Evaluación de la calidad de la imagen de spect/ct en rastreos posterapia con 131I y 177Lu

dc.contributor.advisorBarbosa Parada, Nathaly
dc.contributor.advisorPlazas de Pinzon, Maria Cristina
dc.contributor.authorCastellanos Castellanos, Deisy Nataly
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000098087spa
dc.contributor.orcidhttps://orcid.org/0000-0003-1317-7289spa
dc.date.accessioned2023-07-07T15:14:28Z
dc.date.available2023-07-07T15:14:28Z
dc.date.issued2023-06-06
dc.descriptionilustracionesspa
dc.description.abstractUn método muy utilizado en los últimos años debido a sus excelentes resultados para tratar tumores neuroendocrinos, cáncer de próstata metástasis resistente a la castración y cáncer de tiroides es el teragnóstico, un ́área de la medicina nuclear que emplea moléculas unidas a radionúclidos y que combina el diagnóstico y la terapia dirigida específica para lograr un tratamiento personalizado para el paciente. Se conoce la terapia con yodo radiactivo I-131 para tratar el carcinoma diferenciado de tiroides y el radioisótopo Lu-177 para tratar tumores neuroendocrinos y cáncer de próstata resistente a la castración. Debido a las características físicas de estos radionuclidos, ya que son emisores de radiación gamma y beta, mediante las emisiones gamma es posible obtener imágenes posteriores a la terapia conocidas como rastreo posterapia, que nos da información de la biodistribución del radiofármaco y estimar la respuesta exitosa de la terapia. En el presente trabajo se evalúa la calidad de la imagen de rastreos Post-terapia I-131 cuando se utilizan colimadores HEGP y MEGP para imágenes I-131 post-terapia utilizando un fantoma y un protocolo clínico de adquisición y reconstrucción. El trabajo se limita al análisis de imagen SPECT de I-131, ya que en los meses precedentes a esta entrega se da un desabastecimiento de Lu-177 a nivel global, producto de la falla que presentó uno de los reactores que producen este radioisótopo. (Texto tomado de la fuente)spa
dc.description.abstractA method widely used in recent years due to its excellent results in treating neuroendocrine tumors, metastatic castration-resistant prostate cancer and thyroid cancer is teragnostics, an area of nuclear medicine that uses molecules bound to radionuclides and combines diagnosis and targeted therapy to achieve a personalized treatment for the patient. Radioactive iodine I-131 therapy is known to treat differentiated thyroid carcinoma and the radioisotope Lu-177 to treat neuroendocrine tumors and castration-resistant prostate cancer. Due to the physical characteristics of these radionuclides, since they are emitters of gamma and beta radiation, by means of gamma emissions it is possible to obtain post-therapy images known as post-therapy tracking, which gives us information on the biodistribution of the radiopharmaceutical and to estimate the successful response of the therapy. In the present work we evaluate the image quality of I-131 post-therapy tracings when using HEGP and MEGP collimators for I-131 post-therapy imaging using a phantom and a clinical acquisition and reconstruction protocol. The work is limited to SPECT image analysis of I-131, since in the months preceding this delivery there was a global shortage of Lu-177, due to the failure of one of the reactors that produce this radioisotope.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.description.researchareaFísica Medica/Medicina Nuclearspa
dc.format.extent60 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84163
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesRachel A Powsner, Matthew R Palmer, and Edward R Powsner. Essentials of nuclear medicine physics and instrumentation. John Wiley & Sons, 2013.spa
dc.relation.referencesAshutosh Dash, Maroor Raghavan Ambikalmajan Pillai, and Furn F Knapp. Production of 177lu for targeted radionuclide therapy: available options. Nuclear medicine and molecular imaging, 49(2):85–107, 2015.spa
dc.relation.referencesErvin B Podgorsak. Radiation physics for medical physicists. Springer, 2006spa
dc.relation.referencesDavid Dowsett, Patrick A Kenny, and R Eugene Johnston. The physics of diagnostic imaging. CRC Press, 2006.spa
dc.relation.referencesGabriela Kramer-Marek and Jacek Capala. The role of nuclear medicine in modern therapy of cancer. Tumor Biology, 33(3):629–640, 2012.spa
dc.relation.referencesYuni K Dewaraja, Eric C Frey, George Sgouros, A Bertrand Brill, Peter Roberson, Pat B Zanzonico, and Michael Ljungberg. Mird pamphlet no. 23: quantitative spect for patient- specific 3-dimensional dosimetry in internal radionuclide therapy. Journal of Nuclear Medicine, 53(8):1310–1325, 2012.spa
dc.relation.referencesSimon R Cherry, James A Sorenson, and Michael E Phelps. Physics in nuclear medicine e-Book. Elsevier Health Sciences, 2012.spa
dc.relation.referencesHEALTH SAFETY GUIDELINE ENVIRONMENTAL. Radiation Safety Service: Iodine-131. University Of Michigan, 2020.spa
dc.relation.referencesHojjat Ahmadzadehfar, Hans-J ̈urgen Biersack, Leonard M Freeman, and Lionel S Zuckier. Clinical nuclear medicine. Springer Nature, 2020.spa
dc.relation.referencesGE Healthcare. Discovery nm/ct 670, 2011.spa
dc.relation.referencesHyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249, 2021.spa
dc.relation.referencesLuca Filippi, Agostino Chiaravalloti, Orazio Schillaci, Roberto Cianni, and Oreste Bagni. Theranostic approaches in nuclear medicine: Current status and future prospects. Expert review of medical devices, 17(4):331–343, 2020.spa
dc.relation.referencesNasim Vahidfar, Elisabeth Eppard, Saeed Farzanehfar, Anna Yordanova, Maryam Fallahpoor, and Hojjat Ahmadzadehfar. An impressive approach in nuclear medicine: Theranostics. PET clinics, 16(3):327–340, 2021.spa
dc.relation.referencesM D’Arienzo, M Cazzato, ML Cozzella, M Cox, Marco D’Andrea, A Fazio, A Fenwick, G Iaccarino, L Johansson, Lidia Strigari, et al. Gamma camera calibration and validation for quantitative spect imaging with 177lu. Applied Radiation and Isotopes, 112:156164, 2016.spa
dc.relation.referencesMichael Ljungberg, Anna Celler, Mark W Konijnenberg, Keith F Eckerman, Yuni K Dewaraja, and Katarina Sj ̈ogreen-Gleisner. Mird pamphlet no. 26: joint eanm/mird guidelines for quantitative 177lu spect applied for dosimetry of radiopharmaceutical therapy. Journal of nuclear medicine, 57(1):151–162, 2016.spa
dc.relation.referencesLidia Strigari, Mark Konijnenberg, Carlo Chiesa, Manuel Bardies, Yong Du, Katarina Sj ̈ogreen Gleisner, Michael Lassmann, and Glenn Flux. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. European journal of nuclear medicine and molecular imaging, 41(10):1976–1988, 2014.spa
dc.relation.referencesRichard L Wahl, George Sgouros, Amir Iravani, Heather Jacene, Daniel Pryma, Babak Saboury, Jacek Capala, and Stephen A Graves. Normal-tissue tolerance to radiopharmaceutical therapies, the knowns and the unknowns. Journal of Nuclear Medicine, 62 (Supplement 3):23S–35S, 2021.spa
dc.relation.referencesElse A Aalbersberg, Daphne de Vries-Huizing, Margot ET Tesselaar, Marcel PM Stokkel, and Michelle WJ Versleijen. Post-prrt scans: which scans to make and what to look for. Cancer Imaging, 22(1):1–8, 2022.spa
dc.relation.referencesAlejandro Perera Pintado, Leonel A Torres Aroche, Alex Vergara Gil, Juan F Batista Cu ́ellar, and Analis ́ıs Prats Capote. Spect/ct: principales aplicaciones en la medicina nuclear. Nucleus, (62):2–9, 2017.spa
dc.relation.referencesMasato Kobayashi, Hiroshi Wakabayashi, Daiki Kayano, Takahiro Konishi, Hironori Kojima, Hiroto Yoneyama, Koichi Okuda, Hiroyuki Tsushima, Masahisa Onoguchi, Keiichi Kawai, et al. Application of a medium-energy collimator for i-131 imaging after ablation treatment of differentiated thyroid cancer. Annals of nuclear medicine, 28(6):551–558, 2014.spa
dc.relation.referencesAnna Yordanova, Elisabeth Eppard, Stefan K ̈urpig, Ralph A Bundschuh, Stefan Schonberger, Maria Gonzalez-Carmona, Georg Feldmann, Hojjat Ahmadzadehfar, and Markus Essler. Theranostics in nuclear medicine practice. OncoTargets and therapy, 10:4821, 2017.spa
dc.relation.referencesHojjat Ahmadzadehfar. Targeted therapy for metastatic prostate cancer with radionuclides. Prostate Cancer–Leading–Edge Diagnostic Procedures and Treatments, pages 60–4, 2016.spa
dc.relation.referencesSerengulam V Govindan, Gary L Griffiths, Hans J Hansen, Ivan D Horak, and David M Goldenberg. Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies. Technology in cancer research & treatment, 4(4):375–391, 2005.spa
dc.relation.referencesAbdelhamid H Elgazzar. The pathophysiologic basis of nuclear medicine. Springer Science Business Media, 2006.spa
dc.relation.referencesAnna Wyszomirska. Iodine-131 for therapy of thyroid diseases. physical and biological basis. Nuclear Medicine Review, 15(2):120–123, 2012.spa
dc.relation.referencesLudwike WM van Kalmthout, Esm ́ee CA van der Sar, Arthur JAT Braat, Bart de Keizer, and Marnix GEH Lam. Lutetium-177-psma therapy for prostate cancer patients—a brief overview of the literature. Tijdschrift voor Urologie, 10(6):141–146, 2020.spa
dc.relation.referencesFerdinando Calabria and Orazio Schillaci. Radiopharmaceuticals. Springer, 2020.spa
dc.relation.referencesKenyoung Kim and Seong-Jang Kim. Lu-177-based peptide receptor radionuclide therapy for advanced neuroendocrine tumors. Nuclear medicine and molecular imaging, 52(3):208–215, 2018.spa
dc.relation.referencesRichard B Firestone, SY Chu, and Coral M Baglin. of the table of isotopes: 1998 update. In APS Division of Nuclear Physics Meeting Abstracts, pages BD–11, 1997.spa
dc.relation.referencesFF Knapp Jr, S Mirzadeh, AL Beets, and M Du. Production of therapeutic radioisotopes in the ornl high flux isotope reactor (hfir) for applications in nuclear medicine, oncologyand interventional cardiology. Journal of radioanalytical and nuclear chemistry, 263(2):503– 509, 2005.spa
dc.relation.referencesJeong Won Lee, Sang Mi Lee, Gwan Pyo Koh, and Dae Ho Lee. The comparison of 131i whole-body scans on the third and tenth day after 131i therapy in patients with well-differentiated thyroid cancer: preliminary report. Annals of nuclear medicine, 25(6): 439–446, 2011.spa
dc.relation.referencesAri Chong, Ho-Chun Song, Jung-Joon Min, Shin Young Jeong, Jung-Min Ha, Jahae Kim, Su-Ung Yoo, Jong-Ryool Oh, and Hee-Seung Bom. Improved detection of lung or bone metastases with an i-131 whole body scan on the 7th day after high-dose i-131 therapy in patients with thyroid cancer. Nuclear Medicine and Molecular Imaging, 44(4):273–281, 2010.spa
dc.relation.referencesAngela Spanu, Maria E Solinas, Francesca Chessa, Daniela Sanna, Susanna Nuvoli, and Giuseppe Madeddu. 131i spect/ct in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. Journal of Nuclear Medicine, 50(2):184–190, 2009.spa
dc.relation.referencesFrank Herbert Attix. Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 2008.spa
dc.relation.referencesJames E Turner. Atoms, radiation, and radiation protection. John Wiley & Sons, 2008.spa
dc.relation.referencesFaiz M Khan and John P Gibbons. Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins, 2014.spa
dc.relation.referencesulong Yan and Eduardo G Moros. Radiation oncology physics: A handbook for teachers and students, eb podgorsak (ed.), international atomic energy association, vienna, austria (2005), 657 pages, euro 65, paperbound, isbn 92-0-107304-6, 2006.spa
dc.relation.referencesMichael Ljungberg. Handbook of Nuclear Medicine and Molecular Imaging for Physicists: Instrumentation and Imaging Procedures, Volume I. CRC Press, 2022.spa
dc.relation.referencesSyed Naeem Ahmed. Physics and engineering of radiation detection. Academic Press, 2007.spa
dc.relation.referencesjennifer Prekeges. Nuclear Medicine Instrumentation (book). Jones & Bartlett Publishers, 2012.spa
dc.relation.referencesPhilippe P Bruyant. Analytic and iterative reconstruction algorithms in spect. Journal of Nuclear Medicine, 43(10):1343–1358, 2002.spa
dc.relation.referencesJames A Patton and Timothy G Turkington. Spect/ct physical principles and attenuation correction. Journal of nuclear medicine technology, 36(1):1–10, 2008.spa
dc.relation.referencesJerry L Prince and Jonathan M Links. Medical imaging signals and systems, volume 37. Pearson Prentice Hall Upper Saddle River, 2006.spa
dc.relation.referencesRichard L Van Metter. Handbook of medical imaging, volume 1. Physics and psychophysics, 2000.spa
dc.relation.referencesAlbert Rose. The sensitivity performance of the human eye on an absolute scale. JOSA, 38(2):196–208, 1948.spa
dc.relation.referencesLouis Sibille, Benjamin Chambert, Sandrine Alonso, Corinne Barrau, Emmanuel D’Estanque, Yassine Al Tabaa, Laurent Collombier, Christophe Demattei, Pierre-Olivier Kotzki, and Vincent Boudousq. Impact of the adaptive statistical iterative reconstruction technique on radiation dose and image quality in bone spect/ct. Journal of Nuclear Medicine, 57(7):1091–1095, 2016.spa
dc.relation.referencesJohannes Schindelin, Curtis T Rueden, Mark C Hiner, and Kevin W Eliceiri. The imagej ecosystem: An open platform for biomedical image analysis. Molecular reproduction and development, 82(7-8):518–529, 2015.spa
dc.relation.referencesMarcin Wojdyr. Fityk: a general-purpose peak fitting program. Journal of applied crystallography, 43(5-1):1126–1128, 2010.spa
dc.relation.referencesMansour M Alqahtani, Kathy P Willowson, Chris Constable, Roger Fulton, and Peter L Kench. Optimization of 99mtc wholebody spect/ct image quality: A phantom study. Journal of Applied Clinical Medical Physics, 23(4):e13528, 2022.spa
dc.relation.referencesSilje Kjærnes Øen, Lars Birger Aasheim, Live Eikenes, and Anna Maria Karlberg. Image quality and detectability in siemens biograph pet/mri and pet/ct systems—a phantom study. EJNMMI physics, 6:1–16, 2019.spa
dc.relation.referencesWesley Wooten and Tri Tran. Megp vs hegp collimator for i-131 thyroid scintigraphy, 2010.spa
dc.relation.referencesMasato Kobayashi, Hiroshi Wakabayashi, Daiki Kayano, Koudai Nishi, Masahisa Onoguchi, Keiichi Kawai, and Seigo Kinuya. Comparison between a high-and medium-energy collimator for na131i imaging of differentiated thyroid cancer, 2013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.decsPróstataspa
dc.subject.decsProstateeng
dc.subject.decsMedicina nuclearspa
dc.subject.decsNuclear Medicineeng
dc.subject.proposalTerapias metabólicasspa
dc.subject.proposalCalidad de la imagenspa
dc.subject.proposalSPECT/CTspa
dc.subject.proposalMedicina Nuclearspa
dc.subject.proposalRastreos post-terapiaspa
dc.subject.proposalMetabolic therapieseng
dc.subject.proposalImage qualityeng
dc.subject.proposalSPECT/CTeng
dc.subject.proposalNuclear Medicineeng
dc.subject.proposalPost-therapy Rastrayeng
dc.subject.proposalCollimatorseng
dc.subject.proposalColimadoresspa
dc.titleEvaluación de la calidad de la imagen de spect/ct en rastreos posterapia con 131I y 177Luspa
dc.title.translatedEvaluation of spect/ct image quality in post-therapy rastrays with 131i and 131I y 177Lueng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1049650033.2023.pdf
Tamaño:
4.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: