Estimación de las relaciones velocidad-densidad, densidad-flujo y velocidad-flujo del tránsito vehicular en las vías urbanas de Bogotá y Medellín basado en técnicas de estadística inferencial para múltiples regímenes de flujo

dc.contributor.advisorMangones Matos, Sonia Ceciliaspa
dc.contributor.authorFernández Romero, Ricardo Joséspa
dc.contributor.orcidFernández Romero, Ricardo José [0000000205109609]spa
dc.contributor.researchgroupGrupo de Investigación en Logística para El Transporte Sostenible y la Seguridad Translogytspa
dc.coverage.cityBogotáspa
dc.coverage.cityMedellínspa
dc.coverage.countryColombiaspa
dc.date.accessioned2025-02-17T13:26:06Z
dc.date.available2025-02-17T13:26:06Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLas relaciones funcionales entre variables macroscópicas del tráfico, incluyendo el volumen promedio de tránsito (flujo), la densidad y la velocidad, son componentes esenciales de la teoría del flujo vehicular. Comprender estas relaciones tiene numerosas aplicaciones, incluyendo el desarrollo de sistemas inteligentes de transporte, el desarrollo de modelos micro y macro de tránsito, y su planificación y gestión. No obstante, el estado actual de la investigación sobre este tema en el contexto de las vías urbanas de Bogotá y Medellín debe profundizarse aprovechando la masiva información disponible. En esta tesis, se estimaron empíricamente funciones para representar las relaciones entre el flujo, la velocidad y la densidad vehicular, usando información de velocidad promedio y el volumen vehicular obtenida por sensores y cámaras de tráfico mediante modelos de regresión no lineales, empleando técnicas de analítica de datos mediante el método experimental. Se usaron registros horarios para 200 segmentos de calle en Medellín y 50 en Bogotá. Para asegurar la robustez de los hallazgos, se estimaron modelos para tres tipos de flujo (interrumpido, semi-interrumpido y continuo) y se probaron ocho formas funcionales considerando condiciones de tránsito con y sin congestión en ambas ciudades. Se emplearon cuatro métodos de evaluación de desempeño de los modelos obtenidos a saber: muestra completa, Test-Train Split, K-Fold Cross-Validation y Shuffle Cross-Validation, usando el error cuadrático medio como estadístico de prueba de la bondad de ajuste de cada modelo. Los resultados indican que la forma funcional propuesta por May & Keller (1967) consistentemente produjo el menor error en todos los segmentos de calle. Finalmente, informamos que existen parámetros diferentes para una misma función estimada en puntos con el mismo régimen de tráfico, lo que sugiere que otras características del tránsito como las formas de conducción y condiciones ambientales también pueden influir en la relación de las variables macroscópicas del tráfico. En general, esta investigación contribuye al cuerpo existente de conocimiento sobre las relaciones entre variables macroscópicas del tráfico en áreas urbanas y tiene potenciales usos para la gestión del tráfico y la planificación del transporte en Bogotá y Medellín (Texto tomado de la fuente).spa
dc.description.abstractFunctional relationships between macroscopic traffic variables, including average traffic volume (flow), density, and speed, are essential components of vehicular flow theory. Understanding these relationships has numerous applications, including the development of intelligent transportation systems, the development of micro and macro traffic models, and their planning and management. However, the current state of research on this topic in the context of the urban roads of Bogotá and Medellín needs to be deepened by leveraging the massive information available. In this thesis, functions were empirically estimated to represent the relationships between flow, speed, and vehicular density, using information on average speed and vehicular volume obtained by sensors and traffic cameras through nonlinear regression models, employing data analytics techniques through the experimental method. Hourly records were used for 200 street segments in Medellín and 50 in Bogotá. To ensure the robustness of the findings, models were estimated for three types of flow (interrupted, semi-interrupted, and continuous) and eight functional forms were tested considering traffic conditions with and without congestion in both cities. Four methods of performance evaluation of the obtained models were employed: complete sample, TestTrain Split, K-Fold Cross-Validation, and Shuffle Cross-Validation, using the mean square error as a test statistic for the goodness of fit of each model. The results indicate that the functional form proposed by May & Keller (1967) consistently produced the lowest error in all street segments. Finally, we report that there are different parameters for the same estimated function at points with the same traffic regime, suggesting that other traffic characteristics such as driving styles and environmental conditions can also influence the relationship of macroscopic traffic variables. Overall, this research contributes to the existing body of knowledge on the relationships between macroscopic traffic variables in urban areas and has potential uses for traffic management and transportation planning in Bogotá and Medellín.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Civil – Transportespa
dc.description.methodsPara modelar las interacciones entre velocidad, densidad y flujo para puntos de medición de la red vial urbana, se desarrolló un enfoque metodológico basado en datos.spa
dc.description.researchareaMovilidad y desarrollo tecnológicospa
dc.format.extentxvi, 169 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeapplication/x-compressedspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87497
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Transportespa
dc.relation.referencesAkbardin, J. M. (2023). Modeling Volume-Speed-Density Relationship on the Cibubur Transyogi Road Based on Traffic Behavior During Peak Hours Activity. International Journal of Science and Society.spa
dc.relation.referencesAkweittey, E., & Fosu, G. (2019). A Critical Analysis of Multi-Regime Fundamental Equations. Journal of Engineering Research and Reports.spa
dc.relation.referencesBates, S., Hastie, T., & Tibshirani, R. (2021). Cross-validation: what does it estimate and how well does it do it? ournal of the American Statistical Association.spa
dc.relation.referencesBEN-EDIGBE, J. (2010). ASSESSMENT OF SPEED-FLOW-Density FUNCTIONS UNDER ADVERSE PAVEMENT CONDITION. International Journal of Sustainable Development and Planning.spa
dc.relation.referencesBenito B, E. (2016). Análisis de la demanda potencial de usuarios de BiciMAD. Recomendaciones para la extensión del sistema. Escuela técnica superior de ingenieros de caminos, canales y puertos.spa
dc.relation.referencesBreiman, L. (1995). Better Subset Regression Using the Nonnegative Garrote. Technometrics.spa
dc.relation.referencesBrilon, W. a. (1996). Variability of Speed-Flow Relationships on German Autobahns. Transportation Research Record, 1555, 91-98.spa
dc.relation.referencesDaganzo, C. (1994). THE CELL TRANSMISSION MODEL: A DYNAMIC REPRESENTATION OF HIGHWAY TRAFFIC CONSISTENT WITH THE HYDRODYNAMIC THEORY. Transportation Research Part B-methodological.spa
dc.relation.referencesDel Castillo, J. M., & Benítez, F. G. (1995). ON THE FUNCTIONAL FORM OF THE SPEED-DENSITY RELATIONSHIP-I: GENERAL THEORY. Transpn. Res.-B, 59B(5), 373-389.spa
dc.relation.referencesDrake, J., Schofer, J., & May, A. (1967). A statistical analysis of speed–density hypotheses. Vehicular traffic science. Highw Res Rec (154), 112-117.spa
dc.relation.referencesDrew, D. (1968). Traffic flow theory and control. McGraw-Hill.spa
dc.relation.referencesEfron B., T. R. (1997). Improvements on Cross-Validation: The .632+ Bootstrap Method. Journal of the American Statistical Association.spa
dc.relation.referencesElefteriadou, L. (2016). An introduction to traffic flow theroy. London: Springer New York.spa
dc.relation.referencesEssien, A. P. (2018). The Impact of Rainfall and Temperature on Peak and Off-Peak Urban Traffic. Database and Expert Systems Applications. DEXA 2018.spa
dc.relation.referencesBreiman, L. (1992). The Little Bootstrap and Other Methods for Dimensionality Selection in Regression: X-fixed Prediction Error. Journal of American Statistical Association.spa
dc.relation.referencesDaganzo, C. F. (2007). rban gridlock: Macroscopic modeling and mitigation approaches. Transportation Research Part B: Methodological.spa
dc.relation.referencesGaddam, H. K., & Rao, K. R. (2019). Speed–density functional relationship for heterogeneous traffic data: a statistical and theoretical investigation. Journal of Modern Transportation.spa
dc.relation.referencesGarima, D., Yasuo, A., & Wataru, N. (2022). Analysis of the single-regime speed-density fundamental relationships for varying spatiotemporal resolution using Zen Traffic Data . Asian Transport Studies.spa
dc.relation.referencesGhorbani, H. (2019). MAHALANOBIS DISTANCE AND ITS APPLICATION FOR DETECTING MULTIVARIATE OUTLIERS. Facta Universitatis, Series: Mathematics and Informatics.spa
dc.relation.referencesGreenberg, H. (1959). An analysis of traffic flow. Oper Res 7, 79-85.spa
dc.relation.referencesGreenshields, B., Channing, W., & Miller, H. (1935). A study of traffic capacity. Highway research board proceedings.spa
dc.relation.referencesKidando, E., Karaer, A., Kutela, B., Kitali, A., Moses, R., Ozguven, E., & Sando, T. (2020). Novel Approach for Calibrating Freeway Highway Multi-Regimes Fundamental Diagram. Transportation Research Record.spa
dc.relation.referencesKockelman, K. (2001). Modeling traffic's flow-density relation: Accommodation of multiple flow regimes and traveler types. Transportation, Springer.spa
dc.relation.referencesKucharski, R., & Drabicki, A. (2017). Estimating macroscopic volume delay functions with the traffic density derived from measured speeds and flows. Journal of Advanced Transportation.spa
dc.relation.referencesLi, L., Jiang, R., He, Z., Chen, X. (., & Zhou, X. (2020). Trajectory data-based traffic flow studies: A revisit. Transportation Research Part C: Emerging Technologies.spa
dc.relation.referencesLieu, H. (1999). TRAFFIC-FLOW THEORY. Public roads, 62.spa
dc.relation.referencesMaghrour Zefreh, M., & Török, A. (2020). Distribution of traffic speed in different traffic conditions: An empirical study in Budapest. Transport.spa
dc.relation.referencesMannering, F., Karlaftis, M., & Washington, S. (2011). Statistical and Econometric Methods for Transportation Data Analysis. Boca Raton: Taylor & Francis Group.spa
dc.relation.referencesMay Jr., A., & Keller, H. (1967). Non-integer car-following models. Highway Research Record.spa
dc.relation.referencesMay, A., & Harmut, E. (1967). Non-integer car-following models. Highw Res Rec 199, 19-32.spa
dc.relation.referencesMOLUGARAM, K., & RAO, G. (2017). STATISTICAL TECHNIQUES FOR TRANSPORTATION ENGINEERING. Kidlington: Butterworth-Heinemann.spa
dc.relation.referencesMunizaga, M. P. (2012). Estimation of a disaggregate multimodal public transport Origin-Destination matrix from passive smartcard data from Santiago, Chile. Transportation Research Part C Emerging Technologies 24, 9–18.spa
dc.relation.referencesMuñoz García, J. A., & Amón, U. I. (2013). Técnicas para detección de outliers multivariantes. Revista en Telecomunicaciones e informática, 3(5), 11 - 25.spa
dc.relation.referencesNaranjo T., D. (2015). Análisis de la relación velocidad-densidad vehicular de la avenida calle 26 en Bogotá. Ingenio Magno, 6, 76-88.spa
dc.relation.referencesNaser, I. H. (2021). A review of speed - flow relationships in traffic studies. Global Journal of Engineering and Technology Advances.spa
dc.relation.referencesNewell, G. (1961). Nonlinear effects in the dynamics of car following. Operations Research, 9.spa
dc.relation.referencesNi, D. (2016). Traffic Flow Theory. Oxford, UK: Elsevier Inc.spa
dc.relation.referencesPapageorgiou M, J.-m. B.-s. (1989). Macroscopic modelling of traffic flow on the Boulevard Peripherique in Paris. Transp Res Part B Methodol 236, 29-47.spa
dc.relation.referencesPapageorgiou, M., Jean-marc, B., & Hadj-salem, H. (1989). Macroscopic modeling of traffic f low on the Boulevard Peripherique in Paris. Transp. Res. Part B Methodology.spa
dc.relation.referencesPipes, L. (1967). Car following models and the fundamental diagram of road traffic. Transport Research I.spa
dc.relation.referencesPipes, L. (1967). Car following models and the fundamental diagram of road traffic. Transport Research 1, 21-29.spa
dc.relation.referencesQuek, C., Pasquier, M., & Lim, B. (2009). A novel self-organizing fuzzy rule-based system for modelling traffic flow behaviour. Expert Systems with Applications, 36(10).spa
dc.relation.referencesSalter, R. (1974). Highway Traffic Analysis and Design.spa
dc.relation.referencesSecretaría de Transito y Transporte de Bogotá. (2005). Manual de Planeación y Diseño para la Administración del Tránsito y el Transporte. Bogotá: Secretaría de Transito y Transporte de Bogotá.spa
dc.relation.referencesSosuan, F., & Fillone, A. (2014). Mode Choice Analysis of Urban Trips in Iloilo City. 22nd Annual Conference of the Transportation Science Society of the Philippines. Iloilo City, Philippines.spa
dc.relation.referencesSubraveti, H. H. (2020). Improving Traffic Flow Efficiency at Motorway Lane Drops by Influencing Lateral Flows. Transportation Research Record.spa
dc.relation.referencesSun, L., & Zhou, J. (2005). Development of Multiregime Speed–Density Relationships by Cluster Analysis. Transportation Research Record.spa
dc.relation.referencesTransportation Research Board. (1994). Highway capacity manual. Washington: The National Academies Press.spa
dc.relation.referencesTransportation Research Board. (2016). Highway Capacity Manual 6th Edition: A Guide for Multimodal Mobility Analysis. Washington, DC: The National Academies Press.spa
dc.relation.referencesUnderwood, R. (1961). Speed, volume, and density relationships: quality and theory of traffic flow. Bur Highw traffic, 141–188.spa
dc.relation.referencesVrigazova, B. (2021). The Proportion for Splitting Data into Training and Test Set for the Bootstrap in Classification Problems. Business Systems Research.spa
dc.relation.referencesWardrop, J. G. (1952). Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers.spa
dc.relation.referencesWong, T., & Yeh, P. (2020). Reliable Accuracy Estimates from k-Fold Cross Validation. IEEE Transactions on Knowledge and Data Engineering.spa
dc.relation.referencesXu, Y. C. (2016). Urban traffic flow prediction: a spatio‐temporal variable selection‐based approach. Journal of Advanced Transportation.spa
dc.relation.referencesYan, Z. (2005). A study of the speed-flow-density relationships on urban roads. Journal of Shenzhen University.spa
dc.relation.referencesYu, C. Z. (2016). Speed-Density Model of Interrupted Traffic Flow Based on Coil Data. Mob. Inf. Syst.spa
dc.relation.referencesZero, B. &. (2022). Speed - Density Relationships of Urban Road in Erbil City using Moving Vehicle Method. 8th International Engineering Conference on Sustainable Technology and Development.spa
dc.relation.referencesZhang, L. Y. (2020). Recent developments in traffic flow modeling using macroscopic fundamental diagram. Transport Reviews.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembTRANSITO-ESTADISTICASspa
dc.subject.lembTraffic-statisticseng
dc.subject.lembINDICADORES DE VELOCIDADspa
dc.subject.lembSpeed - indicatorseng
dc.subject.lembFLUJO DE TRAFICOspa
dc.subject.lembTraffic floweng
dc.subject.lembCAPACIDAD DE CARRETERASspa
dc.subject.lembHighway Capacityeng
dc.subject.lembINGENIERIA DEL TRANSITOspa
dc.subject.lembTraffic engineeringeng
dc.subject.proposalTeoría del flujo vehicularspa
dc.subject.proposalEcuaciones fundamentales del tránsitospa
dc.subject.proposalRelaciones velocidad – densidad - flujospa
dc.subject.proposalRegresiones no linealesspa
dc.subject.proposalMétodos de validación cruzadaspa
dc.subject.proposalBogotáspa
dc.subject.proposalMedellínspa
dc.subject.proposalTraffic flow theoryeng
dc.subject.proposalFundamental traffic equationseng
dc.subject.proposalSpeed-density-flow relationshipseng
dc.subject.proposalNonlinear regressionseng
dc.subject.proposalCross-validation methodseng
dc.titleEstimación de las relaciones velocidad-densidad, densidad-flujo y velocidad-flujo del tránsito vehicular en las vías urbanas de Bogotá y Medellín basado en técnicas de estadística inferencial para múltiples regímenes de flujospa
dc.title.translatedEstimation of speed-density, density-flow, and speed-flow relationships for vehicular traffic on the urban roads of Bogotá and Medellín using inferential statistical techniques for multiple flow regimeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Anexo A.zip
Tamaño:
770.39 KB
Formato:
Comprimido
Descripción:
Anexo A - Codigo de modelación
Cargando...
Miniatura
Nombre:
DocumentoFinal1047421718.pdf
Tamaño:
6.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en ingeniería de transporte

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: