Physical and Mathematical properties of some Deformations of Heisenberg Algebra

dc.contributor.advisorReyes Villamil, Milton Armando
dc.contributor.authorJaramillo Quiceno, Julio César
dc.contributor.orcidJaramillo Qiuceno, Julio César [0000-0002-3518-6680]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Julio-Jaramillo?ev=hdr_xprf
dc.date.accessioned2025-09-02T15:56:22Z
dc.date.available2025-09-02T15:56:22Z
dc.date.issued2025-04
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractEn este trabajo se analizan las propiedades físicas y matemáticas de algunas deformaciones del álgebra de Heisenberg. Inicialmente, se definen las álgebras libres, seguidas de la versión clásica del álgebra de Heisenberg y algunas de sus versiones deformadas. A continuación, se abordan las propiedades algebraicas y combinatorias de estas versiones deformadas. Además, se presenta la conexión con el operador de Dirac y su relación con las versiones deformadas de algunas álgebras de Heisenberg, se exploran también las relaciones con el espacio de tensores ⊗2 , se propone un nuevo tipo de álgebra de Weyl y se mencionan otras posibles conexiones con diversas álgebras. Finalmente, se discuten algunas aplicaciones en física y se dejan abiertas las posibilidades para investigaciones futuras basadas en este trabajo. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, the physical and mathematical properties of some deformations of the Heisenberg algebra are analyzed. Initially, free algebras are defined, followed by the classical version of the Heisenberg algebra and some of its deformed versions. Next, the algebraic and combinatorial properties of these deformed versions are addressed. Additionally, the connection with the Dirac operator and its relationship with the deformed versions of certain Heisenberg algebras is presented. The relationships with the tensor space ⊗2 are also explored, a new type of Weyl algebra is proposed, and other possible connections with various algebras are mentioned. Finally, some applications in physics are discussed, and possibilities for future research based on this work are left openeng
dc.description.curricularareaFísica.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Físicas
dc.format.extentviii, 72 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88539
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.relation.referencesH. Ahmed, U. Bekbaev, and I. Rakhimov. Classification of two-dimensional left and right unital algebras over algebraically closed fields and R. Journal of Physics: Conferences Series, 1489, 2020. V
dc.relation.referencesM. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, 1964
dc.relation.referencesA. Barut and A. Bracken. Exact Solutions of the Heisenberg Equations and Zitterbewegung of the Electron in a Constant Uniform Magnetic Field. Aust. J. Phys, (35):353–370, 1982. 51
dc.relation.referencesK. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups. Birkäuser-Verlag, 2002. 3
dc.relation.referencesJ. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups. Mathematical Modelling: Theory and Applications, Springer Dordrecht, 2003. 2, 3
dc.relation.referencesV. Bardek and S. Meljanac. Deformed Heisenberg algebras, a Fock space representation and the Calogero model. European Physical Journal C, (17):539– 547, 2000
dc.relation.referencesJ. Bagger and H. Nicolai. Julius Erich Wess. Physics Today, 1(52), 2009
dc.relation.referencesM. Chaichian, R. Gonzalez, and C. Montonen. Statistics of q-oscillators, quons and relations to fractional statistics. Journal of Physics A: Mathematical General, 26:417–4034„ 1993
dc.relation.referencesB. Cerchiai, R. Hinterding, J. Madore, and J. Wess. A calculus based on a q-deformed Heisenberg algebra. European Physical Journal C, (3):547– 558, 1999. 50, 51
dc.relation.referencesX. Chen and M. Lu. Varieties of modules over the quantum plane. Journal of Algebra, 580:158–198, 2021. V, 9, 41
dc.relation.referencesP. M. Cohn. Free Rings and Their Relations, volume 2. Academic Press, London, 1985. 5
dc.relation.referencesB. Cooperstein. Advanced Linear Algebra. CRC Press, second edition, 2015. V, 11
dc.relation.referencesS. C. Coutinho. A Primer of Algebraic D-modules. Cambridge University Press. London Mathematical Society, Student Texts 33, 1995. 3
dc.relation.referencesP. A. M. Dirac. Fundamental Equations of Quantum Mechanics. Proceedings A Royal Society, 109(752):642–653, 1925. 6
dc.relation.referencesP. A. M. Dirac. The Principles of Quantum Mechanics. Clarendon Press, 1958. 48
dc.relation.referencesR. Díaz and E. Pariguan. On the q-meromorphic Weyl algebra. São Paulo Journal of Mathematical Sciences, 3(2):283–298, 2009. 3
dc.relation.referencesW. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions: Ring and Module-Theoretic Properties, Matrix and Gröbner Methods, and Applications, volume 28. Algebra and Applications. Springer, Cham, 2020
dc.relation.referencesW. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A. Martsinkovsky, editor, Functor Categories, Model Theory, Algebraic Analysis and Constructive Methods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings in Mathematics & Statistics, pages 45–116. Springer, Cham, 2024
dc.relation.referencesJ. Gaddis. Two-parameter analogs of the Heisenberg Enveloping Algebra. Communications in Algebra, 44(11):4637–4653., 2016. 11
dc.relation.referencesD. Galetti. A realization of the q-Deformed Harmonic Oscillator: Rogers-Szego and Stieltjes - Wigert Polynomials. Brazilian Journal of Physics, 33(1), 2003
dc.relation.referencesK. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noetherian Rings, volume 61 of London Mathematical Society Student Texts. Cambridge University Press, 2004
dc.relation.referencesK. R. Goodearl and E.S. Letzter. Prime Ideals in Skew and q-Skew Polynomial Rings, volume 109 of Memoirs of the American Mathematical Society 521. Providence, Rhode Island: American Mathematical Society, Second edition, 1994. 3
dc.relation.referencesK. R. Goodearl and R. B. Warfield. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press, 2004.
dc.relation.referencesA. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. Journal of Algebra, 176(3):861–881, 1995.
dc.relation.referencesB. Hall. Lie Groups, Lie Algebras, and Representations. Springer, 2010
dc.relation.referencesWerner Heisenberg. Uber quantentheoretische umdeutung kinematischer und mechanischer beziehungen. Zeitschrift für Physik, (33):873–879, 1925
dc.relation.referencesI. Volovich I. Y. Aref’eva. Quantum groups particles and non-archimedean geometry. Physics Letters B, 268(2):179–187, 1991
dc.relation.referencesC. Itzykson and J. B. Zuber. Quantum Field Theory. McGraw Hill Interational Book Company, 1980
dc.relation.referencesF. H. Jackson. On q-functions and a certain difference operator. Messenger of Mathematics, 38:57, 1909
dc.relation.referencesJ. C. Jaramillo. An approach to derivatives for non-monogenic functions. Revista Integración. Temas de matemáticas, 42(2):11–21, 2024.
dc.relation.referencesJ. C. Jaramillo. q-differential Operators and Derivations on the Quadratic Relativistic Invariant Algebras. Revista Momento, 69:116–135, 2024
dc.relation.referencesJ. C. Jaramillo. q-relativistic wave equation of the form i∂ q · ψq + mψ0 = Eψ. Revista Integración. Temas de matemáticas, 42(2):31 – 43, 2024
dc.relation.referencesJ. C. Jaramillo. q-Deformed Heisenberg Picture Equation. arXiv:2504.09829, pages 1 – 8, 2025
dc.relation.referencesJ. C. Jaramillo. q-Heisenberg Algebra in ⊗2 -Tensor Space. arXiv:2504.10741, pages 1 – 9, 2025
dc.relation.referencesV. A. Jategaonkar. A Multiplicative Analogue of the Weyl Algebra. Communications in Algebra, 12(14):1669–1688, 1984.
dc.relation.referencesA. Jannussis, G. Brodimas, and D. Sourlas. Remarks on the q-quantization. Lettere al Nuovo Cimento, 30:123–127, 1981
dc.relation.referencesJ. C. Jaramillo and P. Nechev. On the Deformed Algebras Applications to Quantum Physics. arXiv:2504.04606, pages 1 – 10, 2025
dc.relation.referencesD. A. Jordan. Finite-dimensional simple modules over certain iterated skew polynomial rings. Journal of Pure and Applied Algebra, 98(1):45–55, 1995
dc.relation.referencesD. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. Journal of Algebra, 228(1):311–346, 2000
dc.relation.referencesB. Zumino J. Wess. Covariant Differential Calculus on the quantum hyperplane. Nuclear Physics B - Proceedings Supplements, 18:302–312, 1991
dc.relation.referencesD. A. Jordan and I. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proceedings of the Edinburgh Mathematical Society, 39(3):461–472, 1996
dc.relation.referencesN. P. Kisby. Números de Stirling. Revista de Eduación Matemática, 13(2), 1998.
dc.relation.referencesM. V. Kuryshkin. Opérateurs quantiques généralisés de création et d’annihilation. Annales de la Fondation Louis de Broglie, 5:111–125, 1980
dc.relation.referencesA. Lavagno and G. Gervino. Quantum Mechanics in q-deformed calculus. Journal of Physics Conference series, 174, 2009.
dc.relation.referencesH. Li. Noncommutative Gröbner Bases and Filtered-Graded Transfer. Springer Verlag, 2000
dc.relation.referencesS. Lopes. Noncommutative Algebra and Representation Theory: Symmetry, Structure & Invariants. Communications in Mathematics, 32(3):63–117, 2024
dc.relation.referencesA. Lorek, A. Ruffing, and J. Wess. A q-Deformation of the Harmonic Oscillator. Z Phys C - Particles and Fields, (74):369–377, 1997
dc.relation.referencesA. Lavagno, A. Scarfone, and N. Swamy. Classical and quantum q-deformed physical systems. European Physical Journal C, (47):253–261, 2006
dc.relation.referencesY. I. Manin. Quantum Groups and Noncommutative Geometry. With a Contribution by Theo Raedschelders and Michel Van den Bergh. Centre de Recherches Mathématiques Short Courses. Springer Cham, Second edition, 2018
dc.relation.referencesA. Marinho, F. Brito, and C. Chesman. Thermal properties of a solid through q-deformed algebra. Physica A, (391):3424– 3434, 2012
dc.relation.referencesJ. C. McConnell and J. J. Pettit. Crossed Products and Multiplicative Analogues of Weyl Algebras. Journal of the London Mathematical Society, s2–38(1):47–55, 1988
dc.relation.referencesJ. McConnell and J. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies in Mathematics. American Mathematical Society, Second edition, 2001
dc.relation.referencesT. Mansour and M. Schork. Commutation Relations, Normal Ordering, and Stirling Numbers. CRC Press Francis and Taylor Group, 2016.
dc.relation.referencesY. Miao and Z. Xu. Investigation of non-hermitian Hamiltonians in the Heisenberg picture. Physics Letters A, (380):1805–1810., 2016
dc.relation.referencesZettili N. Quantum Mechanics: concepts and applications. John Wiley and Sons, Ltd, 2009.
dc.relation.referencesE. Noether and W. Schmeidler. Moduln in nichtkommutativen bereichen, insbesondere aus differential - und differenzenausdrücken. Math. Zeitschrift, 8:1–35, 1920
dc.relation.referencesM. Ngu, N. Vinh, N. Lan, L. Thanh, and N. Viet. First, Second Quantization and Q-deformed Harmonic Oscillator. Journal of Physics and Conferences Series, 2016
dc.relation.referencesL. Ouyang, J. Liu, and Y. Xiang. Σ-associated prime over extension rings. Journal of Mathemathics Reserarch Applied, 35(5):505–520, 2015
dc.relation.referencesO. Ore. Linear Equations in Non-commutative Fields. Annals of Mathematics, 32(3):463–477, 1931
dc.relation.referencesO. Ore. Theory of non-commutative polynomials. Annals of Mathematics Second Series, 34(3):480–508, 1933.
dc.relation.referencesNobel Prize Outreach. Werner heisenberg – biographical. Nobel Prize Website, 1932.
dc.relation.referencesNobel Prize Outreach. Paul dirac – biographical. Nobel Prize Website, 1933.
dc.relation.referencesR. Porter. Quantum Field Theory and Introduction to Chemical Physicist. World Scientific, 2021.
dc.relation.referencesM. Pimentel, T. Suzuki, and L. Tomazelli. QED3 radiative corrections in the Heisenberg picture. International Journal of Theoretical Physics, (33):2199 – 2206, 1999
dc.relation.referencesFacts from Functional Analysis. Pure and applied mathematics, 74(25):3–63, 1977
dc.relation.referencesG. Ramesh. Banach Algebra. 2013
dc.relation.referencesA. Reyes. Jacobson conjecture and skew PBW extensions. Revista Integración Temas de Matemáticas, 32(2):139–152, 2014.
dc.relation.referencesA. Reyes. Uniform dimension over skew PBW extensions. Rev. Colombiana Mat., 48(1):79–96, 2014.
dc.relation.referencesF. Razavinia and S. Lopes. Structure and isomorphisms of quantum generalized Heisenberg algebras. Journal of Algebra and Its Applications, 21(10), 2022
dc.relation.referencesA. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Springer Dordrecht, 1995
dc.relation.referencesE. Schrodinger. An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review., 28(6):1049–1070, 1926
dc.relation.referencesA. Schirrmacher. Quantum Groups, Quantum Spacetime, and Dirac Equation, volume 315. Springer Link, 1993.
dc.relation.referencesK. Schmüdgen. Operator Representations of a q-Heisenberg algebra. arXiv:math/9805131 [math.QA], 1:1–17, 1998
dc.relation.referencesL. Hellström S. D. Silvestrov. Commuting Elements in q-Deformed Heisenberg Algebra. World Scientific, 2000
dc.relation.referencesW. M. Seiler. Involution. The Formal Theory of Differential Equations and its Applications in Computer Algebra, volume 24 of Algorithms and Computation in Mathematics (AACIM). Springer Berlin, Heidelberg, 2010.
dc.relation.referencesA. Sinha. Dispersion relations, knots polynomials, and the q- deformed harmonic oscillator. Physical Review D, 106(126019), 2022.
dc.relation.referencesS. P. Smith. Quantum Groups: An Introduction and Survey for Ring Theorists. In S. Montgometry and L. Small, editors, Noncommutative Rings, volume 24 of Mathematical Science Research Institute Publications, pages 131–178. SringerVerlag, New York, 1992
dc.relation.referencesS. Stenberg. Lectures on Differential Geometry. Prentice Hall, 1972
dc.relation.referencesD. Tristand and F. A. Brito. Some electronic properties of metals through q−deformed algebras. Physica A: Statistical Mechanics and its Applications, 407(1):276–286, 2014
dc.relation.referencesJ.A. Tuszyński, J.L. Rubin, J. Meyer, and M. Kibler. Statistical mechanics of a q−deformed boson gas. Physics Letters A, 175:173–177, 1993
dc.relation.referencesI. O. Vakarchuk. On Dirac theory in the space with deformed Heisenberg algebra: exact solutions. Journal of Physics A: Mathematical and General, 38:7567–7576, 2005
dc.relation.referencesV.Kac and P. Cheung. Quantum Calculus. Springer, 2002
dc.relation.referencesV.Kac. Lectures 22- The Universal Enveloping Algebra. Scribe: Aaron Potechin, 2010
dc.relation.referencesV. S. Vladimirov. Equations of Mathematical Physics, volume 315. Marcel Dekker, INC, New York, 1971
dc.relation.referencesJ. Wess. q-Deformed Heisenberg Algebra. In JHEP Proceedings, pages 1–4, 1999. I
dc.relation.referencesJ. Wess. q-Deformed Heisenberg Algebra, volume 543. Springer, 2000.
dc.relation.referencesJ. Wess and J. Schwenk. A q-deformed quantum mechanical toy model. Phys. Lett. B., 291(3):273–277, 1992.
dc.relation.referencesJ Wess and B. Zumino. Covariant differential calculus on the quantum hyperplane. Nuclear Physics B Proceedings Supplements, 18(2):302–312, 1991
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.subject.ddc510 - Matemáticas
dc.subject.lembAlgebraspa
dc.subject.lembTeoria cuánticaspa
dc.subject.lembQuantum theoryeng
dc.subject.lembálgebra de Heisenbergspa
dc.subject.lembEspacios generalizadosspa
dc.subject.lembSpaces, generalizedeng
dc.subject.proposalálgebra de Heisenberg, propiedades combinatoriales, mecánica cuánticaspa
dc.subject.proposalHeisenberg algebra, combinatorial properties, quantum mechanicseng
dc.subject.wikidataHeisenberg algebraeng
dc.titlePhysical and Mathematical properties of some Deformations of Heisenberg Algebraeng
dc.title.translatedPropiedades Físicas y Matemáticas de algunas deformaciones del álgebra de Heisenberg
dc.typeTrabajo de grado - Maestría
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80188452-2025.pdf
Tamaño:
1.35 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: