Pore-scale analysis of the effect of salinity, type of brine (NaCl/KCl), and pressure on underground hydrogen storage (UHS)

dc.contributor.advisorCortés Correa, Farid Bernardo
dc.contributor.authorGallego Arias, Jhon Fredy
dc.contributor.googlescholarGallego Arias, Jhon Fredy [Jhon_Fredy_Gallego_Arias]spa
dc.contributor.orcidGallego Arias, Jhon Fredy [0009-0002-1154-6087]spa
dc.contributor.researchgroupFenómenos de Superficie Michael Polanyispa
dc.date.accessioned2024-05-15T20:32:50Z
dc.date.available2024-05-15T20:32:50Z
dc.date.issued2024
dc.descriptionIlustracionesspa
dc.description.abstractThe primary objective of this study is to explore Underground Hydrogen Storage (UHS) in H2/brine systems, considering different brines, salinities, and the influence of hydrogen flow. The research is structured into four key stages: i) Estimating the dimensionless numbers, especially the Capillary number for Hydrogen-Brine systems: This stage involves assessing the capillary number for drainage and imbibition stages variating the brine type, salinity, and pressure. The study found a nuanced modification in Capillary number concerning salinity and brine type, with no observed differences in the pressure range evaluated. Notably, the lowest values were obtained at the drainage stage for (NaCl+KCl) at 0.5, 2.0, and 4.0 M, registering 6.49 x 10-7, 6.19 x 10-7, and 5.81 x 10-7, respectively. ii) Hydrogen Drainage and Imbibition Experiments: Conducted in a micromodel chip to describe hydrogen displacement and trapping mechanisms. Initial hydrogen saturation after drainage was affected by salinity, type of brine, and pressure presenting the following increasing tendencies: (NaCl+KCl) < NaCl < KCl, 4.0 < 2.0 < 0.5 M, and 60 < 45 < 30 < 10 bar. iii) Quantification of Hydrogen Dissolution Kinetics and Contact Angle performed in an H2/brine/glass microfluidic system: Hydrogen dissolution during withdrawal depended on the type of ions, salinity, and pressure. Dissolved H2 increased with increasing diffusion coefficients of H2 in brines. H2 dissolution time was highly dependent on the competing interaction between four factors: diffusion capacity, average bubble size, capillary pressure, and system pressure. Contact angle measurements revealed slight changes with salinity and a pressure-dependent behavior. For the drainage stage, with an augment in pressure from 10 to 60 bar, KCl at salinities of 0.5, 2.0, and 4.0 M contact angles increased from 22°, 23°, and 23° to 27°, 29°, and 31°, respectively. While for the imbibition stage, the contact angles at salinities of 0.5, 2.0, and 4.0 M increased from 36°, 37°, and 39° to 44°, 46°, and 50°, respectively. iv) Hydrogen Hysteresis Cycles: Cyclic injections, particularly with KCl brines, were identified as the best scenario for cyclic hydrogen injection in saline aquifers, considering initial and residual hydrogen saturation, and H2 recovery. Key findings indicate that the study provides crucial experimental data to enhance the understanding of UHS in saline aquifers, offering insights into factors such as H2 storage, H2 recovery, dissolved H2, and dissolution times. This information is vital for assessing the feasibility of large-scale implementations of Underground Hydrogen Storage.eng
dc.description.abstractEl objetivo principal de este estudio es explorar el geo-almacenamiento de hidrógeno en sistemas de H2/salmuera, considerando diferentes salmueras, salinidades y la influencia del flujo de hidrógeno. La investigación se estructura en cuatro etapas: i) Estimación de números adimensionales, especialmente el número de capilar para los distintos sistemas Hidrógeno-Salmuera: esta etapa implica la evaluación del número capilar para las etapas de drenaje e imbibición al variar el tipo de salmuera, la salinidad y la presión. El estudio identifica una ligera modificación del número de capilar con respecto a la salinidad y el tipo de salmuera, sin variaciones en el rango de presión considerado. Cabe destacar que los valores más bajos se obtuvieron en la etapa de drenaje para (NaCl+KCl) a 0.5, 2.0 y 4.0 M, registrando 6.49 x 10-7, 6.19 x 10-7 y 5.81 x 10-7, respectivamente. ii) Experimentos de drenaje e imbibición de hidrógeno: realizados en una celda microfluidica para describir los mecanismos de entrampamiento y desplazamiento de hidrógeno. La saturación inicial de hidrógeno después del drenaje se vió afectada por la salinidad, el tipo de salmuera y la presión, presentando las siguientes tendencias crecientes: (NaCl+KCl) < NaCl < KCl, 4,0 < 2,0 < 0,5 M y 60 < 45 < 30 < 10 bar. iii) Cuantificación de la cinética de disolución del hidrógeno y el ángulo de contacto realizado en un sistema de microfluidica de H2/salmuera/vidrio: la disolución del hidrógeno durante la etapa de recobro dependió del tipo de iones, la salinidad y la presión. El H2 disuelto aumentó al aumentar los coeficientes de difusión del H2 en las salmueras. El tiempo de disolución del H2 dependía en gran medida de la interacción competitiva entre cuatro factores: capacidad de difusión, tamaño promedio de las burbujas, presión capilar y presión del sistema. Las mediciones del ángulo de contacto revelaron ligeros cambios con la salinidad y un comportamiento dependiente de la presión. Para la etapa de drenaje, con un aumento de presión de 10 a 60 bar, en los sistemas de KCl a salinidades de 0,5, 2,0 y 4,0 M el ángulo de contacto aumentó de 22°, 23° y 23° a 27°, 29° y 31°, respectivamente. Mientras que, para la etapa de imbibición, el ángulo de contacto en salinidades de 0.5, 2.0 y 4.0 M aumentó de 36°, 37° y 39° a 44°, 46° y 50°, respectivamente. iv) Ciclos de histéresis de hidrógeno: Las inyecciones cíclicas de H2, particularmente con salmueras de KCl, fueron identificadas como el mejor escenario para la inyección cíclica de hidrógeno en acuíferos salinos, considerando la saturación de hidrógeno inicial y residual y el recobro de H2. Los hallazgos clave indican que el estudio proporciona datos experimentales cruciales para mejorar la comprensión del geo-almacenamiento de hidrógeno en acuíferos salinos, ofreciendo información sobre factores como el almacenamiento de H2, la recuperación de H2, la cantidad de H2 disuelto y los tiempos de disolución. Esta información es vital para evaluar la viabilidad de implementaciones a gran escala de geo-almacenamiento de hidrógeno. (texto tomado de la fuente)spa
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaEnergy storage in the energy transition contextspa
dc.description.sponsorshipNorad (Norwegian Agency for Development Cooperation); Grupo de Investigación: Fenómenos de Superficie Michael Polanyispa
dc.format.extent110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86089
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] S. F. Cannone, A. Lanzini, and M. Santarelli, "A Review on CO2 Capture Technologies with Focus on CO2-Enhanced Methane Recovery from Hydrates," Energies, vol. 14, no. 2, doi: 10.3390/en14020387.spa
dc.relation.references[2] M. Lehtveer and A. Emanuelsson, "BECCS and DACCS as Negative Emission Providers in an Intermittent Electricity System: Why Levelized Cost of Carbon May Be a Misleading Measure for Policy Decisions," (in English), Frontiers in Climate, Original Research vol. 3, 2021-March-11 2021, doi: 10.3389/fclim.2021.647276.spa
dc.relation.references[3] X. Xu, Q. Zhou, and D. Yu, "The future of hydrogen energy: Bio-hydrogen production technology," International Journal of Hydrogen Energy, vol. 47, no. 79, pp. 33677-33698, 2022/09/15/ 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.07.261.spa
dc.relation.references[4] J. Yan, "Negative-emissions hydrogen energy," Nature Climate Change, vol. 8, no. 7, pp. 560-561, 2018/07/01 2018, doi: 10.1038/s41558-018-0215-9.spa
dc.relation.references[5] N. P. Brandon and Z. Kurban, "Clean energy and the hydrogen economy," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 375, no. 2098, p. 20160400, 2017, doi: 10.1098/rsta.2016.0400.spa
dc.relation.references[6] F. Dawood, M. Anda, and G. M. Shafiullah, "Hydrogen production for energy: An overview," International Journal of Hydrogen Energy, vol. 45, no. 7, pp. 3847-3869, 2020/02/07/ 2020, doi: https://doi.org/10.1016/j.ijhydene.2019.12.059.spa
dc.relation.references[7] A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, "On hydrogen and hydrogen energy strategies: I: current status and needs," Renewable and Sustainable Energy Reviews, vol. 9, no. 3, pp. 255-271, 2005/06/01/ 2005, doi: https://doi.org/10.1016/j.rser.2004.05.003.spa
dc.relation.references[8] M. Van Der Spek et al., "Perspective on the hydrogen economy as a pathway to reach net-zero CO<sub>2</sub>emissions in Europe," Energy &amp; Environmental Science, vol. 15, no. 3, pp. 1034-1077, 2022, doi: 10.1039/d1ee02118d.spa
dc.relation.references[9] T. Ahmad and D. Zhang, "A critical review of comparative global historical energy consumption and future demand: The story told so far," Energy Reports, vol. 6, pp. 1973-1991, 2020/11/01/ 2020, doi: https://doi.org/10.1016/j.egyr.2020.07.020.spa
dc.relation.references[10] A. D. Korberg et al., "On the feasibility of direct hydrogen utilisation in a fossilfree Europe," International Journal of Hydrogen Energy, vol. 48, no. 8, pp. 2877-2891, 2023/01/26/ 2023, doi: https://doi.org/10.1016/j.ijhydene.2022.10.170.spa
dc.relation.references[11] D. R. Simbeck, "- CO2 Capture and Storage—The Essential Bridge to the Hydrogen Economy," in Greenhouse Gas Control Technologies - 6th International Conference, J. Gale and Y. Kaya Eds. Oxford: Pergamon, 2003, pp. 25-30.spa
dc.relation.references[12] A. Ozawa and Y. Kudoh, "Assessing Uncertainties of Life-Cycle CO2 Emissions Using Hydrogen Energy for Power Generation," Energies, vol. 14, no. 21, doi: 10.3390/en14216943.spa
dc.relation.references[13] A. Ozawa, Y. Kudoh, N. Kitagawa, and R. Muramatsu, "Life cycle CO2 emissions from power generation using hydrogen energy carriers," International Journal of Hydrogen Energy, vol. 44, no. 21, pp. 11219-11232, 2019/04/23/ 2019, doi: https://doi.org/10.1016/j.ijhydene.2019.02.230.spa
dc.relation.references[14] A. Abdalla, S. Hossain, O. Nisfindy, A. Azad, M. Dawood, and A. Azad, "Hydrogen production, storage, transportation and key challenges with applications: A review," Energy Conversion and Management, vol. 165, pp. 602-627, 06/04 2018, doi: 10.1016/j.enconman.2018.03.088.spa
dc.relation.references[15] R. Kumar, A. Kumar, and A. Pal, "An overview of conventional and nonconventional hydrogen production methods," Materials Today: Proceedings, vol. 46, pp. 5353-5359, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matpr.2020.08.793.spa
dc.relation.references[16] M. Yu, K. Wang, and H. Vredenburg, "Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen," International Journal of Hydrogen Energy, vol. 46, no. 41, pp. 21261-21273, 2021/06/15/ 2021, doi: https://doi.org/10.1016/j.ijhydene.2021.04.016.spa
dc.relation.references[17] H. Barthelemy, M. Weber, and F. Barbier, "Hydrogen storage: Recent improvements and industrial perspectives," International Journal of Hydrogen Energy, vol. 42, no. 11, pp. 7254-7262, 2017/03/16/ 2017, doi: https://doi.org/10.1016/j.ijhydene.2016.03.178.spa
dc.relation.references[18] P. P. Edwards, V. L. Kuznetsov, and W. I. F. David, "Hydrogen energy," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1853, pp. 1043-1056, 2007/02/01 2007, doi: 10.1098/rsta.2006.1965.spa
dc.relation.references[19] C. Tarhan and M. A. Çil, "A study on hydrogen, the clean energy of the future: Hydrogen storage methods," Journal of Energy Storage, vol. 40, p. 102676, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.est.2021.102676.spa
dc.relation.references[20] A. Amid, D. Mignard, and M. Wilkinson, "Seasonal storage of hydrogen in a depleted natural gas reservoir," International Journal of Hydrogen Energy, vol. 41, no. 12, pp. 5549-5558, 2016/04/06/ 2016, doi: https://doi.org/10.1016/j.ijhydene.2016.02.036.spa
dc.relation.references[21] P. Gabrielli, A. Poluzzi, G. J. Kramer, C. Spiers, M. Mazzotti, and M. Gazzani, "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, vol. 121, p. 109629, 2020/04/01/ 2020, doi: https://doi.org/10.1016/j.rser.2019.109629.spa
dc.relation.references[22] G. Pan, W. Gu, Y. Lu, H. Qiu, S. Lu, and S. Yao, "Optimal Planning for Electricity-Hydrogen Integrated Energy System Considering Power to Hydrogen and Heat and Seasonal Storage," IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2662-2676, 2020, doi: 10.1109/TSTE.2020.2970078.spa
dc.relation.references[23] M. Reuß, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, and D. Stolten, "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, vol. 200, pp. 290-302, 2017/08/15/ 2017, doi: https://doi.org/10.1016/j.apenergy.2017.05.050.spa
dc.relation.references[24] O. J. Guerra, J. Zhang, J. Eichman, P. Denholm, J. Kurtz, and B.-M. Hodge, "The value of seasonal energy storage technologies for the integration of wind and solar power," Energy & Environmental Science, 10.1039/D0EE00771D vol. 13, no. 7, pp. 1909-1922, 2020, doi: 10.1039/D0EE00771D.spa
dc.relation.references[25] J. B. Taylor, J. E. A. Alderson, K. M. Kalyanam, A. B. Lyle, and L. A. Phillips, "Technical and economic assessment of methods for the storage of large quantities of hydrogen," International Journal of Hydrogen Energy, vol. 11, no. 1, pp. 5-22, 1986/01/01/ 1986, doi: https://doi.org/10.1016/0360-3199(86)90104-7.spa
dc.relation.references[26] C. Schaber, P. Mazza, and R. Hammerschlag, "Utility-Scale Storage of Renewable Energy," The Electricity Journal, vol. 17, no. 6, pp. 21-29, 2004/07/01/ 2004, doi: https://doi.org/10.1016/j.tej.2004.05.005.spa
dc.relation.references[27] W. Liu et al., "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, vol. 198, p. 117348, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.energy.2020.117348.spa
dc.relation.references[28] N. S. Muhammed, B. Haq, D. Al Shehri, A. Al-Ahmed, M. M. Rahman, and E. Zaman, "A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook," Energy Reports, vol. 8, pp. 461-499, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.egyr.2021.12.002.spa
dc.relation.references[29] D. Zivar, S. Kumar, and J. Foroozesh, "Underground hydrogen storage: A comprehensive review," International Journal of Hydrogen Energy, vol. 46, no. 45, pp. 23436-23462, 2021/07/01/ 2021, doi: https://doi.org/10.1016/j.ijhydene.2020.08.138.spa
dc.relation.references[30] B. Pan, X. Yin, Y. Ju, and S. Iglauer, "Underground hydrogen storage: Influencing parameters and future outlook," (in eng), no. 1873-3727 (Electronic), 2021.spa
dc.relation.references[31] A. Al-Yaseri, L. Esteban, A. Giwelli, J. Sarout, M. Lebedev, and M. Sarmadivaleh, "Initial and residual trapping of hydrogen and nitrogen in Fontainebleau sandstone using nuclear magnetic resonance core flooding," International Journal of Hydrogen Energy, vol. 47, no. 53, pp. 22482-22494, 2022/06/26/ 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.05.059.spa
dc.relation.references[32] M. Boon and H. Hajibeygi, "Experimental characterization of $${\text {H}}_2$$/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS)," Scientific Reports, vol. 12, no. 1, p. 14604, 2022/08/26 2022, doi: 10.1038/s41598-022-18759-8.spa
dc.relation.references[33] M. Lysyy, T. Føyen, E. B. Johannesen, M. Fernø, and G. Ersland, "Hydrogen Relative Permeability Hysteresis in Underground Storage," Geophysical Research Letters, vol. 49, no. 17, p. e2022GL100364, 2022/09/16 2022, doi: https://doi.org/10.1029/2022GL100364.spa
dc.relation.references[34] N. K. Jha, A. Al-Yaseri, M. Ghasemi, D. Al-Bayati, M. Lebedev, and M. Sarmadivaleh, "Pore scale investigation of hydrogen injection in sandstone via X-ray micro-tomography," International Journal of Hydrogen Energy, vol. 46, no. 70, pp. 34822-34829, 2021/10/11/ 2021, doi: https://doi.org/10.1016/j.ijhydene.2021.08.042.spa
dc.relation.references[35] M. Lysyy, G. Ersland, and M. Fernø, "Pore-scale dynamics for underground porous media hydrogen storage," Advances in Water Resources, vol. 163, p. 104167, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.advwatres.2022.104167.spa
dc.relation.references[36] M. Lysyy, N. Liu, C. M. Solstad, M. A. Fernø, and G. Ersland, "Microfluidic hydrogen storage capacity and residual trapping during cyclic injections: Implications for underground storage," International Journal of Hydrogen Energy, 2023/05/11/ 2023, doi: https://doi.org/10.1016/j.ijhydene.2023.04.253.spa
dc.relation.references[37] E. M. Thaysen et al., "Pore-scale imaging of hydrogen displacement and trapping in porous media," International Journal of Hydrogen Energy, vol. 48, no. 8, pp. 3091-3106, 2023/01/26/ 2023, doi: https://doi.org/10.1016/j.ijhydene.2022.10.153.spa
dc.relation.references[38] M. Bahrami, E. Izadi Amiri, D. Zivar, S. Ayatollahi, and H. Mahani, "Challenges in the simulation of underground hydrogen storage: A review of relative permeability and hysteresis in hydrogen-water system," Journal of Energy Storage, vol. 73, p. 108886, 2023/12/10/ 2023, doi: https://doi.org/10.1016/j.est.2023.108886.spa
dc.relation.references[39] L. Hashemi, M. Blunt, and H. Hajibeygi, "Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media," Scientific Reports, vol. 11, no. 1, p. 8348, 2021/04/16 2021, doi: 10.1038/s41598-021-87490-7.spa
dc.relation.references[40] M. Hosseini, J. Fahimpour, M. Ali, A. Keshavarz, and S. Iglauer, "H2−brine interfacial tension as a function of salinity, temperature, and pressure; implications for hydrogen geo-storage," Journal of Petroleum Science and Engineering, vol. 213, p. 110441, 2022/06/01/ 2022, doi: https://doi.org/10.1016/j.petrol.2022.110441.spa
dc.relation.references[41] J. Hou, S. Lin, M. Zhang, and W. Li, "Salinity, temperature and pressure effect on hydrogen wettability of carbonate rocks," International Journal of Hydrogen Energy, vol. 48, no. 30, pp. 11303-11311, 2023/04/08/ 2023, doi: https://doi.org/10.1016/j.ijhydene.2022.05.274.spa
dc.relation.references[42] L. Zeng, M. Hosseini, A. Keshavarz, S. Iglauer, Y. Lu, and Q. Xie, "Hydrogen wettability in carbonate reservoirs: Implication for underground hydrogen storage from geochemical perspective," International Journal of Hydrogen Energy, vol. 47, no. 60, pp. 25357-25366, 2022/07/15/ 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.05.289.spa
dc.relation.references[43] S. Chabab, P. Théveneau, C. Coquelet, J. Corvisier, and P. Paricaud, "Measurements and predictive models of high-pressure H2 solubility in brine (H2O+NaCl) for underground hydrogen storage application," International Journal of Hydrogen Energy, 2020.spa
dc.relation.references[44] T. E. Crozier and S. Yamamoto, "Solubility of hydrogen in water, sea water, and sodium chloride solutions," Journal of Chemical & Engineering Data, vol. 19, no. 3, pp. 242-244, 1974/07/01 1974, doi: 10.1021/je60062a007.spa
dc.relation.references[45] S. Harsha Bhimineni et al., "Machine-Learning-Assisted Investigation of the Diffusion of Hydrogen in Brine by Performing Molecular Dynamics Simulation," p. arXiv:2207.02966doi: 10.48550/arXiv.2207.02966.spa
dc.relation.references[46] N. I. Kolev, "Solubility of O2, N2, H2 and CO2 in water," in Multiphase Flow Dynamics 4: Turbulence, Gas Adsorption and Release, Diesel Fuel Properties, N. I. Kolev Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 209-239.spa
dc.relation.references[47] I. R. Krichevsky and J. S. Kasarnovsky, "Thermodynamical Calculations of Solubilities of Nitrogen and Hydrogen in Water at High Pressures," Journal of the American Chemical Society, vol. 57, pp. 2168-2171, 1935.spa
dc.relation.references[48] A. Lassin, M. Dymitrowska, and M. Azaroual, "Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clayrock in the context of a nuclear waste geological disposal," Physics and Chemistry of the Earth, Parts A/B/C, vol. 36, no. 17, pp. 1721-1728, 2011/01/01/ 2011, doi: https://doi.org/10.1016/j.pce.2011.07.092.spa
dc.relation.references[49] H. A. Pray, C. E. Schweickert, and B. H. Minnich, "Solubility of Hydrogen, Oxygen, Nitrogen, and Helium in Water at Elevated Temperatures," Industrial & Engineering Chemistry, vol. 44, no. 5, pp. 1146-1151, 1952/05/01 1952, doi: 10.1021/ie50509a058.spa
dc.relation.references[50] J. S. Roa Pinto, P. Bachaud, T. Fargetton, N. Ferrando, L. Jeannin, and F. Louvet, "Modeling phase equilibrium of hydrogen and natural gas in brines: Application to storage in salt caverns," (in English), International Journal of Hydrogen Energy, vol. 46, no. 5, pp. 4229-4240, 2021-01-19 2021, doi: 10.1016/j.ijhydene.2020.10.242.spa
dc.relation.references[51] W. A. van Rooijen et al., "Interfacial Tensions, Solubilities, and Transport Properties of the H2/H2O/NaCl System: A Molecular Simulation Study," Journal of Chemical & Engineering Data, 2023/01/11 2023, doi: 10.1021/acs.jced.2c00707.spa
dc.relation.references[52] S. Omrani et al., "Interfacial Tension–Temperature–Pressure–Salinity Relationship for the Hydrogen–Brine System under Reservoir Conditions: Integration of Molecular Dynamics and Machine Learning," Langmuir, vol. 39, no. 36, pp. 12680-12691, 2023/09/12 2023, doi: 10.1021/acs.langmuir.3c01424.spa
dc.relation.references[53] M. Newborough and G. Cooley, "Developments in the global hydrogen market: The spectrum of hydrogen colours," Fuel Cells Bulletin, vol. 2020, no. 11, pp. 16-22, 2020/11/01 2020, doi: 10.1016/S1464-2859(20)30546-0.spa
dc.relation.references[54] N. Sazali, "Emerging technologies by hydrogen: A review," International Journal of Hydrogen Energy, vol. 45, no. 38, pp. 18753-18771, 2020/07/31/ 2020, doi: https://doi.org/10.1016/j.ijhydene.2020.05.021.spa
dc.relation.references[55] J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, "Hydrogen energy, economy and storage: Review and recommendation," International Journal of Hydrogen Energy, vol. 44, no. 29, pp. 15072-15086, 2019/06/07/ 2019, doi: https://doi.org/10.1016/j.ijhydene.2019.04.068.spa
dc.relation.references[56] F. Zhang, P. Zhao, M. Niu, and J. Maddy, "The survey of key technologies in hydrogen energy storage," International Journal of Hydrogen Energy, vol. 41, no. 33, pp. 14535-14552, 2016/09/07/ 2016, doi: https://doi.org/10.1016/j.ijhydene.2016.05.293.spa
dc.relation.references[57] I. Iordache, D. Schitea, A. V. Gheorghe, and M. Iordache, "Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects," International Journal of Hydrogen Energy, vol. 39, no. 21, pp. 11071-11081, 2014/07/15/ 2014, doi: https://doi.org/10.1016/j.ijhydene.2014.05.067.spa
dc.relation.references[58] D. P. Broom, C. J. Webb, G. S. Fanourgakis, G. E. Froudakis, P. N. Trikalitis, and M. Hirscher, "Concepts for improving hydrogen storage in nanoporous materials," International Journal of Hydrogen Energy, vol. 44, no. 15, pp. 7768-7779, 2019/03/22/ 2019, doi: https://doi.org/10.1016/j.ijhydene.2019.01.224.spa
dc.relation.references[59] B. Chen et al., "9 - Metal oxides for hydrogen storage," in Metal Oxides in Energy Technologies, Y. Wu Ed.: Elsevier, 2018, pp. 251-274.spa
dc.relation.references[60] K. Edalati et al., "Design and synthesis of a magnesium alloy for room temperature hydrogen storage," Acta Materialia, vol. 149, pp. 88-96, 2018/05/01/ 2018, doi: https://doi.org/10.1016/j.actamat.2018.02.033.spa
dc.relation.references[61] G. E. Ioannatos and X. E. Verykios, "H2 storage on single- and multi-walled carbon nanotubes," International Journal of Hydrogen Energy, vol. 35, no. 2, pp. 622-628, 2010/01/01/ 2010, doi: https://doi.org/10.1016/j.ijhydene.2009.11.029.spa
dc.relation.references[62] Y. Kojima, "Hydrogen storage materials for hydrogen and energy carriers," International Journal of Hydrogen Energy, vol. 44, no. 33, pp. 18179-18192, 2019/07/05/ 2019, doi: https://doi.org/10.1016/j.ijhydene.2019.05.119.spa
dc.relation.references[63] Q. Lai et al., "How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks," Advanced Sustainable Systems, vol. 3, no. 9, p. 1900043, 2019/09/01 2019, doi: https://doi.org/10.1002/adsu.201900043.spa
dc.relation.references[64] M. B. Ley et al., "Complex hydrides for hydrogen storage – new perspectives," Materials Today, vol. 17, no. 3, pp. 122-128, 2014/04/01/ 2014, doi: https://doi.org/10.1016/j.mattod.2014.02.013.spa
dc.relation.references[65] M. Mohan, V. K. Sharma, E. A. Kumar, and V. Gayathri, "Hydrogen storage in carbon materials—A review," Energy Storage, vol. 1, no. 2, p. e35, 2019/04/01 2019, doi: https://doi.org/10.1002/est2.35.spa
dc.relation.references[66] S. Niaz, T. Manzoor, and A. H. Pandith, "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, vol. 50, pp. 457-469, 2015/10/01/ 2015, doi: https://doi.org/10.1016/j.rser.2015.05.011.spa
dc.relation.references[67] M. Petchmark and V. Ruangpornvisuti, "Hydrogen adsorption on c-ZrO2(111), t-ZrO2(101), and m-ZrO2(111) surfaces and their oxygen-vacancy defect for hydrogen sensing and storage: A first-principles investigation," Materials Letters, vol. 301, p. 130243, 2021/10/15/ 2021, doi: https://doi.org/10.1016/j.matlet.2021.130243.spa
dc.relation.references[68] N. A. A. Rusman and M. Dahari, "A review on the current progress of metal hydrides material for solid-state hydrogen storage applications," International Journal of Hydrogen Energy, vol. 41, no. 28, pp. 12108-12126, 2016/07/27/ 2016, doi: https://doi.org/10.1016/j.ijhydene.2016.05.244.spa
dc.relation.references[69] T. R. Somo, T. E. Mabokela, D. M. Teffu, T. K. Sekgobela, M. J. Hato, and K. D. Modibane, "Review on the effect of metal oxides as surface coatings on hydrogen storage properties of porous and non-porous materials," Chemical Papers, vol. 75, no. 6, pp. 2237-2251, 2021/06/01 2021, doi: 10.1007/s11696-020-01466-x.spa
dc.relation.references[70] L. Wang and R. T. Yang, "New sorbents for hydrogen storage by hydrogen spillover – a review," Energy & Environmental Science, 10.1039/B807957A vol. 1, no. 2, pp. 268-279, 2008, doi: 10.1039/B807957A.spa
dc.relation.references[71] T. Y. Wei, K. L. Lim, Y. S. Tseng, and S. L. I. Chan, "A review on the characterization of hydrogen in hydrogen storage materials," Renewable and Sustainable Energy Reviews, vol. 79, pp. 1122-1133, 2017/11/01/ 2017, doi: https://doi.org/10.1016/j.rser.2017.05.132.spa
dc.relation.references[72] A. Lemieux, K. Sharp, and A. Shkarupin, "Preliminary assessment of underground hydrogen storage sites in Ontario, Canada," International Journal of Hydrogen Energy, vol. 44, no. 29, pp. 15193-15204, 2019/06/07/ 2019, doi: https://doi.org/10.1016/j.ijhydene.2019.04.113.spa
dc.relation.references[73] J. Michalski et al., "Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition," International Journal of Hydrogen Energy, vol. 42, pp. 13427-13443, 2017.spa
dc.relation.references[74] M. S. Bruno and M. B. Dusseault, "Geomechanical Analysis of Pressure Limits for Thin Bedded Salt Caverns.," presented at the Solution Mining Research Institute, Spring 2002 Technical Meeting Banff, Alberta, Canada, April 29-30, 2002.spa
dc.relation.references[75] G. Han, M. S. Bruno, K. Lao, J. Young, and L. Dorfmann, "Gas Storage and Operations in Single-Bedded Salt Caverns: Stability Analyses," 2007.spa
dc.relation.references[76] R. Tarkowski and G. Czapowski, "Salt domes in Poland – Potential sites for hydrogen storage in caverns," International Journal of Hydrogen Energy, vol. 43, no. 46, pp. 21414-21427, 2018/11/15/ 2018, doi: https://doi.org/10.1016/j.ijhydene.2018.09.212.spa
dc.relation.references[77] R. L. Wallace, Z. Cai, H. Zhang, K. Zhang, and C. Guo, "Utility-scale subsurface hydrogen storage: UK perspectives and technology," International Journal of Hydrogen Energy, vol. 46, no. 49, pp. 25137-25159, 2021/07/16/ 2021, doi: https://doi.org/10.1016/j.ijhydene.2021.05.034.spa
dc.relation.references[78] A. Liebscher, J. Wackerl, and M. Streibel, "Geologic Storage of Hydrogen – Fundamentals, Processing, and Projects," in Hydrogen Science and Engineering : Materials, Processes, Systems and Technology, 2016, pp. 629-658.spa
dc.relation.references[79] P. Šmigáň, M. Greksák, J. Kozánková, F. Buzek, V. Onderka, and I. Wolf, "Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir," FEMS Microbiology Letters, vol. 73, no. 3, pp. 221-224, 1990/04/01/ 1990, doi: https://doi.org/10.1016/0378-1097(90)90733-7.spa
dc.relation.references[80] F. F. Craig, "The Reservoir Engineering aspects of waterflooding," 1971.spa
dc.relation.references[81] W. G. Anderson, "Wettability Literature Survey-Part 6: The Effects of Wettability on Waterflooding," Journal of Petroleum Technology, vol. 39, no. 12, pp. 1605-1622, 1987, doi: 10.2118/16471-PA.spa
dc.relation.references[82] W. G. Anderson, "Wettability Literature Survey Part 5: The Effects of Wettability on Relative Permeability," Journal of Petroleum Technology, vol. 39, no. 11, pp. 1453-1468, 1987, doi: 10.2118/16323-PA.spa
dc.relation.references[83] C. Afagwu, S. Alafnan, M. A. Mahmoud, and S. Patil, "Permeability model for shale and ultra-tight gas formations: Critical insights into the impact of dynamic adsorption," Energy Reports, vol. 7, pp. 3302-3316, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.egyr.2021.05.060.spa
dc.relation.references[84] B. Ma et al., "Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China," Geofluids, vol. 2020, p. 8856620, 2020/08/25 2020, doi: 10.1155/2020/8856620.spa
dc.relation.references[85] B. Pan et al., "Role of fluid density on quartz wettability," Journal of Petroleum Science and Engineering, vol. 172, pp. 511-516, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.petrol.2018.09.088.spa
dc.relation.references[86] N. Heinemann et al., "Enabling large-scale hydrogen storage in porous media – the scientific challenges," Energy & Environmental Science, 10.1039/D0EE03536J vol. 14, no. 2, pp. 853-864, 2021, doi: 10.1039/D0EE03536J.spa
dc.relation.references[87] A. Rabinovich and B. Cheng, "Equilibrium gravity segregation in porous media with capillary heterogeneity," Journal of Fluid Mechanics, vol. 890, 05/10 2020, doi: 10.1017/jfm.2020.133.spa
dc.relation.references[88] C. Chang, T. J. Kneafsey, Q. Zhou, M. Oostrom, and Y. Ju, "Scaling the impacts of pore-scale characteristics on unstable supercritical CO2-water drainage using a complete capillary number," International Journal of Greenhouse Gas Control, vol. 86, pp. 11-21, 2019/07/01/ 2019, doi: https://doi.org/10.1016/j.ijggc.2019.04.010.spa
dc.relation.references[89] G. M. Homsy, "Viscous Fingering in Porous Media," Annual Review of Fluid Mechanics, vol. 19, no. 1, pp. 271-311, 1987/01/01 1987, doi: 10.1146/annurev.fl.19.010187.001415.spa
dc.relation.references[90] Y. T. F. Chow, G. C. Maitland, and J. P. M. Trusler, "Interfacial tensions of (H2O + H2) and (H2O + CO2 + H2) systems at temperatures of (298–448) K and pressures up to 45 MPa," Fluid Phase Equilibria, vol. 475, pp. 37-44, 2018/11/15/ 2018, doi: https://doi.org/10.1016/j.fluid.2018.07.022.spa
dc.relation.references[91] H. Esfandyari, M. Sarmadivaleh, F. Esmaeilzadeh, M. Ali, S. Iglauer, and A. Keshavarz, "Experimental evaluation of rock mineralogy on hydrogen-wettability: Implications for hydrogen geo-storage," Journal of Energy Storage, vol. 52, p. 104866, 2022/08/01/ 2022, doi: https://doi.org/10.1016/j.est.2022.104866.spa
dc.relation.references[92] S. Higgs et al., "In-situ hydrogen wettability characterisation for underground hydrogen storage," International Journal of Hydrogen Energy, vol. 47, no. 26, pp. 13062-13075, 2022/03/26/ 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.02.022.spa
dc.relation.references[93] V. Mirchi, M. Dejam, and V. Alvarado, "Interfacial tension and contact angle measurements for hydrogen-methane mixtures/brine/oil-wet rocks at reservoir conditions," International Journal of Hydrogen Energy, vol. 47, no. 82, pp. 34963-34975, 2022/09/30/ 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.08.056.spa
dc.relation.references[94] D. R. Morris, L. Yang, F. Giraudeau, X. Sun, and F. R. Steward, "Henry's law constant for hydrogen in natural water and deuterium in heavy water," Physical Chemistry Chemical Physics, 10.1039/B007732L vol. 3, no. 6, pp. 1043-1046, 2001, doi: 10.1039/B007732L.spa
dc.relation.references[95] M. P. Pichler, "Assesment of Hydrogen Rock Interaction During Geological Storage of CH4-H2 Mixtures," 2013, doi: https://doi.org/10.3997/2214-4609.20131594.spa
dc.relation.references[96] J. E. Vivian and C. J. King, "Diffusivities of slightly soluble gases in water," AIChE Journal, vol. 10, no. 2, pp. 220-221, 1964/03/01 1964, doi: https://doi.org/10.1002/aic.690100217.spa
dc.relation.references[97] X. Zhao and H. Jin, "Investigation of hydrogen diffusion in supercritical water: A molecular dynamics simulation study," International Journal of Heat and Mass Transfer, vol. 133, pp. 718-728, 2019/04/01/ 2019, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.164.spa
dc.relation.references[98] S. Iglauer, M. Ali, and A. Keshavarz, "Hydrogen Wettability of Sandstone Reservoirs: Implications for Hydrogen Geo Storage," Geophysical Research Letters, vol. 48, p. e90814, 2021, doi: 10.1029/2020GL090814.spa
dc.relation.references[99] A. M. Alhammadi, A. AlRatrout, K. Singh, B. Bijeljic, and M. J. Blunt, "In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions," Scientific Reports, vol. 7, no. 1, p. 10753, 2017/09/07 2017, doi: 10.1038/s41598-017-10992-w.spa
dc.relation.references[100] S. Iglauer, M. Ali, and A. Keshavarz, "Hydrogen Wettability of Sandstone Reservoirs: Implications for Hydrogen Geo-Storage," Geophysical Research Letters, vol. 48, no. 3, p. e2020GL090814, 2021/02/16 2021, doi: https://doi.org/10.1029/2020GL090814.spa
dc.relation.references[101] A. Al-Yaseri and N. K. Jha, "On hydrogen wettability of basaltic rock," Journal of Petroleum Science and Engineering, vol. 200, p. 108387, 2021/05/01/ 2021, doi: https://doi.org/10.1016/j.petrol.2021.108387.spa
dc.relation.references[102] M. Hosseini, M. Ali, J. Fahimpour, A. Keshavarz, and S. Iglauer, "Basalt-H2-brine wettability at geo-storage conditions: Implication for hydrogen storage in basaltic formations," Journal of Energy Storage, vol. 52, p. 104745, 2022/08/01/ 2022, doi: https://doi.org/10.1016/j.est.2022.104745.spa
dc.relation.references[103] M. Hosseini, J. Fahimpour, M. Ali, A. Keshavarz, and S. Iglauer, "Hydrogen wettability of carbonate formations: Implications for hydrogen geo-storage," Journal of Colloid and Interface Science, vol. 614, pp. 256-266, 2022/05/15/ 2022, doi: https://doi.org/10.1016/j.jcis.2022.01.068.spa
dc.relation.references[104] M. Ali, N. K. Jha, A. Al-Yaseri, Y. Zhang, S. Iglauer, and M. Sarmadivaleh, "Hydrogen wettability of quartz substrates exposed to organic acids; Implications for hydrogen geo-storage in sandstone reservoirs," Journal of Petroleum Science and Engineering, vol. 207, p. 109081, 2021/12/01/ 2021, doi: https://doi.org/10.1016/j.petrol.2021.109081.spa
dc.relation.references[105] H. Al-Mukainah, A. Al-Yaseri, N. Yekeen, J. A. Hamad, and M. Mahmoud, "Wettability of shale–brine–H2 system and H2-brine interfacial tension for assessment of the sealing capacities of shale formations during underground hydrogen storage," Energy Reports, vol. 8, pp. 8830-8843, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.egyr.2022.07.004.spa
dc.relation.references[106] A. Al-Yaseri, N. Yekeen, M. Mahmoud, A. Kakati, Q. Xie, and A. Giwelli, "Thermodynamic characterization of H2-brine-shale wettability: Implications for hydrogen storage at subsurface," International Journal of Hydrogen Energy, vol. 47, no. 53, pp. 22510-22521, 2022/06/26/ 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.05.086.spa
dc.relation.references[107] A. Al-Yaseri, D. Wolff-Boenisch, C. A. Fauziah, and S. Iglauer, "Hydrogen wettability of clays: Implications for underground hydrogen storage," International Journal of Hydrogen Energy, vol. 46, no. 69, pp. 34356-34361, 2021/10/06/ 2021, doi: https://doi.org/10.1016/j.ijhydene.2021.07.226.spa
dc.relation.references[108] M. Hosseini et al., "Hydrogen-wettability alteration of Indiana limestone in the presence of organic acids and nanofluid," International Journal of Hydrogen Energy, 2023/06/15/ 2023, doi: https://doi.org/10.1016/j.ijhydene.2023.05.292.spa
dc.relation.references[109] M. Ali, N. Yekeen, N. Pal, A. Keshavarz, S. Iglauer, and H. Hoteit, "Influence of pressure, temperature and organic surface concentration on hydrogen wettability of caprock; implications for hydrogen geo-storage," Energy Reports, vol. 7, pp. 5988-5996, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.egyr.2021.09.016.spa
dc.relation.references[110] F. Alhamad et al., "Effect of Methyl Orange on the Hydrogen Wettability of Sandstone Formation for Enhancing the Potential of Underground Hydrogen Storage," Energy & Fuels, vol. 37, no. 8, pp. 6149-6157, 2023/04/20 2023, doi: 10.1021/acs.energyfuels.2c04293.spa
dc.relation.references[111] K. Liu et al., "A comprehensive pore structure study of the Bakken Shale with SANS, N2 adsorption and mercury intrusion," Fuel, vol. 245, pp. 274-285, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.fuel.2019.01.174.spa
dc.relation.references[112] T. Wang et al., "Molecular Simulation of CO2/CH4 Competitive Adsorption on Shale Kerogen for CO2 Sequestration and Enhanced Gas Recovery," The Journal of Physical Chemistry C, vol. 122, no. 30, pp. 17009-17018, 2018/08/02 2018, doi: 10.1021/acs.jpcc.8b02061.spa
dc.relation.references[113] Y. Zhang, M. Lebedev, M. Sarmadivaleh, A. Barifcani, and S. Iglauer, "Swelling-induced changes in coal microstructure due to supercritical CO2 injection," Geophysical Research Letters, vol. 43, no. 17, pp. 9077-9083, 2016/09/16 2016, doi: https://doi.org/10.1002/2016GL070654.spa
dc.relation.references[114] F. Bardelli et al., "Hydrogen uptake and diffusion in Callovo-Oxfordian clay rock for nuclear waste disposal technology," Applied Geochemistry, vol. 49, pp. 168-177, 2014/10/01/ 2014, doi: https://doi.org/10.1016/j.apgeochem.2014.06.019.spa
dc.relation.references[115] S. Iglauer, H. Abid, A. Al-Yaseri, and A. Keshavarz, "Hydrogen Adsorption on Sub‐Bituminous Coal: Implications for Hydrogen Geo‐Storage," Geophysical Research Letters, vol. 48, 05/24 2021, doi: 10.1029/2021GL092976.spa
dc.relation.references[116] A. Keshavarz, H. Abid, M. Ali, and S. Iglauer, "Hydrogen diffusion in coal: Implications for hydrogen geo-storage," (in eng), no. 1095-7103 (Electronic).spa
dc.relation.references[117] S. Iglauer, "CO(2)-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO(2) Geostorage," (in eng), Acc Chem Res, vol. 50, no. 5, pp. 1134-1142, May 16 2017, doi: 10.1021/acs.accounts.6b00602.spa
dc.relation.references[118] A. Yekta, J.-C. Manceau, M. Pichavant, and P. Audigane, "Determination of Hydrogen–Water Relative Permeability and Capillary Pressure in Sandstone: Application to Underground Hydrogen Injection in Sedimentary Formations," Transport in Porous Media, vol. 122, 03/01 2018, doi: 10.1007/s11242-018-1004-7.spa
dc.relation.references[119] N. Burnside and M. Naylor, "Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2," International Journal of Greenhouse Gas Control, vol. 23, pp. 1–11, 04/01 2014, doi: 10.1016/j.ijggc.2014.01.013.spa
dc.relation.references[120] S. Krevor, R. Pini, L. Zuo, and S. Benson, "Relative permeability and trapping of CO$$_{2}$$2 and water in sandstone rocks at reservoir conditions. Water Resour," Water Resour. Res., vol. 48, p. W02532, 02/01 2012, doi: 10.1029/2011wr010859.spa
dc.relation.references[121] B. Raeesi, N. R. Morrow, and G. Mason, "Capillary Pressure Hysteresis Behavior of Three Sandstones Measured with a Multistep Outflow–Inflow Apparatus," Vadose Zone Journal, vol. 13, no. 3, p. vzj2013.06.0097, 2014/03/01 2014, doi: https://doi.org/10.2136/vzj2013.06.0097.spa
dc.relation.references[122] B. Hagemann, "Numerical and Analytical Modeling of Gas Mixing and Bio-Reactive Transport during Underground Hydrogen Storage," 2018. [Online]. Available: https://dokumente.ub.tu-clausthal.de/receive/clausthal_mods_00000546 https://dokumente.ub.tu-clausthal.de/rsc/thumbnail/clausthal_mods_00000546.png https://doi.org/10.21268/20180116-085820spa
dc.relation.references[123] S. Berg and H. Ott, "Stability of CO2–brine immiscible displacement," International Journal of Greenhouse Gas Control, vol. 11, pp. 188-203, 11/01 2012, doi: 10.1016/j.ijggc.2012.07.001.spa
dc.relation.references[124] J. F. F. Craig, The Reservoir Engineering Aspects of Waterflooding. United States of America, 1971.spa
dc.relation.references[125] D. Zivar and P. Pourafshary, "A new approach for predicting oil recovery factor during immiscible CO2 flooding in sandstones using dimensionless numbers," Journal of Petroleum Exploration and Production Technology, vol. 9, 02/20 2019, doi: 10.1007/s13202-019-0630-0.spa
dc.relation.references[126] H. Ju, D. H. Lee, H.-C. Cho, K. S. Kim, S. Yoon, and S.-Y. Seo, "Application of Hydrophilic Silanol-Based Chemical Grout for Strengthening Damaged Reinforced Concrete Flexural Members," Materials, vol. 7, no. 6, pp. 4823-4844doi: 10.3390/ma7064823.spa
dc.relation.references[127] O. E. Medina et al., "Salinity influence on underground hydrogen storage: Insights from molecular dynamics and pore-scale analysis," International Journal of Hydrogen Energy, vol. 60, pp. 959-975, 2024/03/22/ 2024, doi: https://doi.org/10.1016/j.ijhydene.2024.02.073.spa
dc.relation.references[128] L. Zhou and Y. Zhou, "Determination of compressibility factor and fugacity coefficient of hydrogen in studies of adsorptive storage," International Journal of Hydrogen Energy, vol. 26, no. 6, pp. 597-601, 2001/06/01/ 2001, doi: https://doi.org/10.1016/S0360-3199(00)00123-3.spa
dc.relation.references[129] J. Holocher, F. Peeters, W. Aeschbach-Hertig, W. Kinzelbach, and R. Kipfer, "Kinetic Model of Gas Bubble Dissolution in Groundwater and Its Implications for the Dissolved Gas Composition," Environmental Science & Technology, vol. 37, no. 7, pp. 1337-1343, 2003/04/01 2003, doi: 10.1021/es025712z.spa
dc.relation.references[130] C. Aggelopoulos, M. Robin, and O. Vizika, "Interfacial tension between CO2 and brine (NaCl+ CaCl2) at elevated pressures and temperatures: The additive effect of different salts," Advances in Water Resources, vol. 34, no. 4, pp. 505-511, 2011.spa
dc.relation.references[131] S. Bachu and D. B. Bennion, "Dependence of CO2-brine interfacial tension on aquifer pressure, temperature and water salinity," Energy Procedia, vol. 1, no. 1, pp. 3157-3164, 2009.spa
dc.relation.references[132] M. Arif, A. Barifcani, and S. Iglauer, "Solid/CO2 and solid/water interfacial tensions as a function of pressure, temperature, salinity and mineral type: Implications for CO2-wettability and CO2 geo-storage," International Journal of Greenhouse Gas Control, vol. 53, pp. 263-273, 2016.spa
dc.relation.references[133] E. R. A. Lima, Specific ion effects on the interfacial tension of water/hydrocarbon systems (Brazilian Journal of Chemical Engineering). Brazilian Society of Chemical Engineering (in English), 2013.spa
dc.relation.references[134] K. Onda, E. Sada, T. Kobayashi, S. Kito, and K. Ito, "SALTING-OUT PARAMETERS OF GAS SOLUBILITY IN AQUEOUS SALT SOLUTIONS," Journal of Chemical Engineering of Japan, vol. 3, no. 1, pp. 18-24, 1970, doi: 10.1252/jcej.3.18.spa
dc.relation.references[135] C. N. Rowley and B. t. Roux, "The Solvation Structure of Na+ and K+ in Liquid Water Determined from High Level ab Initio Molecular Dynamics Simulations," Journal of Chemical Theory and Computation, vol. 8, no. 10, pp. 3526-3535, 2012/10/09 2012, doi: 10.1021/ct300091w.spa
dc.relation.references[136] M. Hosseini, J. Fahimpour, M. Ali, A. Keshavarz, and S. Iglauer, "H2− brine interfacial tension as a function of salinity, temperature, and pressure; implications for hydrogen geo-storage," Journal of Petroleum Science and Engineering, vol. 213, p. 110441, 2022.spa
dc.relation.references[137] C. R. Maliska, "ON THE PHYSICAL SIGNIFICANCE OF SOME DIMENSIONLESS NUMBERS USED IN HEAT TRANSFER AND FLUID FLOW," 2000.spa
dc.relation.references[138] N. R. Morrow and B. Songkran, "Effect of Viscous and Buoyancy Forces on Nonwetting Phase Trapping in Porous Media," in Surface Phenomena in Enhanced Oil Recovery, D. O. Shah Ed. Boston, MA: Springer US, 1981, pp. 387-411.spa
dc.relation.references[139] C. Zhang, M. Oostrom, T. W. Wietsma, J. W. Grate, and M. G. Warner, "Influence of Viscous and Capillary Forces on Immiscible Fluid Displacement: Pore-Scale Experimental Study in a Water-Wet Micromodel Demonstrating Viscous and Capillary Fingering," Energy & Fuels, vol. 25, no. 8, pp. 3493-3505, 2011/08/18 2011, doi: 10.1021/ef101732k.spa
dc.relation.references[140] H. Guo et al., "Proper use of capillary number in chemical flooding," Journal of Chemistry, vol. 2017, 2017.spa
dc.relation.references[141] P. Van der Hart, "A Pore-Scale Study of Underground Hydrogen Storage in Porous Media," Reservoir Physics Master, Department of Physics and Technology, University of Bergen, Bergen, 2021.spa
dc.relation.references[142] Zhang and Han, "Viscosity and density of water+ sodium chloride+ potassium chloride solutions at 298.15 K," Journal of Chemical & Engineering Data, vol. 41, no. 3, pp. 516-520, 1996.spa
dc.relation.references[143] R. Correia, J. Kestin, and H. Khalifa, "Measurement and Calculation of the Viscosity of Mixed Aqueous Solutions of NaCl and KCl in the Temperature Range 25 150° C and the Pressure Range 0–30 MPa," Berichte der Bunsengesellschaft für physikalische Chemie, vol. 83, no. 1, pp. 20-24, 1979.spa
dc.relation.references[144] J. Kestin, H. E. Khalifa, and R. J. Correia, "Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150 C and the pressure range 0.1–35 MPa," Journal of physical and chemical reference data, vol. 10, no. 1, pp. 71-88, 1981.spa
dc.relation.references[145] W. Deng, M. Balhoff, and M. B. Cardenas, "Influence of dynamic factors on nonwetting fluid snap‐off in pores," Water resources research, vol. 51, no. 11, pp. 9182-9189, 2015.spa
dc.relation.references[146] A. L. Herring et al., "Observations of nonwetting phase snap-off during drainage," Advances in Water Resources, vol. 121, pp. 32-43, 2018.spa
dc.relation.references[147] R. Lenormand, C. Zarcone, and A. M. Sarr, "Mechanisms of the displacement of one fluid by another in a network of capillary ducts," Journal of Fluid Mechanics, vol. 135, pp. 337 - 353, 1983.spa
dc.relation.references[148] A. Al-Quraishi and M. Khairy, "Pore pressure versus confining pressure and their effect on oil–water relative permeability curves," Journal of Petroleum Science and Engineering, vol. 48, no. 1, pp. 120-126, 2005/07/30/ 2005, doi: https://doi.org/10.1016/j.petrol.2005.04.006.spa
dc.relation.references[149] C. Lopez-Lazaro, P. Bachaud, I. Moretti, and N. Ferrando, "Predicting the phase behavior of hydrogen in NaCl brines by molecular simulation for geological applications," Bulletin de la Société Géologique de France, vol. 190, no. 1, p. 7, 2019, doi: 10.1051/bsgf/2019008.spa
dc.relation.references[150] P. S. Epstein and M. S. Plesset, "On the Stability of Gas Bubbles in Liquid‐Gas Solutions," The Journal of Chemical Physics, vol. 18, no. 11, pp. 1505-1509, 2004, doi: 10.1063/1.1747520.spa
dc.relation.references[151] R. Schäfer, C. Merten, and G. Eigenberger, "Bubble size distributions in a bubble column reactor under industrial conditions," Experimental Thermal and Fluid Science, vol. 26, no. 6, pp. 595-604, 2002/08/01/ 2002, doi: https://doi.org/10.1016/S0894-1777(02)00189-9.spa
dc.relation.references[152] R. H. Petrucci, W. S. Harwood, G. F. Herring, and J. D. Madura, General chemistry : principles and modern applications, 9th ed. Upper Saddle River: Pearson Prentice Hall Upper Saddle River (in eng), 2007.spa
dc.relation.references[153] S.-P. Juan José and Q.-P. Juan, "Thermodynamics and the Le Chatelier's principle," Revista Mexicana de Física, vol. 41, no. 1, pp. 128-138, 01/01 1994. [Online]. Available: https://rmf.smf.mx/ojs/index.php/rmf/article/view/2482.spa
dc.relation.references[154] E. F. Bazarkina, I. M. Chou, A. F. Goncharov, and N. N. Akinfiev, "The Behavior of H2 in Aqueous Fluids under High Temperature and Pressure," Elements, vol. 16, no. 1, pp. 33-38, 2020, doi: 10.2138/gselements.16.1.33.spa
dc.relation.references[155] A. L. Herring, "Evolution of Bentheimer Sandstone Wettability During Cyclic scCO2‐Brine Injections," (in English), Water resources research, vol. v. 57, no. no. 11, pp. pp. e2021WR030891--2021 v.57 no.11, 0000 2021, doi: 10.1029/2021WR030891.spa
dc.relation.references[156] A. L. Herring, L. Andersson, and D. Wildenschild, "Enhancing residual trapping of supercritical CO2 via cyclic injections," Geophysical Research Letters, vol. 43, pp. 9677 - 9685, 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembHidrógeno
dc.subject.proposalDisolución de Hidrógenospa
dc.subject.proposalDrenajespa
dc.subject.proposalEscala de Poro
dc.subject.proposalHumectabilidadspa
dc.subject.proposalImbibiciónspa
dc.subject.proposalGeo-almacenamiento de Hidrógenospa
dc.subject.proposalDrainageeng
dc.subject.proposalHydrogen Dissolutioneng
dc.subject.proposalImbibitioneng
dc.subject.proposalPore-scaleeng
dc.subject.proposalUnderground Hydrogen Storageeng
dc.subject.proposalWettabilityeng
dc.subject.wikidataAlmacenamiento de hidrógeno
dc.titlePore-scale analysis of the effect of salinity, type of brine (NaCl/KCl), and pressure on underground hydrogen storage (UHS)eng
dc.title.translatedAnálisis a escala de poro del efecto de la salinidad, el tipo de salmuera (NaCl/KCl) y la presión en el geo-almacenamiento de hidrógenospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleNorad project "CO2-EOR for CCUS in Colombia and Ecuador: Norwegian energy initiative"spa
oaire.fundernameFenómenos de Superficie Michael Polanyi - Norad Norwayspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017245544.2024.pdf
Tamaño:
13.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: