Estudio de la interacción de los gases de combustión sobre la película de refrigerante en una turbina de gas

dc.contributor.advisorDuque Daza, Carlos Alberto
dc.contributor.authorSierra Vargas, Germán David
dc.contributor.cvlacSierra Vargas, Germán David [0001620035]spa
dc.contributor.googlescholarSierra-Vargas, Germán [mnAHAb0AAAAJ]spa
dc.contributor.orcidSierra-Vargas, Germán [0000-0003-4766-7761]spa
dc.contributor.researchgateSierra-Vargas, Germán [German-Sierra-Vargas]spa
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.contributor.scopusSierra-Vargas, Germán [57767476700]spa
dc.date.accessioned2023-08-04T17:34:02Z
dc.date.available2023-08-04T17:34:02Z
dc.date.issued2023-05-09
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLas turbinas de gas operan por encima de la temperatura permisible de los materiales. Por este motivo, una porción de aire se extrae desde el compresor para refrigerar los álabes externamente con un método conocido como refrigeración por película. El aire es expulsado a través de una serie de agujeros formando una capa protectora que reduce la temperatura de la superficie. En este estudio, el desempeño de la película refrigerante es evaluado numéricamente para tres números de Reynolds del flujo principal y cuatro relaciones de velocidad (blowing ratio o BR). Un modelo computacional basado en la discretización por volúmenes finitos fue utilizado para resolver un flujo incompresible y transitorio sobre un perfil NACA 4412 en cascada. En el modelo se incluyeron varios escalares pasivos para evaluar las condiciones de temperatura adiabática y temperatura constante en la pared del álabe. Los análisis muestran una discrepancia entre estos dos enfoques. Para la condición de temperatura adiabática, la efectividad de película depende principalmente de la trayectoria del chorro y las zonas de recirculación. Para la condición de temperatura constante, la reducción neta del flujo de calor (net heat flux reduction o NHFR) varía en función de la separación y reenganche de la capa límite. (Texto tomado de la fuente)spa
dc.description.abstractGas turbines operate above the permissible temperature of the materials. For this reason, air is drawn from the compressor to cool the vanes externally with a method known as film cooling. The air is expelled through a set of holes forming a protective layer that reduces the surface temperature. In this study, the film cooling performance was evaluated numerically for three mainstream Reynolds numbers and four blowing ratios (BR). A computational model based on finite volume discretization was used to solve an incompressible and transient flow over a NACA 4412 cascade vane. Several passive scalars were included in the model to evaluate the conditions of adiabatic temperature and constant temperature for the surface vane. Analysis showed a discrepancy between these two approaches. For adiabatic temperature condition, the film effectiveness mainly depends on the jet trajectory and recirculation zones. For the constant temperature condition, the net heat flux reduction (NHFR) varies according to the boundary layer separation and reattachment.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaIngeniería Térmica y Fluidosspa
dc.format.extentxxi, 86 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84460
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesBaagherzadeh Hushmandi, Narmin. 2018. "Large Eddy simulation of flat plate film cooling at high blowing ratio using OpenFOAM." Heat and Mass Transfer 54 (6): 1603–1611.spa
dc.relation.referencesBanihabib, Reyhaneh y Mohsen Assadi. 2022. "The Role of Micro Gas Turbines in Energy Transition." Energies 15 (21): 8084.spa
dc.relation.referencesBogard, David G. 2006. Capı́tulo 4.2.2.1 de Airfoil Film Cooling. U.S. Department of Energy's National Energy Technology Laboratory (NETL).spa
dc.relation.referencesBoyce, Meherwan P. 2006. Capı́tulo 1 de An Overview of Gas Turbines. Butterworth-Heinemann.spa
dc.relation.referencesCaretto, L. S., A. D. Gosman, S. V. Patankar y D. B. Spalding. 1973, Jul 3-7. "Two calculation procedures for steady, three-dimensional flows with recirculation." Third International Conference on Numerical Methods in Fluid Mechanics. Springer Berlin Heidelberg.spa
dc.relation.referencesChang, Jianlong, Yang Du, Xudong Shao, Yongjuan Zhao y Shizhen Zheng. 2019. "Investigation and analysis of vortex and application of jet in crossflow." Case Studies in Thermal Engineering 14 (1): 100459.spa
dc.relation.referencesCohen, Henry. 1982. Teorı́a de las turbinas de gas. Marcombo.spa
dc.relation.referencesEl-Damaty, Waleed y Mohamed Gadalla. 2018a, Jun 24-28. "Assessment of Gas Turbine's Cooling Systems Integrated With Bottoming Cycle." ASME 2018 Power Conference. ASME.spa
dc.relation.referencesEl-Damaty, Waleed y Mohamed Gadalla. 2018b, Nov 9-15. "Exergoeconomic Analysis of Intercooled, Reheated and Recuperated Gas Turbine Cycles With Air Film Blade Cooling." ASME 2018 International Mechanical Engineering Congress and Exposition. ASME.spa
dc.relation.referencesFaqih, Mochammad, Madiah Binti Omar, Rosdiazli Ibrahim y Bahaswan A. A. Omar. 2022. "Dry-Low Emission Gas Turbine Technology: Recent Trends and Challenges." Applied Sciences 12 (21): 10922.spa
dc.relation.referencesFarhat, Hiyam y Coriolano Salvini. 2022. "Novel Gas Turbine Challenges to Support the Clean Energy Transition." Energies 15 (15): 5474.spa
dc.relation.referencesFathyunes, Leila y M. A. Mohtadi-Bonab. 2023. "A Review on the Corrosion and Fatigue Failure of Gas Turbines." Metals 13 (4): 701.spa
dc.relation.referencesFerziger, Joel H. y Milovan Perić. 2012. Computational Methods for Fluid Dynamics. Springer Berlin Heidelberg.spa
dc.relation.referencesFilinov, E. P., V. S. Kuz'michev, A. Yu Tkachenko, Ya A. Ostapyuk y I. N. Krupenich. 2021. "Estimation of cooling flow rate for conceptual design stage of a gas turbine engine." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 235 (8): 2014–2021.spa
dc.relation.referencesGil Garcı́a, Gregorio. 2013. Turbinas y compresores de gas. Los motores del siglo XXI. Alfaomega.spa
dc.relation.referencesGreenshields, Christopher y Henry Weller. 2022. Notes on Computational Fluid Dynamics: General Principles. CFD Direct.spa
dc.relation.referencesHan, Je-Chin, Sandip Dutta y Srinath Ekkad. 2013. Gas Turbine Heat Transfer and Cooling Technology. CRC Press.spa
dc.relation.referencesHe, Juan, Qinghua Deng y Zhenping Feng. 2021. "Film Cooling Performance Enhancement by Upstream V-shaped Protrusion/Dimple Vortex Generator." International Journal of Heat and Mass Transfer 180 (1): 121784.spa
dc.relation.referencesHolzmann, Tobias. 2019. Mathematics, Numerics, Derivations and OpenFOAM (R). Holzmann CFD.spa
dc.relation.referencesHou, Rui, Fengbo Wen, Yuxi Luo, Xiaolei Tang y Songtao Wang. 2019. "Large eddy simulation of film cooling flow from round and trenched holes." International Journal of Heat and Mass Transfer 144 (1): 118631.spa
dc.relation.referencesIshikawa, Masao, Masashi Terauchi, Toyoaki Komori y Jun Yasuraoka. 2008, Mar 1. "Development of high efficiency gas turbine combined cycle power plant." Technical review (tr) 2008-451015, Mitsubishi Heavy Industries, Ltd., Chiyoda, Tokyo, Japan.spa
dc.relation.referencesIssa, R. I. 1986. "Solution of the implicitly discretised fluid flow equations by operator-splitting." Journal of Computational Physics 62 (1): 40–65.spa
dc.relation.referencesKhalatov, Artem, E Shi-Ju, Dongyun Wang y Igor Borisov. 2020. "Film cooling evaluation of a single array of triangular craters." International Journal of Heat and Mass Transfer 159 (1): 120055.spa
dc.relation.referencesKrishna Anand, V. G. y K. M. Parammasivam. 2021. "Thermal barrier coated surface modifications for gas turbine film cooling: a review." Journal of Thermal Analysis and Calorimetry 146 (2): 545–580.spa
dc.relation.referencesLi, Weihong, Xueying Li, Jing Ren y Hongde Jiang. 2018a. "Length to diameter ratio effect on heat transfer performance of simple and compound angle holes in thin-wall airfoil cooling." International Journal of Heat and Mass Transfer 127 (1): 867–879.spa
dc.relation.referencesLi, Weihong, Xunfeng Lu, Xueying Li, Jing Ren y Hongde Jiang. 2018b. "High resolution measurements of film cooling performance of simple and compound angle cylindrical holes with varying hole length-to-diameter ratio–Part I: Adiabatic film effectiveness." International Journal of Thermal Sciences 124 (1): 146–161.spa
dc.relation.referencesLv, Bowen, Xiaochao Jin, Jie Cao, Baosheng Xu, Yiguang Wang y Daining Fang. 2020. "Advances in numerical modeling of environmental barrier coating systems for gas turbines." Journal of the European Ceramic Society 40 (9): 3363–3379.spa
dc.relation.referencesMahesh, Krishnan. 2013. "The interaction of jets with crossflow." Annual Review of Fluid Mechanics 45 (1): 379–407.spa
dc.relation.referencesMarić, Tomislav, Jens Höpken y Kyle G. Mooney. 2021. The OpenFOAM (R) Technology Primer. Zenodo.spa
dc.relation.referencesMin Kwon, Hyun, Seong Won Moon, Tong Seop Kim y Do Won Kang. 2020. "Performance enhancement of the gas turbine combined cycle by simultaneous reheating, recuperation, and coolant inter-cooling." Energy 207 (1): 118271.spa
dc.relation.referencesMoukalled, F., L. Mangani y M. Darwish. 2016. The Finite Volume Method in Computational Fluid Dynamics. Springer Cham.spa
dc.relation.referencesMuppidi, Suman y Krishnan Mahesh. 2007. "Direct numerical simulation of round turbulent jets in crossflow." Journal of Fluid Mechanics 574 (1): 59–84.spa
dc.relation.referencesNational Academies of Sciences, Engineering, and Medicine (NASEM). 2020a. Capı́tulo 2.2 de Aggressive goals for gas turbine development: Aviation. The National Academies Press.spa
dc.relation.referencesNational Academies of Sciences, Engineering, and Medicine (NASEM). 2020b. Capı́tulo 2.1 de Aggressive goals for gas turbine development: Power Generation. The National Academies Press.spa
dc.relation.referencesNicoud, F. y F. Ducros. 1999. "Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor." Flow, Turbulence and Combustion 62 (1): 183–200.spa
dc.relation.referencesPuspitasari, Poppy, Andoko Andoko y Pradhana Kurniawan. 2021. "Failure analysis of a gas turbine blade: A review." IOP Conference Series: Materials Science and Engineering 1034 (1): 12156.spa
dc.relation.referencesSoares, Claire. 2015. Capı́tulo 1 de Gas Turbines: An Introduction and Applications. Butterworth-Heinemann.spa
dc.relation.referencesThurman, Douglas R., Lamyaa A. El-Gabry, Philip E. Poinsatte y James D. Heidmann. 2011, Jun 6-10. "Turbulence and Heat Transfer Measurements in an Inclined Large Scale Film Cooling Array: Part II–Temperature and Heat Transfer Measurements." ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASME.spa
dc.relation.referencesWang, Jin, Zhanming Zhao, Liang Tian, Xiaodong Ren y Bengt Sundén. 2021. "Effects of hole configuration on film cooling effectiveness and particle deposition on curved surfaces in gas turbines." Applied Thermal Engineering 190 (1): 116861.spa
dc.relation.referencesWee, Sunguk, Jeonghyeon Do, Kyomin Kim, Changho Lee, Changsung Seok, Baig-Gyu Choi, Yoonsuk Choi y Woochul Kim. 2020. "Review on Mechanical Thermal Properties of Superalloys and Thermal Barrier Coating Used in Gas Turbines." Applied Sciences 10 (16): 5476.spa
dc.relation.referencesZhang, Jingzhou, Shengchang Zhang, Chunhua Wang y Xiaoming Tan. 2020. "Recent advances in film cooling enhancement: A review." Chinese Journal of Aeronautics 33 (4): 1119–1136.spa
dc.relation.referencesZhou, Wenwu, Di Peng, Xin Wen, Yingzheng Liu y Hui Hu. 2018. "Unsteady analysis of adiabatic film cooling effectiveness behind circular, shaped, and sand-dune-inspired film cooling holes: Measurement using fast-response pressure-sensitive paint." International Journal of Heat and Mass Transfer 125 (1): 1003–1016.spa
dc.relation.referencesZhu, Dongming. 2018, May 1. "Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications." Technical memorandum (tm) 2018-219884, NASA, NASA Glenn Research Center Cleveland, OH, United States.spa
dc.relation.referencesZhu, Rui, Gongnan Xie y Terrence W. Simon. 2018, Jun 11-15. "New Designs of Novel Holes Based on Cylindrical Configurations for Improving Film Cooling Effectiveness." ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. ASME.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcFluid mechanics
dc.subject.armarcMechanical engineering
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc530 - Físicaspa
dc.subject.lembDINAMICA DE FLUIDOSspa
dc.subject.lembFluid dynamicseng
dc.subject.lembMECANICA DE FLUIDOSspa
dc.subject.lembINGENIERIA MECANICAspa
dc.subject.lembMechanical engineeringeng
dc.subject.lembFluid mechanicseng
dc.subject.proposalCoeficiente convectivospa
dc.subject.proposalCoeficiente de fricciónspa
dc.subject.proposalConvective coefficienteng
dc.subject.proposalEfectividad de películaspa
dc.subject.proposalFilm coolingeng
dc.subject.proposalFilm effectivenesseng
dc.subject.proposalJet trajectoryeng
dc.subject.proposalNet heat flux reductioneng
dc.subject.proposalReducción neta del flujo de calorspa
dc.subject.proposalRefrigeración por películaspa
dc.subject.proposalSkin friction coefficienteng
dc.subject.proposalTrayectoria del chorrospa
dc.titleEstudio de la interacción de los gases de combustión sobre la película de refrigerante en una turbina de gasspa
dc.title.translatedStudy of the interaction of combustion gases on the film cooling in a gas turbineeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030624474.2023.pdf
Tamaño:
26.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: