Comparación de metodologías de optimización de sistemas mecánicos bajo incertidumbre

dc.contributor.advisorCortes Ramos, Henry Octaviospa
dc.contributor.authorCalvo Ocampo, Rodrigo Andresspa
dc.date.accessioned2021-02-12T16:27:26Zspa
dc.date.available2021-02-12T16:27:26Zspa
dc.date.issued2020-12-04spa
dc.description.abstractEn esta investigación se exploró el uso de diferentes formulaciones para la optimización bajo incertidumbre de sistemas mecánicos, con el fin de analizar su aplicabilidad y utilidad. Para ello, se abordan las principales formulaciones de optimización bajo incertidumbre consolidadas hasta la fecha en el área de optimización en ingeniería a saber: Optimización Basada en Confiabilidad (RBDO, Realibility Based Design Optimization), Optimización del Diseño Robusto (RDO, Robust Design Optimization), Optimización Bajo Riesgo (RO, Risk Based Design Optimization) y Optimización del diseño Robusto y basado en Confiabilidad (RBRDO, Reliability Based Robust Design Optimization). Adicionalmente se hizo una comparación de los resultados variando el algoritmo de optimización, para esto se usó: un algoritmo de búsqueda directa, un algoritmo basado en derivadas y un algoritmo genético. Se tomaron de la literatura ocho problemas (un problema matemático, un bastidor, un mecanismo, un sistema dinámico y cuatro problemas de estructuras). Para la formulación RDO los resultados muestran aplicabilidad alta en el 50% de los problemas y utilidad alta en el 63% de los problemas, destacando por su bajo costo computacional y robustez en la función objetivo. Para la formulación RBDO y RBRDO los resultados muestran una aplicabilidad alta en el 75% de los problemas y utilidad alta en el 50% de los problemas, destacando por su compromiso con el cumplimiento de la confiabilidad en las restricciones. Para la formulación RO los resultados muestran una aplicabilidad alta en el 38% de los problemas y utilidad alta en el 10% de los problemas, destacando por su equilibrio entre seguridad y economía (costo monetario).spa
dc.description.abstractIn this research, the use of different formulations for the optimization under uncertainty of mechanical systems (machines and structures) was explored, in order to analyze their applicability and utility. To this end, the main optimization formulations under uncertainty consolidated to date in the area of engineering optimization are addressed, namely: Reliability Based Optimization (RBDO, Reliability Based Design Optimization), Robust Design Optimization (RDO) and Low Risk Optimization (RO, Risk Based Design Optimization). Additionally, a comparison of the results was made by varying the optimization algorithm, for this we used: a direct search algorithm, one based on derivatives and a genetic algorithm. To obtain the results, eight problems were taken from the literature (a mathematical problem, a frame, a mechanism, a mechanical system and 4 trusses). For the RDO formulation the results show high applicability in 50% of the problems and high utility in 63% of the problems. This stands out for its low computational cost and robustness in the objective function. For the RBDO formulation, the results show high applicability in 75% of the problems and high utility in 50% of the problems. It stands out for its commitment to complying with the reliability of the restrictions. For the RO formulation, the results show a high applicability in 38% of the problems and a high utility in 10% of the problems. This stands out for its balance between security and economy (monetary cost).spa
dc.description.additionalLínea de Investigación: Optimización en ingenieríaspa
dc.description.degreelevelMaestríaspa
dc.format.extent1 recurso en línea (129 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79212
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesL. Duan, G. Li, A. Cheng, G. Sun, and K. Song, “Multi-objective system reliability-based optimization method for design of a fully parametric concept car body,” Eng. Optim., vol. 49, no. 7, pp. 1247–1263, 2017, doi: 10.1080/0305215X.2016.1241780.spa
dc.relation.referencesS. S. Rane, A. Srividya, and A. K. Verma, “Multi-objective reliability based design optimization and risk analysis of motorcycle frame with strength based failure limit,” Int. J. Syst. Assur. Eng. Manag., vol. 3, no. 1, pp. 33–39, 2012, doi: 10.1007/s13198-012-0080-2.spa
dc.relation.referencesW. Yao, X. Chen, W. Luo, M. Van Tooren, and J. Guo, “Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles,” Prog. Aerosp. Sci., vol. 47, no. 6, pp. 450–479, 2011, doi: 10.1016/j.paerosci.2011.05.001.spa
dc.relation.referencesX. Lv, X. Gu, L. He, D. Zhou, and W. Liu, “Reliability design optimization of vehicle front-end structure for pedestrian lower extremity protection under multiple impact cases,” Thin-Walled Struct., vol. 94, pp. 500–511, 2015, doi: 10.1016/j.tws.2015.05.014spa
dc.relation.referencesB. D. Youn, K. K. Choi, R.-J. Yang, and L. Gu, “Reliability-based design optimization for crashworthiness of vehicle side impact,” Struct. Multidiscip. Optim., vol. 26, no. 3–4, pp. 272–283, 2004, doi: 10.1007/s00158-003-0345-0.spa
dc.relation.referencesX. Gu, J. Lu, and H. Wang, “Reliability-based design optimization for vehicle occupant protection system based on ensemble of metamodels,” Struct. Multidiscip. Optim., vol. 51, no. 2, pp. 533–546, 2015, doi: 10.1007/s00158-014-1150-7.spa
dc.relation.referencesA. T. Beck, W. J. S. Gomes, R. H. Lopez, and L. F. F. Miguel, “A comparison between robust and risk-based optimization under uncertainty,” Struct. Multidiscip. Optim., vol. 52, no. 3, pp. 479–492, 2015, doi: 10.1007/s00158-015-1253-9.spa
dc.relation.referencesY. Tsompanakis, N. D. Lagaros, and M. Papadrakakis, Structural design optimization considering uncertainties (Structures and Infrastructures 1), vol. 1. London: Taylor & Francis, 2008.spa
dc.relation.referencesS. M. J. Spence and M. Gioffré, “Efficient algorithms for the reliability optimization of tall buildings,” J. Wind Eng. Ind. Aerodyn., vol. 99, no. 6–7, pp. 691–699, 2011, doi: 10.1016/j.jweia.2011.01.017.spa
dc.relation.referencesM. Schelbergen, “Structural Optimization of Multi-Megawatt, Offshore Vertical Axis Wind Turbine Rotors,” Am. Inst. Aeronaut. Astronaut., pp. 1–19, 2013, doi: 10.2514/6.2014-1082.spa
dc.relation.referencesA. T. Beck and W. J. D. S. Gomes, “A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty,” Probabilistic Eng. Mech., vol. 28, pp. 18–29, 2012, doi: 10.1016/j.probengmech.2011.08.007.spa
dc.relation.referencesR. Reuven Y., Simulation and the Monte Carlo method, 1st ed. New York: John Wiley & Sons., 1981.spa
dc.relation.referencesS. K. Au and J. L. Beck, “Estimation of small failure probabilities in high dimensions by subset simulation,” Probabilistic Eng. Mech., vol. 16, no. 4, pp. 263–277, 2001, doi: 10.1016/S0266-8920(01)00019-4.spa
dc.relation.referencesV. Dubourg, B. Sudret, and J. M. Bourinet, “Reliability-based design optimization using kriging surrogates and subset simulation,” Struct. Multidiscip. Optim., vol. 44, no. 5, pp. 673–690, 2011, doi: 10.1007/s00158-011-0653-8.spa
dc.relation.referencesB. Sudret, “Meta-models for structural reliability and uncertainty quantification,” Fifth Asian-Pacific Symp. Struct. Reliab. its Appl., pp. 53–76, 2012.spa
dc.relation.referencesH. O. Cortés-Ramos, R. A. Calvo-Ocampo, and C. J. Camacho-López, “Comparación de algoritmos para optimización estructural basada en confiabilidad.,” Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., pp. 1–9, 2017, doi: DOI: 10.23967/j.rimni.2017.7.003.spa
dc.relation.referencesR. J.-B. Wets, “Chapter VIII Stochastic programming,” Handbooks Oper. Res. Manag. Sci., vol. 1, pp. 573–629, 1989, doi: 10.1016/S0927-0507(89)01009-1.spa
dc.relation.referencesG. C. Marano, R. Greco, and S. Sgobba, “A comparison between different robust optimum design approaches: Application to tuned mass dampers,” Probabilistic Eng. Mech., vol. 25, no. 1, pp. 108–118, 2010, doi: 10.1016/j.probengmech.2009.08.004.spa
dc.relation.referencesB. K. Roy, S. Chakraborty, and S. K. Mihsra, “Robust optimum design of base isolation system in seismic vibration control of structures under uncertain bounded system parameters,” JVC/Journal Vib. Control, vol. 20, no. 5, pp. 786–800, 2014, doi: 10.1177/1077546312466577.spa
dc.relation.referencesW. Wang, S. Caro, F. Bennis, R. Soto, and B. Crawford, “Multi-Objective Robust Optimization Using a Postoptimality Sensitivity Analysis Technique: Application to a Wind Turbine Design,” J. Mech. Des., vol. 137, no. 1, p. 011403, 2015, doi: 10.1115/1.4028755.spa
dc.relation.referencesG. C. Marano, S. Sgobba, R. Greco, and M. Mezzina, “Robust optimum design of tuned mass dampers devices in random vibrations mitigation,” J. Sound Vib., vol. 313, no. 3–5, pp. 472–492, 2008, doi: 10.1016/j.jsv.2007.12.020.spa
dc.relation.referencesR. H. ; Lopez and A. T. Beck, “Reliability-based design optimization strategies based on FORM: a review,” J. Brazilian Soc. Mech. Sci. Eng., vol. XXXIV, no. 4, pp. 506–514, 2012, doi: 10.1590/S1678-58782012000400012.spa
dc.relation.referencesL. L. Corso, H. M. Gomes, G. P. Mezzomo, and A. Molter, “Otimização baseada em confiabilidade para uma célula de carga multiaxial utilizando algoritmos genéticos,” Rev. int. métodos numér. cálc. diseño ing., vol. 32, no. 4, pp. 221–229, 2016, doi: 10.1016/j.rimni.2015.07.002.spa
dc.relation.referencesA. T. Beck and C. C. Verzenhassi, “Risk optimization of a steel frame communications tower subject to tornado winds,” Lat. Am. J. Solids Struct., vol. 5, no. 3, pp. 187–203, 2008.spa
dc.relation.referencesW. J. S. Gomes and A. T. Beck, “A Novel Approach to Efficient Risk-Based Optimization,” Vulnerability, Uncertainty, Risk, pp. 155–164, 2014, doi: 10.1061/9780784413609.016.spa
dc.relation.referencesH. Hu and G. Li, “Granular Risk-Based Design Optimization,” vol. 23, no. 2, pp. 340–353, 2015.spa
dc.relation.referencesA. T. Beck, W. J. S. Gomes, and F. A. V. Bazan, “on the Robustness of Structural Risk Optimization With Respect To Epistemic Uncertainties,” Int. J. Uncertain. Quantif., vol. 2, no. 1, pp. 1–20, 2012, doi: 10.1615//Int.J.UncertaintyQuantification.2011003415.spa
dc.relation.referencesR. Ghanem, D. Higdon, and H. Owhadi, Handbook of Uncertainty Quantification. 2016.spa
dc.relation.referencesE. Zio and N. Pedroni, “Risk Analysis - Uncertainty Characterization in Risk Analysis for Decision- Making Practice,” p. 50, 2012, [Online]. Available: http://www.foncsi.org/fr/.spa
dc.relation.referencesT. J. Sullivan, Introduction to Uncertainty, vol. 8. Springer, 2011.spa
dc.relation.referencesH. J. Zimmermann, “Application-oriented view of modeling uncertainty,” Eur. J. Oper. Res., vol. 122, no. 2, pp. 190–198, 2000, doi: 10.1016/S0377-2217(99)00228-3.spa
dc.relation.referencesN. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica, vol. 4, no. April, pp. 373–395, 1984, doi: https://doi.org/10.1007/BF02579150.spa
dc.relation.referencesP. Taylor, M. Street, L. Wt, and D. Kadelka, “Mathematische Operationsforschung und Statistik . Series Optimization : A Journal of Mathematical Programming and Operations Research On inventory problems with arbitrary cost pattern , demand pattern and demand distribution,” no. August 2013, pp. 37–41, 2007.spa
dc.relation.referencesB. N. Pshenichny and Y. M. Danilin, Numerical Methods in Extremal Problems. Moscow : Mir Publishers, 1978.spa
dc.relation.referencesA. D. Belegundu and C. Tirupathi R, OPTIMIZATION CONCEPTS AND APPLICATIONS IN ENGINEERING, vol. 53, no. 9. 2013.spa
dc.relation.referencesR. H. Byrd, J. C. Gilbert, and J. Nocedal, “A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming,” Math. Program. Ser. B, vol. 89, no. 1, pp. 149–185, 2000, doi: 10.1007/PL00011391.spa
dc.relation.referencesR. Hooke and T. A. Jeeves, “‘Direct Search’’’ Solution of Numerical and Statistical Problems,’” J. ACM, vol. 8, no. 2, pp. 212–229, 1961, doi: 10.1145/321062.321069.spa
dc.relation.referencesD. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed. New York: Addison-Wesley Publishing Company, 1989.spa
dc.relation.referencesC. Mathworks, “Datafeed Toolbox TM User ’ s Guide R 2019 a,” 2019.spa
dc.relation.referencesN. V. Sahinidis, “Optimization under uncertainty: State-of-the-art and opportunities,” Comput. Chem. Eng., vol. 28, no. 6–7, pp. 971–983, 2004, doi: 10.1016/j.compchemeng.2003.09.017.spa
dc.relation.referencesK. L. Tsui, “Robust design optimization for multiple characteristic problems,” Int. J. Prod. Res., vol. 37, no. 2, pp. 433–445, 1999, doi: 10.1080/002075499191850.spa
dc.relation.referencesH. G. Beyer and B. Sendhoff, “Robust optimization - A comprehensive survey,” Comput. Methods Appl. Mech. Eng., vol. 196, no. 33–34, pp. 3190–3218, 2007, doi: 10.1016/j.cma.2007.03.003.spa
dc.relation.referencesA. D. Belegundu and S. Zhang, “Robustness of Design Through inimum Sensitivity,” J. Mech. Des., vol. 114, no. April 1990, pp. 213–217, 2016, doi: doi:10.1115/1.2916933.spa
dc.relation.referencesV. Rathod, O. P. Yadav, A. Rathore, and R. Jain, “Reliability-based robust design optimization: A comparative study,” IEEE Int. Conf. Ind. Eng. Eng. Manag., pp. 1558–1563, 2011, doi: 10.1109/IEEM.2011.6118179.spa
dc.relation.referencesS. Wang, Q. Li, and G. J. Savage, “Reliability-based robust design optimization of structures considering uncertainty in design variables,” Math. Probl. Eng., vol. 2015, 2015, doi: 10.1155/2015/280940.spa
dc.relation.referencesA. Forouzandeh Shahraki and R. Noorossana, “Reliability-based robust design optimization: A general methodology using genetic algorithm,” Comput. Ind. Eng., vol. 74, no. 1, pp. 199–207, 2014, doi: 10.1016/j.cie.2014.05.013.spa
dc.relation.referencesV. Dubourg, B. Sudret, and B. J.-M., “Reliability-based design optimization using kriging surrogates and subset simulation,” Struct. Multisciplinary Optim., 2011.spa
dc.relation.referencesE. Nikolaidis and R. Burdisso, “Reliability based optimization: A safety index approach,” Comput. Struct., vol. 28, no. 6, pp. 781–788, 1988, doi: 10.1016/0045-7949(88)90418-X.spa
dc.relation.referencesR. Rackwitz, “Optimization and risk acceptability based on the life quality index,” Struct. Saf., vol. 24, no. 2–4, pp. 297–331, 2002, doi: 10.1016/S0167-4730(02)00029-2.spa
dc.relation.referencesS.-K. Choi, R. V. . Grandhi, and R. A. Canfield, Reliability-based Structural Design. London: Springer, 2007.spa
dc.relation.referencesA. M. Hasofer and N. C. Lind, “An Exact and Invariant First-order Reliability Format,” J. Eng. Mech. Div., pp. 111–121, 1973.spa
dc.relation.referencesC. A. Cornell, “A probability-based structural code,” J. Am. Concr. Inst., vol. 66, no. 12, pp. 974–985, 1969.spa
dc.relation.referencesY. Aoues and A. Chateauneuf, “Benchmark study of numerical methods for reliability-based design optimization,” Struct. Multidiscip. Optim., vol. 41, no. 2, pp. 277–294, 2009, doi: 10.1007/s00158-009-0412-2.spa
dc.relation.referencesA. M. Hasofer and N. C. Lind, “Exact and Invariant Second-Moment Code Format,” J. Eng. Mech. Div., vol. 100, no. 1, pp. 111–121, 1974.spa
dc.relation.referencesO. Ditlevsen and P. Bjerager, “Methods of Structural Systems Reliability,” Struct. Saf., vol. 3, no. 3, pp. 195–229, 1986, doi: 10.1016/0167-4730(86)90004-4.spa
dc.relation.referencesO. Ditlevsen, “Life quality index revisited,” Struct. Saf., vol. 26, no. 4, pp. 443–451, 2004, doi: 10.1016/j.strusafe.2004.03.003.spa
dc.relation.referencesV. Papadopoulos and N. D. Lagaros, “Vulnerability-based robust design optimization of imperfect shell structures,” Struct. Saf., vol. 31, no. 6, pp. 475–482, 2009, doi: 10.1016/j.strusafe.2009.06.006.spa
dc.relation.referencesK. L. Tsui, “An Overview of Taguchi Method and Newly Developed Statistical Methods for Robust Design,” IIE Trans. (Institute Ind. Eng., vol. 24, no. 5, pp. 44–57, 1992, doi: 10.1080/07408179208964244.spa
dc.relation.referencesN. Lelièvre, P. Beaurepaire, C. Mattrand, N. Gayton, and A. Otsmane, “On the consideration of uncertainty in design: optimization - reliability - robustness,” Struct. Multidiscip. Optim., vol. 54, no. 6, pp. 1423–1437, 2016, doi: 10.1007/s00158-016-1556-5.spa
dc.relation.referencesE. E. Kostandyan and J. D. Sorensen, “Reliability assessment of IGBT modules modeled as systems with correlated components,” Proc. - Annu. Reliab. Maintainab. Symp., no. 2, pp. 1–6, 2013, doi: 10.1109/RAMS.2013.6517663.spa
dc.relation.referencesP.-E. AUSTRELL, O. DAHLBLOM, J. LINDEMANN, and A. OLSSON, CALFEM-a finite element toolbox, version 3.4. Sweden: Lund University, 2004.spa
dc.relation.referencesJ. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965, doi: 10.1093/comjnl/7.4.308.spa
dc.relation.referencesC. Montanaro, Machines and mechanisms. 2019.spa
dc.relation.referencesC. Zang, M. I. Friswell, and J. E. Mottershead, “A review of robust optimal design and its application in dynamics,” Comput. Struct., vol. 83, no. 4–5, pp. 315–326, 2005, doi: 10.1016/j.compstruc.2004.10.007.spa
dc.relation.referencesL. Cerrolio, “Metodología eficiente de optimización de diseño basada en fiabilidad aplicada a estructuras,” Ph.D. Thesis, Universidad de la Rioja, Logroño, España, 2013.spa
dc.relation.referencesW. J. S. Gomes, “Risk optimization of trusses using a new gradient estimation method,” 12th Int. Conf. Appl. Stat. Probab. Civ. Eng. ICASP 2015, no. August, 2015.spa
dc.relation.referencesA. Kaveh and S. Talatahari, “Size optimization of space trusses using Big Bang-Big Crunch algorithm,” Comput. Struct., vol. 87, no. 17–18, pp. 1129–1140, 2009, doi: 10.1016/j.compstruc.2009.04.011.spa
dc.relation.referencesR. Fletcher, Practical methods of optimization. Wiley, 1987.spa
dc.relation.referencesD. M. Himmelblau, Applied Nonlinear Programming. McGraw-Hill, 1972spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalOptimización basada en confiabilidadspa
dc.subject.proposalReliability-based optimizationeng
dc.subject.proposalOptimización del diseño robustospa
dc.subject.proposalRobust design optimizationeng
dc.subject.proposalOptimización bajo riesgospa
dc.subject.proposalRisk optimizationeng
dc.subject.proposalAlgoritmos de optimizaciónspa
dc.subject.proposalOptimization algorithmseng
dc.subject.proposalUncertaintyeng
dc.subject.proposalIncertidumbrespa
dc.subject.proposalSistemas mecánicosspa
dc.subject.proposalMechanical systemseng
dc.subject.proposalFailure probabilityeng
dc.subject.proposalProbabilidad de fallospa
dc.titleComparación de metodologías de optimización de sistemas mecánicos bajo incertidumbrespa
dc.title.alternativeComparison of methodologies for optimization of mechanical systems under uncertaintyspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075667291.2021.pdf
Tamaño:
2.99 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: