Evaluación técnica de la exposición del Tereftalato de Polietileno (PET) a la acción de cepas microbianas y/o extractos enzimáticos a nivel de laboratorio con fines de degradación

dc.contributor.advisorSuárez Méndez, Camilo Alberto
dc.contributor.authorCastaño Castro, Yesenia Andrea
dc.contributor.researchgroupBioprocesos y Flujos Reactivosspa
dc.date.accessioned2024-07-11T19:59:39Z
dc.date.available2024-07-11T19:59:39Z
dc.date.issued2024-07
dc.descriptionIlustracionesspa
dc.description.abstractEl Tereftalato de polietileno (PET) es un plástico utilizado comúnmente en la industria textil y de empaques. Actualmente es uno de los residuos posconsumo más contaminantes del mundo debido a que tarda siglos en degradarse en el ambiente. Como consecuencia de lo anterior, en la presente investigación se realizó la evaluación de la degradación del PET tras la exposición de éste a la acción de cepas microbianas y/o extractos enzimáticos. Se determinaron las condiciones fisicoquímicas que favorecieron el crecimiento de Penicillium spp, Aspergillus nidulans y Streptomyces spp, además de la producción de proteína con actividad esterasa a partir de estas cepas, encontrándose que Aspergillus nidulans presentó la mayor productividad de biomasa y la mayor actividad enzimática esterasa a nivel de matraz (0.047 g/L-h y 2.14 U/mL), y biorreactor (0.18 g/L-h, 36.7 U/mL). Tras la presencia del PET en crecimiento de Aspergillus nidulans, se encontró que éste posee la capacidad de metabolizar el ácido tereftálico (TPA), por lo que la estrategia de degradación del material abordada fue a través de la exposición a sus extractos enzimáticos durante 144 horas, hallándose que para el PET en láminas de 0.5 cm, la concentración de TPA en el medio fue 0.056 ppm, con una pérdida de peso del material inferior al 1%. Finalmente, se determinó que el pretratamiento de reducción del tamaño del PET a 177 µm, aumentó la concentración de TPA a 0.062 ppm, además de reflejar una pérdida de peso del material aproximadamente del 6.0%. Con esta investigación se logró obtener enzimas hidrolíticas con capacidad de degradar el PET en monómeros básicos como el TPA, además de identificar la reducción del tamaño de este material como un pretratamiento físico que potencia su degradación. (Tomado de la fuente)spa
dc.description.abstractPolyethylene terephthalate (PET) is a plastic commonly used in the textile and packaging industries. It is currently one of the most polluting post-consumer waste in the world because it takes centuries to degrade in the environment. Because of this, the present study evaluated PET degradation under exposure of the material to the action of microbial strains and/or enzymatic extracts. Physicochemical conditions enhancing the growth of Penicillium spp, Aspergillus nidulans and Streptomyces spp were determined, as well as the protein production showing esterase activity from these strains. It was found that Aspergillus nidulans showed the highest biomass productivity and the highest esterase enzymatic activity at the flask level (0.047 g/L-h and 2.14 U/mL), and bioreactor (0.22 g/L-h, 36.7 U/mL). When PET was present in cultivations of Aspergillus nidulans, it was found that this microorganism has the capacity to metabolize terephthalic acid (TPA), thus, the preferred PET degradation strategy was through exposing the material to enzymatic extracts for 144 hours. It was found that for PET cut in 0.5 cm sheets, the TPA concentration in the medium was 0.056 ppm, with a material weight loss less than 1%. Finally, it was observed that reducing PET size to 177 µm, increased the TPA concentration to 0.062 ppm, as well as yielding a material weight loss of 6.0%. In this research, it was possible to obtain hydrolytic enzymes capable of degrading PET into its basic monomers such as TPA, in addition to observing that reducing material size, as a physical pretreatment, enhances its degradation.eng
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaBioprospección y bioprocesosspa
dc.description.sponsorshipMinisterio de Ciencia Colombiana Universidad Nacional de Colombia - Facultad de Minasspa
dc.format.extent193 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86434
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesP. Clunies, S. Collie, y T. Farrelly, “Plastic in the environment”, Wellington, 2013spa
dc.relation.referencesPlastic soup foundation, “Plastic production decomposition”. Consultado: el 10 de noviembre de 2021. [En línea]. Disponible en: https://www.plasticsoupfoundation.org/en/plastic-problem/plastic-environment/plastic-production-decomposition/#:~:text=World production of plastic increased,in the last thirteen yearsspa
dc.relation.referencesI. Tiseo, “Global plastic production 1950-2020”. Consultado: el 16 de enero de 2022. [En línea]. Disponible en: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/spa
dc.relation.referencesS. Laville y M. Tayor, “A million bottles a minute: world’s plastic binge as dangerous”, The Guardian, London, 2017spa
dc.relation.referencesStatista Research Department, “Production of polyethylene terephthalate bottles worldwide from 2004 to 2021”. Consultado: el 11 de diciembre de 2023. [En línea]. Disponible en: https://www.statista.com/statistics/723191/production-of-polyethylene-terephthalate-bottles-worldwide/spa
dc.relation.referencesTransparency Market Research, “Plastic Bottle Recycling Market”. Consultado: el 11 de diciembre de 2023. [En línea]. Disponible en: https://www.transparencymarketresearch.com/plastic-bottle-recycling-market.html#:~:text=Increase%20in%20global%20concern%20about,was%20about%2027.2%25%20in%202021spa
dc.relation.referencesEnka, “Informe de sostenibilidad ENKA 2017”, Medellin, 2017spa
dc.relation.referencesW. Zimmermann y S. Billig, “Enzymes for the Biofunctionalization of Poly (Ethylene Terephthalate)”, Biotechnology, 2010, doi: 10.1007/10_2010_87spa
dc.relation.referencesStatista Research Department, “Market volume of polyethylene terephthalate worldwide from 2015 to 2022, with a forecast for 2023 to 2030”. Consultado: el 11 de diciembre de 2023. [En línea]. Disponible en: https://www.statista.com/statistics/1245264/polyethylene-terephthalate-market-volume-worldwide/spa
dc.relation.referencesResponsabilidad integral de Colombia, “Reciclaje químico y economía circular: retos y oportunidades”, en Economía circular, Bogotá, 2020.spa
dc.relation.referencesC. Blair y B. Quinn, Microplastic Pollutants, 1a ed. Elsevier inc, 2017spa
dc.relation.referencesH. Rueda, “Evaluación del potencial de cutinasas para hidrolizar poli(etilen tereftalato) (PET), aisladas a partir de hongos filamentosos presentes en residuos agroindustriales.”, Maestría de diseño y gestión de procesos, Universidad de la Sabana, 2016spa
dc.relation.referencesD. Bermúdez, “Evaluación de microorganismos (Trichoderma spp. y Pseudomina Aeruginosa) para la degradación del PET”, Fundación Universidad de América, Bogotá D.C, 2021spa
dc.relation.referencesD. López, “Caracterización de láminas de materiales compuestos de polietilentereftalato con partículas cerámicas”, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, 2014spa
dc.relation.referencesD. López, “Caracterización de láminas de materiales compuestos de polietilentereftalato con partículas cerámicas”, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, 2014.spa
dc.relation.referencesOmnexus, “Polyethylene Terephthalate (PET): A Comprehensive Review”.spa
dc.relation.referencesI. Gacen, Esbec, “Modificación de la estructura fina de las fibras PET en el termofijado y en la tintura posterior. Tintura competitiva de sustratos termofijados a temperaturas vecinas”, 2004spa
dc.relation.referencesTextos científicos, “POLÍMEROS CRISTALINOS Y AMORFOS”.spa
dc.relation.referencesJ. Speight, “Polymer degradation”, en Handbook of industrial Hydrocarbon Processes , 2a ed., Gulf Professional Publishing , 202d. C., pp. 95–142.spa
dc.relation.referencesH. Abedsoltan, “A focused review on recycling and hydrolysis techniques of polyethylene terephthalate”, Polym Eng Sci, vol. 63, núm. 9, pp. 2651–2674, sep. 2023, doi: 10.1002/pen.26406.spa
dc.relation.referencesK. G. Gopalakrishna y N. Reddy, “Regulations on Recycling PET Bottles”, en Recycling of Polyethylene Terephthalate Bottles, vol. 1, S. Thomas, Rane Ajay, y K. Kanny, Eds., Elsevier, 2018, pp. 23–35. doi: 10.1016/B978-0-12-811361-5.00002-X.spa
dc.relation.referencesH. Palma y F. Tenesaca, “Estudio de la degradabilidad del PET (Polietilentereftalato) dosificado con celulosa de la cáscara de cacao. ”, Licenciatura, Universidad Politécnica Salesiana, Cuenca, 202dspa
dc.relation.referencesB. Bertolotti, J. Chávez, R. Laos, C. Rospigliosi, y J. Nakamatsu, “Poliésteres y Reciclaje Químico del Poli(tereftalato de etileno) ”, Revista de Química, vol. 19, núm. 1, pp. 13–20, jun. 2005spa
dc.relation.referencesA. M. Al-Sabagh, F. Z. Yehia, Gh. Eshaq, A. M. Rabie, y A. E. ElMetwally, “Greener routes for recycling of polyethylene terephthalate”, Egyptian Journal of Petroleum, vol. 25, núm. 1, pp. 53–64, mar. 2016, doi: 10.1016/j.ejpe.2015.03.001spa
dc.relation.referencesC. Benavidez, M. Guzmán, S. Quijano, y L. Carvajal, “Microbial degradation of polyethylene terephthalate: a systematic review”, SN Appl Sci, vol. 4, núm. 263, sep. 2022spa
dc.relation.referencesR. Geyer, J. R. Jambeck, y K. L. Law, “Production, use, and fate of all plastics ever made”, Sci Adv, vol. 3, núm. 7, jul. 2017, doi: 10.1126/sciadv.1700782spa
dc.relation.referencesI. Taniguchi, S. Yoshida, K. Hiraga, K. Miyamoto, Y. Kimura, y K. Oda, “Biodegradation of PET: Current Status and Application Aspects”, ACS Catal, vol. 9, núm. 5, pp. 4089–4105, may 2019, doi: 10.1021/acscatal.8b05171spa
dc.relation.referencesG. M. Guebitz y A. Cavaco-Paulo, “Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers”, Trends Biotechnol, vol. 26, núm. 1, pp. 32–38, ene. 2008, doi: 10.1016/j.tibtech.2007.10.003spa
dc.relation.referencesB. Nowak, J. Paja̧K, y S. Labuzek, “Biodegradation of poly(ethylene terephthalate) modified with polyester ‘Bionolle’ by Penicillium funiculosum”, Polimery, vol. 56, pp. 35–56, 2011, doi: 10.14314/polimery.2011.035spa
dc.relation.referencesD. Castro-Ochoa, C. Peña-Montes, y A. Farres, “Producción y caracaterísticas de cutinasas: Una alternativa interesante para biocatálisis a nivel industrial”, Revista Especializada en Ciencias Químico-Biológicas, vol. 1, pp. 16–25, 2010spa
dc.relation.referencesDiccionario biología, “Qué es cutina”.spa
dc.relation.referencesS. Chen, L. Su, y J. Wu, “Cutinase: Characteristics, preparation, and application”, ELSEVIER, vol. 31, núm. 8, pp. 1754–1767, 2013, doi: doi.org/10.1016/j.biotechadv.2013.09.005.spa
dc.relation.referencesM. Egmond y J. Vlieg, “Fusarium solani pisi cutinase”, ELSEVIER, vol. 82, pp. 1015–1021, 2000spa
dc.relation.referencesD. Castro-Ochoa, C. Peña-Montes, y A. Farres, “Producción y caracaterísticas de cutinasas: Una alternativa interesante para biocatálisis a nivel industrial”, Revista Especializada en Ciencias Químico-Biológicas, vol. 1, pp. 16–25, 2010spa
dc.relation.referencesI. Donelli, V. Nierstrasz, y P. Taddei, “Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase”, Polym Degrad Stab, 2010spa
dc.relation.referencesB. Knott, E. Erickson, E. Allen, J. Gado, y H. Austin, “Characterization and engineering of a two-enzyme system for plastics depolymerization”, Proc Natl Acad Sci U S A, vol. 41, pp. 25476–25485, 2020, doi: 10.1073/pnas.2006753117spa
dc.relation.referencesD. Li y P. Kolattukudy, “Cloning of cutinase transcription factor 1, a transactivating protein containing Cys6Zn2 binuclear cluster DNA-binding motif.”, The Journal of Biological Chemestry, 1997spa
dc.relation.referencesM. V. Powers-Fletcher, B. A. Kendall, A. T. Griffin, y K. E. Hanson, “Filamentous Fungi”, Microbiol Spectr, vol. 4, núm. 3, may 2016, doi: 10.1128/microbiolspec.DMIH2-0002-2015spa
dc.relation.referencesT. Lin y P. Kolattukudy, “Induction of a Biopolyester Hydrolase (Cutinase) by Low Levels of Cutin Monomers in Fusarium solani f. sp. pisi”, J Bacteriol, vol. 133, núm. 942–951, 1978spa
dc.relation.referencesD. Castro-Ochoa, C. Peña-Montes, y A. Farres, “Producción y caracaterísticas de cutinasas: Una alternativa interesante para biocatálisis a nivel industrial”, Revista Especializada en Ciencias Químico-Biológicas, vol. 1, pp. 16–25, 2010spa
dc.relation.referencesC. Calado, Á. Taipa, y J. Cabral, “Optimisation of culture conditions and characterisation of cutinase produced by recombinant Saccharomyces cerevisiae”, ELSEVIER, 2002spa
dc.relation.referencesM.-A. d’Halewyn y P. Chevalier, “Penicillium sppspa
dc.relation.referencesR. Srinivasan, G. Prabhu, M. Prasad, M. Mishra, M. Chaudhary, y R. Srivastava, “Penicillium”, en Beneficial Microbes in Agro-Ecology, Elsevier, 2020, pp. 651–667. doi: 10.1016/B978-0-12-823414-3.00032-0spa
dc.relation.referencesB. Buendía y M. López-Brea, “¿Qué debemos saber sobre Aspergillus?”, Enferm Infecc Microbiol Clin, vol. 19, pp. 142–144, ene. 2001spa
dc.relation.references“Aspergillus spp. - Agentes Biológicos - Hongo”. Consultado: el 5 de noviembre de 2023. [En línea]. Disponible en: https://www.insst.es/agentes-biologicos-basebio/hongos/aspergillus-sppspa
dc.relation.referencesJ. E. Galagan et al., “Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae”, Nature, vol. 438, núm. 7071, pp. 1105–1115, dic. 2005, doi: 10.1038/nature04341spa
dc.relation.referencesM. T. Hedayati, “Aspergillus species in indoor environments and their possible occupational and public health hazards”, Curr Med Mycol, vol. 2, núm. 1, pp. 36–42, 2016, doi: 10.18869/acadpub.cmm.2.1.36spa
dc.relation.referencesD. Castro-Ochoa et al., “ANCUT2, an Extracellular Cutinase from Aspergillus nidulans Induced by Olive Oil”, Appl Biochem Biotechnol, vol. 166, núm. 5, pp. 1275–1290, mar. 2012, doi: 10.1007/s12010-011-9513-7spa
dc.relation.referencesM. Komatsu, T. Uchiyama, S. Ōmura, D. E. Cane, y H. Ikeda, “Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism”, Proceedings of the National Academy of Sciences, vol. 107, núm. 6, pp. 2646–2651, feb. 2010, doi: 10.1073/pnas.0914833107spa
dc.relation.referencesA. Gunjal y D. S. Bhagat, “Diversity of actinomycetes in Western Ghats”, en Microbial Diversity in Hotspots, G. Aparna y S. Sonali, Eds., Elsevier, 2022, pp. 117–133. doi: 10.1016/B978-0-323-90148-2.00007-9spa
dc.relation.referencesD. Berd, “Streptomyces sp- Public Health Image Library(PHIL)”. Consultado: el 5 de noviembre de 2023. [En línea]. Disponible en: https://phil.cdc.gov/Details.aspx?pid=2983spa
dc.relation.referencesW. F. Fett, H. C. Gérard, R. A. Moreau, S. F. Osman, y L. E. Jones, “Cutinase production byStreptomyces spp.”, Curr Microbiol, vol. 25, núm. 3, pp. 165–171, sep. 1992, doi: 10.1007/BF01571025spa
dc.relation.referencesM. Álvarez, “Procesos fermentativos”, 2018spa
dc.relation.referencesR. Singhania, A. Patel, y L. Thomas, “Industrial Enzymes”, en Industrial Biorefineries and ehithe Biotechnology, Trivandrum: Elsevier inc, 2015, pp. 473–478spa
dc.relation.referencesM. Mata y M. Barquero, “Evaluación de la fermentación sumergida del hongo entomopatógeno ‘Beauveria bassiana’ como parte de un proceso de escalamiento y producción de bioplaguicidas”, 2008spa
dc.relation.referencesR. Singhania, A. Patel, y L. Thomas, “Industrial Enzymes”, en Industrial Biorefineries and ehithe Biotechnology, Trivandrum: Elsevier inc, 2015, pp. 473–478spa
dc.relation.referencesL. Veiter, V. Rajamanickam, y C. Herwing, “The filamentous fungal pellet—relationship between morphology and productivity”, Appl Microbiol Biotechnol, vol. 102, pp. 2997–3006, 2018, doi: 10.1007/s00253-018-8818-7spa
dc.relation.referencesJ. Nielsen, C. Johansen, M. Jacobsen, P. Krabben, y J. Villadsen, “Pellet Formation and Fragmentation in Submerged Cultures of Penicillium chrysogenum and Its Relation to Penicillin Production”, Biotechnol Prog., vol. 11, pp. 93–98, 1995spa
dc.relation.referencesMichel. DuBois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, y Fred. Smith, “Colorimetric Method for Determination of Sugars and Related Substances”, Anal Chem, vol. 28, núm. 3, pp. 350–356, mar. 1956, doi: 10.1021/ac60111a017spa
dc.relation.referencesG. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar”, Anal Chem, vol. 31, núm. 3, pp. 426–428, mar. 1959, doi: 10.1021/ac60147a030spa
dc.relation.referencesP. R. Griffiths y J. Haseth, Fourier transform infrared spectrometry , 2a ed., vol. 1. Moscow: Wiley, 2004spa
dc.relation.referencesZ. Chen, J. N. Hay, y M. J. Jenkins, “FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization”, Eur Polym J, vol. 48, núm. 9, pp. 1586–1610, sep. 2012, doi: 10.1016/j.eurpolymj.2012.06.006spa
dc.relation.referencesT. Sang, C. J. Wallis, G. Hill, y G. J. P. Britovsek, “Polyethylene terephthalate degradation under natural and accelerated weathering conditions”, Eur Polym J, vol. 136, p. 109873, ago. 2020, doi: 10.1016/j.eurpolymj.2020.109873spa
dc.relation.referencesP. G. De Gennes, Scaling Concepts in Polymer Physics, 1a ed., vol. 1. London: Cornell University Press, 1979spa
dc.relation.referencesJ. Cowie y V. Arrighi, Polymers: Chemestry and physics of moderns materials, 3a ed. Florida: CRC Press, 2007spa
dc.relation.referencesI. Arciniega, “Aislamiento de microorganismos degradadores de tereftalato de polietileno (PET) en medio ambiente combinado”, Instituto Politécnico Nacional, Ciudad de México, 2008spa
dc.relation.referencesX. Hu, U. Thumarat, X. Zhang, M. Tang, y F. Kawai, “Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119”, Appl Microbiol Biotechnol, vol. 87, núm. 2, pp. 771–779, jun. 2010, doi: 10.1007/s00253-010-2555-xspa
dc.relation.referencesJ. Müller, S. Hedwig, y K. Dresler, “Enzymatic Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase from T. fusca”, Bioprocess Biosyst Eng, 2005, doi: 10.1002/marc.200500410spa
dc.relation.referencesM. Vertommen y V. Veer, “Enzymatic surface modification of poly(ethylene terephthalate)”, ELSEVIER, pp. 376–386, 2005spa
dc.relation.referencesY. Kim, J. Min, y J. Lee, “Biodegradation of dipropyl phthalate and toxicity of its degradation products: a comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase. Kim YH1, Min J, Bae KD, Gu MB, Lee J.”, Arch Microbiol, pp. 25–31, 2005, doi: 10.1007/s00203-005-0026-zspa
dc.relation.referencesS. Liebminger y A. Eberl, “Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium Citrinum”, Biocatal Biotransformation, núm. 1024-2422 print/ISSN 1029-2446, p. 7, 2007, doi: 10.1080/10242420701379734spa
dc.relation.referencesB. Nowak, J. Paja̧K, y S. Labuzek, “Biodegradation of poly(ethylene terephthalate) modified with polyester ‘Bionolle’ by Penicillium funiculosum”, Polimery, vol. 56, pp. 35–56, 2011, doi: 10.14314/polimery.2011.035spa
dc.relation.referencesU. Sepperumal, M. Markandan, y I. Palraja, “Micromorphological and chemical changes during biodegradation of Polyethylene terephthalate (PET) by Penicillium sp.”, J Microbiol Biotechnol Res, vol. 3, núm. 4, pp. 47–53, 2013spa
dc.relation.referencesH. Rueda, “Evaluación del potencial de cutinasas para hidrolizar poli(etilen tereftalato) (PET), aisladas a partir de hongos filamentosos presentes en residuos agroindustriales.”, Universidad de la Sabana, 2016spa
dc.relation.referencesY. Shosuke, H. Kazumi, T. Toshihiko, T. Ikuo, Y. Hironao, y M. Yasuhito, “A bacterium that degrades and assimilates poly(ethylene terephthalate)”, Science (1979), vol. 351, núm. 6278, pp. 1196–1199, 2016, doi: 10.1126/science.aad6359spa
dc.relation.referencesA. Llano, “Aplicación de las cutinasas recombinantes ANCUT 3 y ANCUT 4 provenientes de Aspergillus nidulans en la degradación de poliésteres”, Maestría, Universidad Nacional Autónoma de México, Ciudad de México, 2018spa
dc.relation.referencesE. Bermúdez-García et al., “Regulation of the cutinases expressed by Aspergillus nidulans and evaluation of their role in cutin degradation”, Appl Microbiol Biotechnol, vol. 103, núm. 9, pp. 3863–3874, may 2019, doi: 10.1007/s00253-019-09712-3spa
dc.relation.referencesS. Morales, “Degradación de polietilen tereftalato (PET) con las cutinasas recombinantes ANCUT1 y ANCUT2 de Aspergillus nidulans”, Maestría, Universidad Nacional Autónoma de México, Ciudad de México, 2018spa
dc.relation.references. Farzi, A. Dehnad, y A. Fotouhi, “Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process”, Biocatal Agric Biotechnol, vol. 17, pp. 25–31, 2019, doi: 10.1016/j.bcab.2018.11.002spa
dc.relation.referencesV. Tournier et al., “An engineered PET depolymerase to break down and recycle plastic bottles”, Nature, vol. 580, pp. 219–219, 2020, doi: 10.1038/s41586-020-2149-4spa
dc.relation.referencesCarbios, “Reciclaje enzimático: Eliminar las limitaciones de los procesos actuales”. Consultado: el 11 de diciembre de 2023. [En línea]. Disponible en: https://www.carbios.com/en/enzymatic-recycling/spa
dc.relation.referencesCarbios, “Carbios obtiene los permisos de construcción y funcionamiento, según el calendario anunciado, para la primera planta de bioreciclaje de PET del mundo en Longlaville”spa
dc.relation.referencesM. Furukawa, N. Kawakami, A. Tomizawa, y K. Miyamoto, “Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches”, Nature, 2019spa
dc.relation.referencesN. Puspitasari, S.-L. Tsai, y C.-K. Lee, “Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate”, Appl Biochem Biotechnol, 2020, doi: 10.1007/s12010-020-03358-yspa
dc.relation.referencesK. Yamada-Onodera, H. Mukumoto, Y. Katsuyaya, A. Saiganji, y Y. Tani, “Degradation of polyethylene by a fungus, Penicillium simplicissimum YK”, Polym Degrad Stab, vol. 72, núm. 2, pp. 323–327, may 2001, doi: 10.1016/S0141-3910(01)00027-1spa
dc.relation.referencesT. Brueckner, A. Eberl, S. Heumann, M. Rabe, y G. M. Guebitz, “Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics”, Polymer Science: Part A: Polymer Chemistr, vol. 6435–6443, 2008, doi: 10.1002/polaspa
dc.relation.referencesA. Farzi, A. Dehnad, y A. Fotouhi, “Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process”, Biocatal Agric Biotechnol, vol. 17, pp. 25–31, 2019, doi: 10.1016/j.bcab.2018.11.002spa
dc.relation.referencesU. Sepperumal, M. Markandan, y I. Palraja, “Micromorphological and chemical changes during biodegradation of Polyethylene terephthalate (PET) by Penicillium sp.”, J Microbiol Biotechnol Res, vol. 3, núm. 4, pp. 47–53, 2013spa
dc.relation.referencesY. Morales-García, J. Hernández-Canseco, y G. Ramos-Castillo, “Cuantificación de Penicillium sp. por el método de goteo en placa”, Revista Iberoamericana de Ciencias, vol. 3, núm. 2, pp. 12–19, jun. 2016spa
dc.relation.referencesP. Rajeswari, P. A. Jose, R. Amiya, y S. R. D. Jebakumar, “Characterization of saltern based Streptomyces sp. and statistical media optimization for its improved antibacterial activity”, Front Microbiol, vol. 5, ene. 2015, doi: 10.3389/fmicb.2014.00753spa
dc.relation.referencesM. A. Trujillo-Roldán, E. Mancilla, C. Palacios-Morales, y M. Córdova-Aguilar, “A hydrodynamic description of the flow behavior in shaken flasks”, Biochem Eng J, vol. 99, pp. 61–66, 2015, doi: 10.1016/j.bej.2015.03.003.spa
dc.relation.referencesJ. Nielsen, C. Johansen, M. Jacobsen, P. Krabben, y J. Villadsen, “Pellet Formation and Fragmentation in Submerged Cultures of Penicillium chrysogenum and Its Relation to Penicillin Production”, Biotechnol Prog., vol. 11, pp. 93–98, 1995spa
dc.relation.referencesU. K. LAEMMLI, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4”, Nature, vol. 227, núm. 5259, pp. 680–685, ago. 1970, doi: 10.1038/227680a0spa
dc.relation.referencesInfinita Lab, “ASTM D3418, ASTM E1356, ISO 11357 Differential Scanning Calorimetry”. Consultado: el 7 de diciembre de 2023. [En línea]. Disponible en: https://infinitalab.com/astm/differential-scanning-calorimetry-astm-d3418-astm-e1356-iso-11357/spa
dc.relation.referencesE. Olewnik-Kruszkowska, “Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites”, Polym Degrad Stab, vol. 129, pp. 87–95, jul. 2016, doi: 10.1016/j.polymdegradstab.2016.04.009spa
dc.relation.referencesG. Ramer y B. Lendl, “Attenuated Total Reflection Fourier Transform Infrared Spectroscopy”, en Encyclopedia of Analytical Chemistry, Wiley, 2013. doi: 10.1002/9780470027318.a9287spa
dc.relation.referencesJ. M. Brannon, “Influence of Glucose and Fructose on Growth of Fungi”, Chicago Journals, vol. 76, núm. 3, pp. 257–273, 2016spa
dc.relation.referencesS. Shirato y C. Nagatsu, “Fermentation Studies with Streptomyces griseus”, Appl Microbiol, vol. 13, núm. 5, sep. 1965spa
dc.relation.referencesK. Naguib, “GROWTH AND METABOLISM OF ASPERGILLUS NIDULANS EIDAM IN SURFACE CULTURE”, Canadian Journal of Botany, vol. 37, núm. 3, pp. 353–364, may 1959, doi: 10.1139/b59-027spa
dc.relation.referencesR. Krull et al., “Characterization and control of fungal morphology for improved production performance in biotechnology”, J Biotechnol, vol. 163, núm. 2, pp. 112–123, ene. 2013, doi: 10.1016/j.jbiotec.2012.06.024spa
dc.relation.referencesM. A. Trujillo-Roldán, E. Mancilla, C. Palacios-Morales, y M. Córdova-Aguilar, “A hydrodynamic description of the flow behavior in shaken flasks”, Biochem Eng J, vol. 99, pp. 61–66, 2015, doi: 10.1016/j.bej.2015.03.003spa
dc.relation.referencesI. Darah, G. Sumathi, K. Jain, y S. H. Lim, “Influence of Agitation Speed on Tannase Production and Morphology of Aspergillus niger FETL FT3 in Submerged Fermentation”, Appl Biochem Biotechnol, vol. 165, núm. 7–8, pp. 1682–1690, dic. 2011, doi: 10.1007/s12010-011-9387-8spa
dc.relation.referencesH. El-Enshasy, J. Kleine, y U. Rinas, “Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger”, Process Biochemistry, vol. 41, núm. 10, pp. 2103–2112, oct. 2006, doi: 10.1016/j.procbio.2006.05.024spa
dc.relation.referencesR. N. Edmondson, “Agricultural Response Surface Experiments Based on Four-Level Factorial Designs”, Biometrics, vol. 47, núm. 4, p. 1435, dic. 1991, doi: 10.2307/2532397spa
dc.relation.referencesT. Santos, J. R. Villanueva, y C. Nombela, “Production and catabolite repression of Penicillium italicum beta-glucanases”, J Bacteriol, vol. 129, núm. 1, pp. 52–58, ene. 1977, doi: 10.1128/jb.129.1.52-58.1977spa
dc.relation.referencesR. J. Beynon, C. P. Brown, y P. E. Butler, “The inactivation of streptomyces-derived proteinase inhibitors by mammalian tissue preparations.”, Acta Biol Med Ger, vol. 40, núm. 10–11, pp. 1539–46, 1981spa
dc.relation.referencesP. D. Nair, “Morphological changes of poly(ethylene terephthalate) on multiple steam sterilization”, Clin Mater, vol. 5, núm. 1, pp. 43–46, ene. 1990, doi: 10.1016/0267-6605(90)90070-Cspa
dc.relation.referencesR. C. RIGHELATO, A. P. J. TRINCI, S. J. PIRT, y A. PEAT, “The Influence of Maintenance Energy and Growth Rate on the Metabolic Activity, Morphology and Conidiation of Penicillium chrysogenum”, J Gen Microbiol, vol. 50, núm. 3, pp. 399–412, mar. 1968, doi: 10.1099/00221287-50-3-399spa
dc.relation.referencesF. Diba, A. Bakar, A. Munir, y A. Hamid, “Induction and expression of cutinase activity during saprophytic growth of the fungal plant”, Journal of Molecular Biology and Biotechnology, vol. 13, pp. 69–69, 2005spa
dc.relation.referencesT. S. Lin y P. E. Kolattukudy, “Induction of a Biopolyester Hydrolase (Cutinase) by Low Levels of Cutin Monomers in Fusarium solani f. sp. pisi”, J Bacteriol, vol. 133, núm. 2, pp. 942–951, feb. 1978, doi: 10.1128/jb.133.2.942-951.1978spa
dc.relation.referencesW. Köller, “Role of Cutinase in the Penetration of Apple Leaves by Venturia inaequalis”, Phytopathology, vol. 81, núm. 11, p. 1375, 1991, doi: 10.1094/Phyto-81-1375spa
dc.relation.referencesT. Fontes Pío y G. Alves, “Optimizing the produticon of cutinase by Fusarium oxysporum using response surface methodology”, ELSEVIER, 2017, doi: 10.1016/j.enzmictec.2007.05.008spa
dc.relation.referencesG. Fischer-Colbrie, S. Heumann, S. Liebminger, E. Almansa, A. Cavaco-Paulo, y G. M. Guebitz, “New enzymes with potential for PET surface modification”, Biocatal Biotransformation, vol. 22, núm. 5–6, pp. 341–346, dic. 2004, doi: 10.1080/10242420400024565spa
dc.relation.referencesC. P. Woloshuk y P. E. Kolattukudy, “Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi”, Proceedings of the National Academy of Sciences, vol. 83, núm. 6, pp. 1704–1708, mar. 1986, doi: 10.1073/pnas.83.6.1704spa
dc.relation.referencesE. Leao de Almeida, A. Felipe Carrillo Rincón, S. E. Nevalainen, S. Jackson, N. O’Leary, y A. Dobson, “Marine Streptomyces spp. isolates with synthetic polyesters-degrading activity”, Access Microbiol, vol. 1, núm. 1A, mar. 2019, doi: 10.1099/acmi.ac2019.po0390spa
dc.relation.referencesN. Puspitasari, S.-L. Tsai, y C.-K. Lee, “Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs”, Int J Biol Macromol, vol. 176, pp. 157–164, abr. 2021, doi: 10.1016/j.ijbiomac.2021.02.026spa
dc.relation.referencesH. K. Marambe y J. P. D. Wanasundara, “Protein From Flaxseed (Linum usitatissimum L.)”, en Sustainable Protein Sources, Elsevier, 2017, pp. 133–144. doi: 10.1016/B978-0-12-802778-3.00008-1spa
dc.relation.referencesK. T. Madhusudhan y N. Singh, “Isolation and characterization of the major fraction (12 S) of linseed proteins”, J Agric Food Chem, vol. 33, núm. 4, pp. 673–677, jul. 1985, doi: 10.1021/jf00064a026spa
dc.relation.referencesC. Groß, K. Hamacher, K. Schmitz, y S. Jager, “Cleavage Product Accumulation Decreases the Activity of Cutinase during PET Hydrolysis”, J Chem Inf Model, vol. 57, núm. 2, pp. 243–255, feb. 2017, doi: 10.1021/acs.jcim.6b00556spa
dc.relation.referencesK. Ahmed Al-Tammar, O. Omar, A. M. Abdul Murad, y F. D. Abu Bakar, “Expression and characterization of a cutinase (AnCUT2) from Aspergillus niger”, Open Life Sci, vol. 11, núm. 1, pp. 29–38, ene. 2016, doi: 10.1515/biol-2016-0004spa
dc.relation.referencesC. C. Pereira de Souza et al., “Analysis of Aspergillus nidulans germination, initial growth and carbon source response by flow cytometry”, J Basic Microbiol, vol. 51, núm. 5, pp. 459–466, oct. 2011, doi: 10.1002/jobm.201000242spa
dc.relation.referencesR. Wei et al., “Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures”, Advanced Science, vol. 6, núm. 14, jul. 2019, doi: 10.1002/advs.201900491spa
dc.relation.referencesE. Pirzadeh, A. Zadhoush, y M. Haghighat, “Hydrolytic and thermal degradation of PET fibers and PET granule: The effects of crystallization, temperature, and humidity”, J Appl Polym Sci, vol. 106, núm. 3, pp. 1544–1549, nov. 2007, doi: 10.1002/app.26788spa
dc.relation.referencesT. B. Thomsen, C. J. Hunt, y A. S. Meyer, “Influence of substrate crystallinity and glass transition temperature on enzymatic degradation of polyethylene terephthalate (PET)”, N Biotechnol, vol. 69, pp. 28–35, jul. 2022, doi: 10.1016/j.nbt.2022.02.006spa
dc.relation.referencesZ. Chen, “The Crystallization of Poly(ethylene terephthalate) Studied by Thermal Analysis and FTIR Spectroscopy”, University of Birmingham, 2012spa
dc.relation.referencesS. Carvalho, “Consumo de agua embotellada en envases plásticos y sus consecuencias para la salud familiar y comunitaria.”, El bosque, 2020spa
dc.relation.referencesB. Knott, E. Erickson, E. Allen, J. Gado, y H. Austin, “Characterization and engineering of a two-enzyme system for plastics depolymerization”, Proc Natl Acad Sci U S A, vol. 41, pp. 25476–25485, 2020, doi: 10.1073/pnas.2006753117spa
dc.relation.referencesMERCK, “Terephthalic acid for synthesis”. Consultado: el 20 de diciembre de 2023. [En línea]. Disponible en: https://www.merckmillipore.com/CO/es/product/Terephthalic-acid,MDA_CHEM-800762?ReferrerURL=https%3A%2F%2Fwww.google.com%2Fspa
dc.relation.referencesS. A. Ravichandran, V. P. Rajan, P. V. Aravind, A. Seenivasan, D. G. Prakash, y K. Ramakrishnan, “Characterization of Terephthalic Acid Monomer Recycled from Post‐Consumer PET Polymer Bottles”, Macromol Symp, vol. 361, núm. 1, pp. 30–33, mar. 2016, doi: 10.1002/masy.201400269spa
dc.relation.referencesA. Singh et al., “Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate)”, Joule, vol. 5, núm. 9, pp. 2479–2503, sep. 2021, doi: 10.1016/j.joule.2021.06.015spa
dc.relation.referencesO. B. Rudakov, L. V. Rudakova, y V. F. Selemenev, “Acetonitrile as tops solvent for liquid chromatography and extraction”, Journal of Analytical Chromatography and Spectroscopy, vol. 1, núm. 2, nov. 2018, doi: 10.24294/jacs.v1i2.883spa
dc.relation.referencesJ. Garritsen y H. Johannes, “Purification of Terephthalic acid”, 1340, el 18 de abril de 1972spa
dc.relation.referencesM. Barth, T. Oeser, R. Wei, J. Then, J. Schmidt, y W. Zimmermann, “Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca”, Biochem Eng J, vol. 93, pp. 222–228, ene. 2015, doi: 10.1016/j.bej.2014.10.012spa
dc.relation.referencesD. J. Hillenga, H. Versantvoort, S. van der Molen, A. Driessen, y W. N. Konings, “Penicillium chrysogenum Takes up the Penicillin G Precursor Phenylacetic Acid by Passive Diffusion”, Appl Environ Microbiol, vol. 61, núm. 7, pp. 2589–2595, jul. 1995, doi: 10.1128/aem.61.7.2589-2595.1995spa
dc.relation.referencesM.-S. Jami et al., “Catabolism of phenylacetic acid in Penicillium rubens. Proteome-wide analysis in response to the benzylpenicillin side chain precursor”, J Proteomics, vol. 187, pp. 243–259, sep. 2018, doi: 10.1016/j.jprot.2018.08.006spa
dc.relation.referencesN. Puspitasari, S.-L. Tsai, y C.-K. Lee, “Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate”, Appl Biochem Biotechnol, 2020, doi: 10.1007/s12010-020-03358-yspa
dc.relation.referencesJ. Müller, S. Hedwig, y K. Dresler, “Enzymatic Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase from T. fusca”, Bioprocess Biosyst Eng, 2005, doi: 10.1002/marc.200500410spa
dc.relation.referencesM. Goto, N. Kamiya, M. Miyata, y F. Nakashio, “Enzymatic Esterification by Surfactant‐Coated Lipase in Organic Media”, Biotechnol Prog, vol. 10, núm. 3, pp. 263–268, may 1994, doi: 10.1021/bp00027a005spa
dc.relation.referencesW.-J. Lu, S. A. Smirnov, y P. A. Levashov, “General characteristics of the influence of surfactants on the bacteriolytic activity of lysozyme based on the example of enzymatic lysis of Lactobacillus plantarum cells in the presence of Tween 21 and SDS”, Biochem Biophys Res Commun, vol. 575, pp. 73–77, oct. 2021, doi: 10.1016/j.bbrc.2021.08.06spa
dc.relation.referencesB. H. J. Hofstee, “Immobilization of enzymes through non-covalent binding to substituted agaroses”, Biochem Biophys Res Commun, vol. 53, núm. 4, pp. 1137–1144, ago. 1973, doi: 10.1016/0006-291X(73)90583-4spa
dc.relation.referencesZ. Ghalanbor et al., “Binding of Tris to Bacillus licheniformis-Amylase Can Affect Its Starch Hydrolysis Activity”, Protein Pept Lett, vol. 15, núm. 2, pp. 212–214, feb. 2008, doi: 10.2174/092986608783489616spa
dc.relation.referencesZ. Chen, J. N. Hay, y M. J. Jenkins, “FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization”, Eur Polym J, vol. 48, núm. 9, pp. 1586–1610, sep. 2012, doi: 10.1016/j.eurpolymj.2012.06.006spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicosspa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembPolietileno
dc.subject.lembRevestimientos protectores
dc.subject.lembAprovechamiento de residuos
dc.subject.lembEmpaques de plastico
dc.subject.lembBiodegradación de residuos
dc.subject.proposalDegradación Biológicaspa
dc.subject.proposalTereftalato de polietileno (PET)spa
dc.subject.proposalCutinasaspa
dc.subject.proposalActividad Enzimáticaspa
dc.subject.proposalPenicillium sppeng
dc.subject.proposalAspergillus nidulanseng
dc.subject.proposalStreptomyces sppeng
dc.subject.proposalBiological degradationeng
dc.subject.proposalPolyethylene terephthalateeng
dc.subject.proposalEnzyme activityeng
dc.titleEvaluación técnica de la exposición del Tereftalato de Polietileno (PET) a la acción de cepas microbianas y/o extractos enzimáticos a nivel de laboratorio con fines de degradaciónspa
dc.title.translatedTechnical evaluation of polyethylene terephthalate (PET) exposure to microbial strains and/or enzymatic extracts at laboratory level for degradation purposeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePropuesta de una estrategia de economía circular para el reciclaje, degradación, y síntesis bio(química) de polietilentereftalato (PET)spa
oaire.fundernameMinisterio de Ciencia Colombiano (MinCiencias)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1216717639.2024.pdf
Tamaño:
2.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: