562.spa
dc.relation.referencesFinlay, P. J., Mostyn, G. R., & Fell, R. (1999b). Landslides: Prediction of Travel Distance and Guidelines for Vulnerability of Persons. In Proceedings 8th Australia New Zealand Conference on Geomechanics: Consolidating Knowledge (pp. 105–113). Australian Geomechanics Society.spa
dc.relation.referencesFrias Betancur, J. P. (2016). Planteamiento de lineamientos geotécnicos útiles con miras a la adaptación frente al cambio climático de la red vial carretera primaria colombiana. Universidad Nacional de Colombia.spa
dc.relation.referencesGriswold, J. P., & Iverson, R. M. (2008). Mobility statistics and automated hazard mapping for debris flows and rock avalanches. US Geological Survey.spa
dc.relation.referencesGuimaraes-Silva. (2015). Avaliação Quantitativa Da Vulnerabilidade de Edificações Associada a Processos de Deslizamentos de Encostas. Tese de Doutorado, Publicação G. TD-113/15, Departamento de Engenharia Civilspa
dc.relation.referencesGuzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973. https://doi.org/https://doi.org/10.1016/j.earscirev.2019.102973spa
dc.relation.referencesHarwood, D. W., Cook, D. J., Coakley, R. C., & Polk, C. (2021). National Cooperative Highway Research Program Report 876: Guidelines for Integrating Safety and Cost-Effectiveness into Resurfacing, Restoration, and Rehabilitation (3R) Projects. In Transportation Research Board. National Research Council (Ed.), Guidelines for Integrating Safety and Cost-Effectiveness into Resurfacing, Restoration, and Rehabilitation (3R) Projects. https://doi.org/10.17226/25206spa
dc.relation.referencesHovius, N., Stark, C. P., & Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide mapping. Geology, 25(3), 231–234. https://doi.org/10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2spa
dc.relation.referencesHungr, O., Clague, J., Morgenstern, N. R., VanDine, D., & Stadel, D. (2016). A review of landslide risk acceptability practices in various countries. In Associazione Geotecnica Italiana (Ed.), Landslides and engineered slopes. Experience, theory and practice (pp. 1121–1128). CRC Press.spa
dc.relation.referencesHunter, G., & Fell, R. (2003). Travel distance angle for “rapid” landslides in constructed and natural soil slopes. Canadian Geotechnical Journal, 40(6), 1123–1141.spa
dc.relation.referencesIEC. (1995). 60300-3-9:1995. Dependability management - Part 3: Application guide - Section 9: Risk analysis of technological systems (International Electrotechnical Commission, Ed.).spa
dc.relation.referencesIEC. (2019). ISO 31010: Risk Management—Risk Assessment Techniques. International Electrotechnical Commission. Geneva, Switzerland.spa
dc.relation.referencesInternational Organization for Standardization. (2018). ISO 31000: Risk management Guidelines.spa
dc.relation.referencesINVÍAS. (2022). Actualización Plan de Gestión del Riesgo de Desastres Decreto 2157 de 2017.spa
dc.relation.referencesINVÍAS-UNAL. (2006). Manual para la Inspección visual de Obras de estabilización. Estudio e investigación del estado actual de las obras de la Red Nacional de carreteras. In Convenio Interadministrativo 0587-03 (Convenio I).spa
dc.relation.referencesIsaza Restrepo, P. A. (2011). Avaliação do risco aceitavel por escorregamentos de encostas em regiões tropicais montanhosas: caso de aplicação, Medellin - Colombia. (Departamento de Engenharia Civil e Ambiental, Ed.; Dissertaçã). Universidade de Brasilia.spa
dc.relation.referencesJaiswal, P., van Westen, C. J., & Jetten, V. (2011). Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India. Natural Hazards and Earth System Sciences, 11(6), 1723–1743. https://doi.org/10.5194/nhess-11-1723-2011spa
dc.relation.referencesJiménez, J. A., & Aristizábal, E. (2018). A methodological proposal for landslide susceptibility mapping in linear projects: A study case, Medellin – Turbo highway, Section 2. Boletín de Ciencias de La Tierra, 43, 14–23.spa
dc.relation.referencesKang, H., & Kim, Y. (2016). The physical vulnerability of different types of building structure to debris flow events. Natural Hazards, 80(3), 1475–1493. https://doi.org/10.1007/s11069-015-2032-zspa
dc.relation.referencesLarsen, M. C. (2008). Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies. Advances in Geosciences, 14, 147–153. https://doi.org/http://dx.doi.org/10.5194/adgeo-14-147-2008spa
dc.relation.referencesLi, Z., Nadim, F., Huang, H., Uzielli, M., & Lacasse, S. (2010). Quantitative vulnerability estimation for scenario-based landslide hazards. Landslides, 7(2), 125–134. https://doi.org/10.1007/s10346-009-0190-3spa
dc.relation.referencesLiu, Q., Zhang, B., & Tang, A. (2023). Landslide risk of regional roads: Consider the road mileage of expected losses. Transportation Research Part D: Transport and Environment, 120, 103771. https://doi.org/https://doi.org/10.1016/j.trd.2023.103771spa
dc.relation.referencesLiu, X., & Lei, J. (2003). A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China). Geomorphology, 52(3), 181–191. https://doi.org/https://doi.org/10.1016/S0169-555X(02)00242-8spa
dc.relation.referencesLombardo, L., Tanyas, H., Huser, R., Guzzetti, F., & Castro-Camilo, D. (2021). Landslide size matters: A new data-driven, spatial prototype. Engineering Geology, 293, 106288. https://doi.org/https://doi.org/10.1016/j.enggeo.2021.106288spa
dc.relation.referencesLópez, R. E., Zuluaga, A. D., Gómez, F., & Tapia, L. (2020). Aplicación del método Mora-Vahrson para evaluar la susceptibilidad a deslizamiento en el municipio de Manaure, Cesar, Colombia. Revista de Estudios Latinoamericanos Sobre Reducción Del Riesgo de Desastres REDER, 4(2), 57–70.spa
dc.relation.referencesLu, M., Zhang, J., Zhang, L., & Zhang, L. (2020). Assessing the annual risk of vehicles being hit by a rainfall-induced landslide: a case study on Kennedy Road in Wan Chai, Hong Kong. Natural Hazards and Earth System Sciences, 20(6), 1833–1846. https://doi.org/10.5194/nhess-20-1833-2020spa
dc.relation.referencesMacciotta, R., Gräpel, C., Keegan, T., Duxbury, J., & Skirrow, R. (2019). Quantitative risk assessment of rock slope instabilities that threaten a highway near Canmore, Alberta, Canada: managing risk calculation uncertainty in practice. Canadian Geotechnical Journal, 57(3), 337–353. https://doi.org/10.1139/cgj-2018-0739spa
dc.relation.referencesMacciotta, R., Martin, C. D., Cruden, D. M., Hendry, M., & Edwards, T. (2017). Rock fall hazard control along a section of railway based on quantified risk. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 11(3), 272–284. https://doi.org/10.1080/17499518.2017.1293273spa
dc.relation.referencesMalamud, B. D., Heijenk, R. A., Taylor, F. E., & Wood, J. L. (2022). Road influences on landslide inventories. EGU General Assembly Conference Abstracts, EGU22-7616.spa
dc.relation.referencesMalamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004a). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687–711. https://doi.org/10.1002/esp.1064spa
dc.relation.referencesMalamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004b). Landslides, earthquakes, and erosion. Earth and Planetary Science Letters, 229(1–2), 45–59. https://doi.org/10.1016/j.epsl.2004.10.018spa
dc.relation.referencesMartínez Carvajal, H. M. (2021). Probabilidad de tamaño para movimientos en masa. Comunicación verbal y notas de clase. Curso Riesgos Geotécnicos. Universidad de Antioquia.spa
dc.relation.referencesMartínez, H. E., de Moraes Guimarães Silva, M. T., García Aristizábal, E. F., Aristizábal-Giraldo, E. V, & Larios Benavides, M. A. (2018). A mathematical approach for assessing landslide vulnerability. Earth Sciences Research Journal, 22(4), 251–273.spa
dc.relation.referencesMartínez-Carvajal, H. E. (2014). Manuscrito - Adaptación metodología HsQI.spa
dc.relation.referencesMcDougall, S. (2017). 2014 Canadian Geotechnical Colloquium: Landslide runout analysis—current practice and challenges. Canadian Geotechnical Journal, 54(5), 605–620.spa
dc.relation.referencesMejía-Pérez, M. F. (2023). Incorporación del análisis pseudoestático al sistema HsQI para la clasificación geotécnica de taludes en corredores viales. Universidad Nacional de Colombia.spa
dc.relation.referencesMeneses, B. M., Pereira, S., & Reis, E. (2019). Effects of different land use and land cover data on the landslide susceptibility zonation of road networks. Natural Hazards and Earth System Sciences, 19(3), 471–487. https://doi.org/10.5194/nhess-19-471-2019spa
dc.relation.referencesMinisterio de Transporte. (2009a). Manual para el manejo de bases de datos de vehículos automotores de carga y pasajeros que sean registrados a partir de la entrada en operación del Registro Nacional Automotor del RUNT.spa
dc.relation.referencesMinisterio de Transporte. (2009b). Resolución 5443. https://rndc.mintransporte.gov.co/LinkClick.aspx?fileticket=nSq_Y8qQnaw%253d&tabid=204&language=es-MXspa
dc.relation.referencesMinisterio de Transporte. (2023). Transporte en cifras 2022. Anuario Nacional de Transporte. In Transporte en cifras - Estadísticas 2019.spa
dc.relation.referencesMoncayo, S., & Ávila, G. (2023). Landslide travel distances in Colombia from national landslide database analysis. In Progress in Landslide Research and Technology, Volume 1 Issue 1, 2022 (pp. 315–325). Springer.spa
dc.relation.referencesMontero Olarte, J. (2017). Clasificación de movimiento en masa y su distribución en terrenos geológicos de Colombia. In Correspondencias & Análisis (Libros del, Issue 15018). https://doi.org/https://doi.org/10.32685/9789585978218spa
dc.relation.referencesMontgomery, D. R., Schmidt, K. M., Greenberg, H. M., & Dietrich, W. E. (2000). Forest clearing and regional landsliding. Geology, 28(4), 311–314. https://doi.org/10.1130/0091-7613(2000)28<311:FCARL>2.0.CO;2spa
dc.relation.referencesMontoya-Cañola, S. M., Ortiz-Giraldo, L., Martínez-Carvajal, H. E., & Rodríguez, L. S. (2021). Practical application of HsQI system to quantitative geotechnical zonation of road corridors in mountain areas. 13th Landslides and Engineered Slopes. Experience, Theory and Practice, ISL.spa
dc.relation.referencesMora C, S., & Vahrson, W. G. (1994). Macrozonation methodology for landslide hazard determination. Bulletin of the Association of Engineering Geologists, 31(1), 49–58. https://doi.org/10.2113/gseegeosci.xxxi.1.49spa
dc.relation.referencesMora, S., & Vahrson, W. G. (1993). Determinación" a priori" de la amenaza de deslizamientos utilizando indicadores morfodinámicos. Tecnología ICE, 3(1), 32–42.spa
dc.relation.referencesMoreno-Ceballos, C. A. (2015). A System for geotechnical classification of hillslopes for road projects, based on the HsQI: methodological proposal and validation. : Master Degree Thesis, In Portuguese. Publication number G.DM-256/15. Department of Civil & Environmental. University of Brasilia.spa
dc.relation.referencesMuñoz, E., Martínez-Carvajal, H., Arévalo, J., & Alvira, D. (2014). Quantification of the effect of precipitation as a triggering factor for landslides on the surroundings of Medellín-Colombia. Dyna, 81(187), 115–121.spa
dc.relation.referencesNogal, M., O’Connor, A., Caulfield, B., & Brazil, W. (2016). A Multidisciplinary Approach for Risk Analysis of Infrastructure Networks in Response to Extreme Weather. Transportation Research Procedia, 14, 78–85. https://doi.org/10.1016/j.trpro.2016.05.043spa
dc.relation.referencesOcampo-Araya, M. del C. (2016). Sistema de classificação geotécnica de encostas para projetos de estradas baseado no índice de qualidade HSQI: aplicação na Costa Rica [Universidade de Brasília]. https://doi.org/http://dx.doi.org/10.26512/2016.03.D.22542spa
dc.relation.referencesPapathoma-Köhle, M., Gems, B., Sturm, M., & Fuchs, S. (2017). Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth-Science Reviews, 171, 272–288.spa
dc.relation.referencesPeila, D., & Guardini, C. (2008). Use of the event tree to assess the risk reduction obtained from rockfall protection devices. Natural Hazards and Earth System Sciences, 8(6), 1441–1450. https://doi.org/10.5194/nhess-8-1441-2008spa
dc.relation.referencesPellicani, R., Argentiero, I., & Spilotro, G. (2017). GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors. Geomatics, Natural Hazards and Risk, 8(2), 1012–1033. https://doi.org/10.1080/19475705.2017.1292411spa
dc.relation.referencesQuan Luna, B., Blahut, J., van Westen, C. J., Sterlacchini, S., van Asch, T. W. J., & Akbas, S. O. (2011). The application of numerical debris flow modelling for the generation of physical vulnerability curves. Natural Hazards and Earth System Sciences, 11(7), 2047–2060. https://doi.org/10.5194/nhess-11-2047-2011spa
dc.relation.referencesRagozin, A. L., & Tikhvinsky, I. O. (2000). Landslide hazard, vulnerability and risk assessment. Proceedings of the 8th International Symposium on Landslides, Cardiff, 1257–1262.spa
dc.relation.referencesRomana, M., Seron, J. B., & Montalar, E. (2003). SMR Geomechanics Classification: Application, experience, and validation: ISRM. ISRM 2003 – Technology Roadmap for Rock Mechanics, South African Institute of Mining and Metallurgy, 4.spa
dc.relation.referencesRuiz Peña, G. L., Navarro Alarcón, S. del R., Chaparro Cordón, J. L., Gamboa Rodríguez, C. A., Ramírez Hernández, K. C., Camargo Holguín, B. L., Trejos González, G. A., & Pérez Cerón, R. (2017). Las amenazas por movimientos en masa de Colombia. Una visión a escala 1:100.000. Libros del Servicio Geológico Colombiano. In Structure. https://doi.org/https://doi.org/10.32685/9789589952887spa
dc.relation.referencesSchuster, R. L., & Krizek, R. (1978). Landslides. Analysis and control. Special Reports 176. In Transport Research Board. National Reaserch Council, National Academy of Sciences. National Academy of Sciences.spa
dc.relation.referencesSmith, K., & Petley, D. N. (2009). Environmental hazards: Assessing risk and reducing disaster. In Environmental Hazards: Assessing Risk and Reducing Disaster (FIFTH EDIT). Routledge. https://doi.org/10.4324/9780203884805spa
dc.relation.referencesSGC. (2023). ¿Quiénes somos? Misión, Visión y Objetivos estratégicos. Servicio Geológico Colombiano. https://www2.sgc.gov.co/Nosotros/AcercaDelSgc/Paginas/Quienes-Somos.aspxspa
dc.relation.referencesSGC. (2017). GUÍA METODOLÓGICA PARA LA ZONIFICACIÓN DE AMENAZA POR MOVIMIENTOS EN MASA, ESCALA 1: 25.000 (Servicio Geológico Colombiano, Ed.).spa
dc.relation.referencesStrouth, A. B. (2024). Quantitative life-loss risk evaluation for landslides. University of British Columbia.spa
dc.relation.referencesStrouth, A., & McDougall, S. (2021). Societal risk evaluation for landslides: historical synthesis and proposed tools. Landslides, 18(3), 1071–1085. https://doi.org/10.1007/s10346-020-01547-8spa
dc.relation.referencesStrouth, A., & McDougall, S. (2022). Individual risk evaluation for landslides: key details. Landslides, 19(4), 977–991. https://doi.org/10.1007/s10346-021-01838-8spa
dc.relation.referencesSwedish Geotechnical Society. (2014). Risk management in geotechnical engineering projects – requirements Methodology. SSGF Report 1:2014E, 1–84.spa
dc.relation.referencesTanyaş, H., van Westen, C. J., Persello, C., & Alvioli, M. (2019). Rapid prediction of the magnitude scale of landslide events triggered by an earthquake. Landslides, 16(4), 661–676. https://doi.org/10.1007/s10346-019-01136-4spa
dc.relation.referencesTsai, Y.-B., Yu, T.-M., Chao, H.-L., & Lee, C.-P. (2001). Spatial Distribution and Age Dependence of Human-Fatality Rates from the Chi-Chi, Taiwan, Earthquake of 21 September 1999. Bulletin of the Seismological Society of America, 91(5), 1298–1309. https://doi.org/10.1785/0120000740spa
dc.relation.referencesUNGRD. (2020a). Guía para la integración de la gestión del riesgo de desastres en los planes de desarrollo territorial 2020-2023. Unidad Nacional para la Gestión del Riesgo de Desastres.spa
dc.relation.referencesUNDRR. (2023). The disaster risk reduction (DRR) glossary. https://www.undrr.org/drr-glossaryspa
dc.relation.referencesUNGRD. (2020b). Memorias de encuentros académicos en gestión del riesgo de desastres. Intercambios de experiencias en investigación 2019. Metodología Para La Zonificación de La Susceptibilidad al Desarrollo de Movimientos En Masa Para El Municipio de Miraflores, Boyacá, Mediante La Aplicación de La Metodología Del SGC y La Técnica Shaltab -Tobia, 73.spa
dc.relation.referencesUnited Nations Office for Disaster Risk Reduction. (2023). The last 60 years: Achievements in DRR by the UN General Assembly. https://www.undrr.org/our-work/historyspa
dc.relation.referencesVallejo Chocué, M. A. (2010). La gestión de riesgo en Colombia como herramienta de intervención pública. In Statewide Agricultural Land Use Baseline 2015 (Vol. 1). Quito: FLACSO-Sede Ecuador: Abya-Yala.spa
dc.relation.referencesvan Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3), 112–131. https://doi.org/https://doi.org/10.1016/j.enggeo.2008.03.010spa
dc.relation.referencesVeloza Cuadros, A. Y., & Zambrano Moreno, S. A. (2012). Metodología para la cuantificación de pérdidas económicas en corredores viales por deslizamientos y avalanchas. Caso piloto aplicado a tres tramos de la vía concesionada Bogotá-Villavicencio para deslizamientos superficiales.spa
dc.relation.referencesWieczorek, G. F. (1996). Landslide triggering mechanisms. In A. K. and S. R. L. (eds. ) Turner (Ed.), Report 247 Landslides Investigation and Mitigation (Issue 247, pp. 76–90). TRBNRC National Academy Press.spa
dc.relation.referencesWilson, R. A., Moon, A. T., Hendricks, M., & Stewart, I. E. (2005). Application of quantitative risk assessment to the Lawrence Hargrave Drive Project, New South Wales, Australia. Landslide Risk Management. Proceedings of the International Conference on Landslide Risk Management, Vancouver, Canada, 31 May-3 June 2005, 589–598.spa
dc.relation.referencesWinter, M. G. (2014). A strategic approach to landslide risk reduction. International Journal of Landslide and Environment, 2(1), 14–23.spa
dc.relation.referencesWinter, M. G. (2016). A Strategic Approach to Debris Flow Risk Reduction on the Road Network. Procedia Engineering, 143, 759–768. https://doi.org/https://doi.org/10.1016/j.proeng.2016.06.121spa
dc.relation.referencesWinter, M. G., & Bromhead, E. N. (2012). Landslide risk: some issues that determine societal acceptance. Natural Hazards, 62(2), 169–187. https://doi.org/10.1007/s11069-011-9987-1spa
dc.relation.referencesWinter, M. G., Harrison, M., Macgregor, F., & Shackman, L. (2013). Landslide hazard and risk assessment on the Scottish road network. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 166(6), 522–539. https://doi.org/10.1680/geng.12.00063spa
dc.relation.referencesWinter, M. G., Kinnear, N., & Helman, S. (2020). Evaluation of a novel road-based landslide early warning system. Proceedings of the Institution of Civil Engineers - Transport, 00138, 1–38. https://doi.org/10.1680/jtran.19.00138spa
dc.relation.referencesWinter, M. G., Macgregor, F., & Shackman, L. (2009). Scottish road network landslides study : implementation. Transport Scotland.spa
dc.relation.referencesWinter, M. G., Smith, J. . T., Fotopoulou, S., Pitilakis, K., Mavrouli, O., Corominas, J., & Agyroudis, S. (2013). The physical vulnerability of roads to debris flow. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 3, 2281–2284.spa
dc.relation.referencesYamín, L., Ghesquiere, F., Darío, O., Mario, C., & Ordaz, G. (2013). Modelación probabilista para la gestión del riesgo de desastre. El caso de Bogotá, Colombia. Banco Mundial, Universidad de los Andes.spa
dc.relation.referencesYou, X., & Tonon, F. (2012). Event-tree analysis with imprecise probabilities. Risk Analysis : An Official Publication of the Society for Risk Analysis, 32(2), 330–344. https://doi.org/10.1111/j.1539-6924.2011.01721.xspa
dc.relation.referencesZêzere, J. L., Garcia, R. A. C., Oliveira, S. C., & Reis, E. (2008). Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology, 94(3), 467–495. https://doi.org/https://doi.org/10.1016/j.geomorph.2006.10.040spa
dc.relation.referencesZhang, H., & Yao, Y. (2019). An Integrative Vulnerability Evaluation Model to Urban Road Complex Network. Wireless Personal Communications, 107(1), 193–204. https://doi.org/10.1007/s11277-019-06248-7spa
dc.relation.referencesZou, Q., Cui, P., Zeng, C., Tang, J., & Deep Regmi, A. (2016). Dynamic process-based risk assessment of debris flow on a local scale. Physical Geography, 37(2), 132–152. https://doi.org/10.1080/02723646.2016.1169477spa
dc.relation.referencesZou, Q., Cui, P., Zhou, G. G. D., Li, S., Tang, J., & Li, S. (2018). A new approach to assessing vulnerability of mountain highways subject to debris flows in China. Progress in Physical Geography: Earth and Environment, 42(3), 305–329. https://doi.org/10.1177/0309133318770985spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcGestión de riesgos por movimientos en masaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.ddcGeotecniaspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.lembMovimientos tectónicos
dc.subject.lembRiesgo sísmico
dc.subject.lembAmenaza sísmica
dc.subject.proposalGestión de riesgosspa
dc.subject.proposalRiesgos de origen geotécnicospa
dc.subject.proposalMovimientos en masaspa
dc.subject.proposalCorredores vialesspa
dc.subject.proposalAmenazaspa
dc.subject.proposalVulnerabilidad
dc.subject.proposalConsecuenciasspa
dc.subject.proposalRisk Managementeng
dc.subject.proposalGeotechnical riskseng
dc.subject.proposalLandslideseng
dc.subject.proposalRoad corridorseng
dc.subject.proposalHazardeng
dc.subject.proposalVulnerabilityeng
dc.subject.proposalConsequenceseng
dc.subject.proposalNordeste antioqueñospa
dc.titleSistema para el gerenciamiento del riesgo asociado a movimientos en masa en corredores viales de zonas montañosasspa
dc.title.translatedRisk management system for Landslides in road corridors within mountainous regionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1128392031.2024.pdf
Tamaño:
11.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería – Geotecnia
Cargando...
Miniatura
Nombre:
Apéndice_E.pdf
Tamaño:
991.24 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: