Patrones de depreciación de la flota de vehículos livianos para una compañía arrendadora que opera en el mercado colombiano

dc.contributor.advisorGómez Vélez, César Augusto
dc.contributor.authorBonilla Céspedes, Nelson Adolfo
dc.coverage.countryColombia
dc.date.accessioned2022-07-07T17:01:31Z
dc.date.available2022-07-07T17:01:31Z
dc.date.issued2022-04-01
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEn la industria del arrendamiento de vehículos el valor de venta del activo al finalizar el contrato es una variable esencial para determinar la viabilidad del alquiler y, en consecuencia, la sostenibilidad del negocio. En Colombia no se encuentran trabajos enfocados a explorar alternativas metodológicas que permitan explicar el precio de venta de los vehículos en función de los diferentes atributos del activo y variables de mercado. Este trabajo tiene como propósito explicar el precio de venta de un automóvil en función de sus características y variables de mercado, con lo cual se busca determinar las variables que tienen mayor importancia en la determinación del precio al que se comercializa el activo, como complemento al criterio experto. Para lograr esto se exploran y comparan diferentes alternativas metodológicas, tales como la regresión lineal múltiple, modelo aditivo generalizado, regresión lineal con cluster, perceptrón multicapa y árboles de regresión, utilizando como criterios de comparación el nivel de ajuste y el error cuadrático medio. Uno de los principales resultados es que, en términos del ajuste y el error, el perceptrón multicapa es el mejor modelo para explicar el precio de venta, sin embargo, al ser sus resultados poco intuitivos al momento de interpretarlos, pierde terreno frente al modelo de regresión lineal múltiple clásico. (Texto tomado de la fuente)spa
dc.description.abstractIn the vehicle leasing industry, the sale value of the asset at the end of the contract is an essential variable to determine the viability of the rental and, consequently, the sustainability of the business. In Colombia there are no works focused on exploring methodological alternatives that allow explaining the sale price of vehicles based on the different attributes of the asset and market variables. The purpose of this work is to explain the sale price of a car based on its characteristics and market variables, which seeks to determine the variables that are most important in determining the price at which the asset is marketed, as a complement to the expert judgement. To achieve this, different methodological alternatives are explored and compared, such as multiple linear regression, generalized additive model, linear regression with cluster, multilayer perceptron and regression trees, using the fit level and the mean square error as comparison criteria. One of the main results is that, in terms of adjustment and error, the multilayer perceptron is the best model to explain the sale price, however, since its results are not very intuitive when interpreting them, it loses ground compared to the model of classical multiple linear regression.eng
dc.description.curricularareaÁrea Curricular Estadísticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaModelos de regresiónspa
dc.format.extentxiv, 73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81690
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAggarwal, C. C., y cols. (2018). Neural networks and deep learning. Springer, 10 , 978-3.spa
dc.relation.referencesAndersson, H. (2005). The value of safety as revealed in the swedish car market: an application of the hedonic pricing approach. Journal of Risk and Uncertainty, 30 (3), 211-239.spa
dc.relation.referencesBaltas, G., y Saridakis, C. (2010). Measuring brand equity in the car market: a hedonic price analysis. Journal of the Operational Research Society, 61 (2), 284-293.spa
dc.relation.referencesBreiman, L., Friedman, J., Olshen, R., y Stone, C. (1984). Cart. Classi_cation and Regression Trees, Wadsworth and Brooks/Cole, Monterey, CA.spa
dc.relation.referencesCelik, Ö., y Osmano_glu, U. Ö. (2019). Prediction of the prices of second-hand cars. Avrupa Bilim ve Teknoloji Dergisi(16), 77-83.spa
dc.relation.referencesChiok, C. H. M. (2014). Modelos de regresión lineal con redes neuronales. En Anales científicos (Vol. 75, pp. 253-260).spa
dc.relation.referencesCorporation, G. M., Association, A. S., y Society, E. (1939). The dynamics of automobile demand: Based upon papers presented at the joint meeting of the american statistical association and the econometric society, in detroit, michigan, on december 27, 1938. New York: General Motors Corporation.spa
dc.relation.referencesCowling, K., y Cubbin, J. (1972). Hedonic price indexes for united kingdom cars. The Economic Journal, 82 (327), 963-978.spa
dc.relation.referencesCrawford, S. L. (1989). Extensions to the cart algorithm. International Journal of Man-Machine Studies, 31 (2), 197-217.spa
dc.relation.referencesde Toro, G. R. R. M., y cols. (2017). Un modelo hedónico de precios en línea de automóviles usados en argentina. Revista de Métodos Cuantitativos para la Economía y la Empresa, 24 , 25-53.spa
dc.relation.referencesDexheimer, V., y Linz, S. (2003). Hedonic methods of price measurement for used cars. Statistisches Bundesamt (Destatis).spa
dc.relation.referencesDress, K., Lessmann, S., y von Mettenheim, H.-J. (2018). Residual value forecasting using asymmetric cost functions. International Journal of Forecasting, 34 (4), 551-565.spa
dc.relation.referencesErdem, C., y S_ent urk, Ï. (2009). A hedonic analysis of used car prices in turkey. International Journal of Economic Perspectives, 3 (2), 141-149.spa
dc.relation.referencesEstivill-Castro, V. (2002). Why so many clustering algorithms: a position paper. ACM SIGKDD explorations newsletter , 4 (1), 65-75.spa
dc.relation.referencesGleue, C., Eilers, D., von Mettenheim, H.-J., y Breitner, M. H. (2017). Decision support for the automotive industry: forecasting residual values using arti_cial neural networks.spa
dc.relation.referencesHaan, M. A., y de Boer, H.-W. (2010). Has the internet eliminated regional price differences? evidence from the used car market. De Economist, 158 (4), 373-386.spa
dc.relation.referencesJain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern recognition letters, 31 (8), 651-666.spa
dc.relation.referencesJames, G., Witten, D., Hastie, T., y Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.spa
dc.relation.referencesKihm, A., y Vance, C. (2016). The determinants of equity transmission between the new and used car markets: a hedonic analysis. Journal of the Operational Research Society, 67 (10), 1250-1258.spa
dc.relation.referencesLadd, G. W., y Suvannunt, V. (1976). A model of consumer goods characteristics. American Journal of Agricultural Economics, 58 (3), 504-510.spa
dc.relation.referencesLancaster, K. J. (1966). A new approach to consumer theory. Journal of political economy, 74 (2), 132-157.spa
dc.relation.referencesLessmann, S., y VoB, S. (2017). Car resale price forecasting: The impact of regression method, private information, and heterogeneity on forecast accuracy. International Journal of Forecasting, 33 (4), 864-877.spa
dc.relation.referencesLoh, W.-Y. (2011). Classi_cation and regression trees. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1 (1), 14-23.spa
dc.relation.referencesLoh, W.-Y. (2014). Fifty years of classi_cation and regression trees. International Statistical Review, 82 (3), 329-348.spa
dc.relation.referencesMatas, A., y Raymond, J.-L. (2009). Hedonic prices for cars: an application to the spanish car market, 1981-2005. Applied Economics, 41 (22), 2887-2904.spa
dc.relation.referencesNau, K. (2012). An empirical analysis of residual value risk in automotive lease contracts. Dissertation, University of Hohenheim, Stuttgart, Germany.spa
dc.relation.referencesPeerun, S., Chummun, N. H., y Pudaruth, S. (2015). Predicting the price of second-hand cars using artificial neural networks. En The second international conference on data mining, internet computing, and big data (bigdata2015) (p. 17).spa
dc.relation.referencesPrado, S. M., y cols. (2009). The european used-car market at a glance: Hedonic resale Price valuation in automotive leasing industry. Economics Bulletin, 29 (3), 2086-2099.spa
dc.relation.referencesPrieto, M., y cols. (2015). Using a hedonic price model to test prospect theory assertions: The asymmetrical and nonlinear e_ect of reliability on used car prices. Journal of Retailing and Consumer Services, 22 , 206-212.spa
dc.relation.referencesReis, H. J., y Silva, J. S. (2006). Hedonic prices indexes for new passenger cars in portugal (1997-2001). Economic Modelling, 23 (6), 890-908.spa
dc.relation.referencesRequena-Silvente, F., y Walker, J. (2006). Calculating hedonic price indices with unobserved product attributes: an application to the uk car market. Economica, 73 (291), 509-532.spa
dc.relation.referencesRosen, S. (1974). Hedonic prices and implicit markets: product di_erentiation in pure competition. Journal of political economy, 82 (1), 34-55.spa
dc.relation.referencesSharma, S., y Sharma, S. (2017). Activation functions in neural networks. Towards Data Science, 6 (12), 310-316.spa
dc.relation.referencesSorkun, M. C. (2015). Secondhand car price estimation using arti cial neural network.spa
dc.relation.referencesStorchmann, K. (2004). On the depreciation of automobiles: an international comparison. Transportation, 31 (4), 371-408.spa
dc.relation.referencesTherneau, T., y Atkinson, B. (2011). port, r. Ripley, B, 3-1.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc330 - Economía::332 - Economía financieraspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembDepreciación
dc.subject.lembDepreciation methods
dc.subject.lembMétodos de depreciación
dc.subject.lembDepreciation
dc.subject.otherAutos de alquiler - Depreciación
dc.subject.proposalRegresión lineal múltiplespa
dc.subject.proposalModelo aditivo generalizadospa
dc.subject.proposalClusterspa
dc.subject.proposalModelo hedónico de preciosspa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalÁrboles de regresiónspa
dc.subject.proposalPrecio automóvilesspa
dc.subject.proposalMultiple linear regressioneng
dc.subject.proposalGeneralized additive modeleng
dc.subject.proposalHedonic price modeleng
dc.subject.proposalNeural networkseng
dc.subject.proposalRegression treeseng
dc.subject.proposalAutomobile priceeng
dc.titlePatrones de depreciación de la flota de vehículos livianos para una compañía arrendadora que opera en el mercado colombianospa
dc.title.translatedDepreciation patterns of the light vehicle fleet for a leasing company operating in the Colombian marketeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1118072096.2022.pdf
Tamaño:
1006.39 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: