A computational tool for the automatic detection of exposure to traffic risk from elementary events

dc.contributor.advisorBulla Cruz, Lenin Alexander
dc.contributor.advisorMangones Matos, Sonia Cecilia
dc.contributor.authorAcosta Sequeda, Juan Guillermo
dc.contributor.researchgroupGrupo de Investigación en Logística para el Transporte Sostenible y la Seguridad - TRANSLOGYTspa
dc.date.accessioned2021-08-13T14:59:19Z
dc.date.available2021-08-13T14:59:19Z
dc.date.issued2021-07
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractElementary units represent an accurate approach to quantifying road exposure in a way that it acquires statistical meaning as trials with possible outcomes. This enables the possibility of conducting sophisticated statistical analysis in a field that allows planners and policy makers to make decision without waiting for people to die to have useful data. This potential analysis has more value if the amount of data available is sufficiently big. However, manually extracting this data from on-site or video observations is a very difficult and time consuming task. Automated traffic video analysis tools allow not only the faster gathering of data but also the standardization and re-productivity of the work conducted. This thesis proposes and automatic video estimator of road exposure by means of vehicle detection based on a convolutional neural network. The resulting algorithm is tested in three different intersections with increasing levels of difficulty in terms of camera angle, traffic volumes, road users, and occlusions. As a result, confusion matrices for each intersection were obtained with their respective F1 scores, which indicated that the intersection thought to be the middle one in level of difficulty ended up showing the best performance of the algorithm. Fisher’s Exact statistical test was also computed in order to test the manual and automatic distribution counts correspondence. The different variables affecting the algorithm such as angles, user input parameters, and the apparent size of vehicles are discussed, and from that point the scope of future research is formulated. (Text taken from source)eng
dc.description.abstractLas medidas elementales de exposición constituyen una aproximación precisa a la cuantificación de la exposición vial, de tal manera que esta adquiere significado estadístico en la forma de pruebas con distinto resultados posibles. Lo anterior, posibilita llevar a cabo análisis estadísticos sofisticados en un campo que permite a planificadores y trabajadores en políticas públicas el tomar decisiones sin tener que esperar a que las personas mueran para tener datos útiles. Este análisis potencial tiene aun más valor si la cantidad de datos es lo suficientemente grande. Sin embargo, extraer esta información de forma manual en campo o a partir de videos es una tarea difícil y dispendiosa. Las herramientas de análisis automático por video permiten no solo recolectar información de forma más rápida sino también la estandarización y reproducibilidad del trabajo. Esta tesis propone una forma automática de estimar la exposición vial por medio de video a través de la detección de vehículos basada en una red neuronal convolucional. El algoritmo resultante es puesto a prueba en tres intersecciones viales diferentes y con nivel de dificultad incremental en términos de ángulos de grabación, volúmenes de tráfico, usuarios viales y oclusiones. Como resultado, se obtienen las matrices de confusión de cada intersección con sus respectivos score F1, que indicaron que la intersección que se consideraba de nivel moderado de dificultad fue en realidad la que presentó el mejor desempeño. El test exacto de Fisher fue empleado para determinar la correspondencia entre la distribución de conteos de eventos manuales y automáticos. Las distintas variables que afectan el funcionamiento del algoritmo, tales como ángulos, parámetros de usuario y el tamaño aparente de los vehículos son discutidos en detalle y, a partir de estos, se propone la ruta para futuras investigaciones. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Transportespa
dc.description.researchareaMovilidad y desarrollo tecnológicospa
dc.format.extent74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79946
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Transportespa
dc.relation.referencesAlom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B. C., Awwal, A. A. & Asari, V. K. (2019), ‘A state-of-the-art survey on deep learning theory and architectures’, Electronics (Switzerland) 8(3).spa
dc.relation.referencesBulla-Cruz, L. A., Laureshyn, A. & Lyons, L. (2020), ‘Event-based road safety assessment: A novel approach towards risk microsimulation in roundabouts’, Measurement: Journal of the International Measurement Confederation 165, 108192. URL: https://doi.org/10.1016/j.measurement.2020.108192spa
dc.relation.referencesChapman, R. (1973), ‘The concept of exposure’, Accident Analysis and Prevention 5(2), 95– 110.spa
dc.relation.referencesElvik, R. (2015), ‘Some implications of an event-based definition of exposure to the risk of road accident’, Accident Analysis and Prevention 76(0349), 15–24.spa
dc.relation.referencesElvik, R., Erke, A. & Christensen, P. (2009), ‘Elementary Units of Exposure’, Transportation Research Record: Journal of the Transportation Research Board 2103(1), 25–31.spa
dc.relation.referencesEuropean Comission (2015), ‘InDeV — Innovation and Networks Executive Agency’. URL: https://ec.europa.eu/inea/en/horizon-2020/projects/h2020-transport/safety/indevspa
dc.relation.referencesForero, A. & Calderon, F. (2019), ‘Vehicle and pedestrian video-tracking with classification based on deep convolutional neural networks’, 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings pp. 1–5.spa
dc.relation.referencesHauer, E. (1982), ‘Traffic conflicts and exposure’, Accident Analysis and Prevention 14(5), 359–364.spa
dc.relation.referencesHauer, E. (1995), ‘On exposure and accident rate’, Traffic engineering and control 36(3), 134– 138.spa
dc.relation.referencesHolmberg Bahnsen, C. & Bornø Jensen, M. (2016), Title: RUBA-video analysis software for road user behaviour analyses, Technical report.spa
dc.relation.referencesHopfield, J. J. (1982), ‘Neural networks and physical systems with emergent collective computational abilities.’, Proceedings of the National Academy of Sciences of the United States of America 79(8), 2554–2558. URL: https://www.pnas.org/content/79/8/2554 https://www.pnas.org/content/79/8/2554.abstractspa
dc.relation.referencesHurtik, P., Molek, V., Hula, J., Vajgl, M., Vlasanek, P. & Nejezchleba, T. (2020), ‘Poly- YOLO: Higher speed, more precise detection and instance segmentation for YOLOv3’,arXiv (May).spa
dc.relation.referencesJohnsson, C., Laureshyn, A., D ́agostino, C. & De Ceunynck, T. (2020), ‘The ‘safety in density’ effect for cyclists and motor vehicles in Scandinavia: An observational study’, IATSS Research pp. 4–10. URL: https://doi.org/10.1016/j.iatssr.2020.08.003spa
dc.relation.referencesJohnsson, C., Nor ́en, H. & Laureshyn, A. (2018), ‘T-Analyst - semi-automated tool for traffic conflict analysis’, InDev, Horizon 2020 project (Deliverable 6.1).spa
dc.relation.referencesKohonen, T. (1982), ‘Self-organized formation of topologically correct feature maps’, Biolo- gical Cybernetics 43(1), 59–69. URL: https://link.springer.com/article/10.1007/BF00337288spa
dc.relation.referencesLaureshyn, A., Goede, M. d., Saunier, N. & Fyhri, A. (2017), ‘Cross-comparison of three surrogate safety methods to diagnose cyclist safety problems at intersections in Norway’, Accident Analysis and Prevention 105, 11–20. URL: http://dx.doi.org/10.1016/j.aap.2016.04.035spa
dc.relation.referencesLin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Doll ́ar, P. & Zitnick, C. L. (2014), Microsoft COCO: Common objects in context, Technical Report PART 5. Macukow, B. (2016), ‘Information Density Based Image Binarization’, Springer International Publishing Switzerland 1, 105–115.spa
dc.relation.referencesMcCulloch, W. & Pitts, W. (1943), ‘A logical calculus of the ideas immanent in nervous activity’, Bulletin of mathematical biophysics 5, 115–133.spa
dc.relation.referencesMensah, A. & Hauer, E. (1998), ‘Two Problems of Averaging Arising in the Estimation of the Relationship Between’, Transportation Research Record 1(98), 37–43.spa
dc.relation.referencesPersaud, B. N. & Mucsi, K. (1995), ‘Microscopic accident potential models for two-lane rural roads’, Transportation Research Record (1485), 134–139.spa
dc.relation.referencesRedmon, J., Divvala, S., Girshick, R. & Farhadi, A. (2015), ‘You Only Look Once: Unified, Real-Time Object Detection’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December, 779–788. URL: http://arxiv.org/abs/1506.02640spa
dc.relation.referencesRisk, A. & Shaoul, J. E. (1982), ‘Exposure to risk and the risk of exposure’, Accident Analysis and Prevention 14(5), 353–357.spa
dc.relation.referencesRosebrock, A. (2018), ‘YOLO object detection with OpenCV’.spa
dc.relation.referencesRumar, K. (1988), ‘Collective risk but individual safety’, Ergonomics 31(4), 507–518.spa
dc.relation.referencesRumar, K. (1999), Road safety and benchmarking, in ‘Proceedings of the Paris Conference on Transport Benchmarking’, pp. 95–109.spa
dc.relation.referencesRumelhart, D. E. & McClelland, J. L. (1987), Learning Internal Representations by Error Propagation - MIT Press books, in ‘Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations’, MIT Press, pp. 318–362. URL: https://ieeexplore.ieee.org/document/6302929spa
dc.relation.referencesSaha, S. (2018), ‘A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way’.spa
dc.relation.referencesSalvador, S. & Chan, P. (2007), ‘Toward accurate dynamic time warping in linear time and space’, Intelligent Data Analysis 11(5), 561–580.spa
dc.relation.referencesSaunier, N. & Midenet, S. (2010), ‘Automatic Estimation of the Exposure to Lateral Collision in Signalized Intersections using Video Sensors’, arXiv preprint arXiv:1012.4776 1(514), 1– 9.spa
dc.relation.referencesTransport Systems (2017), ‘Deodata - Recolecci ́on de informaci ́on de tr ́ansito mediante el uso de videos’. URL: https://www.deodata.co/spa
dc.relation.referencesWHO (2018), ‘Global Status Report on Road Safety 2018’, WHO .spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalSeguridad vialspa
dc.subject.proposalRed neuronalspa
dc.subject.proposalRiesgo vialspa
dc.subject.proposalVision por computadoraspa
dc.subject.proposalRoad safteyeng
dc.subject.proposalNeural networkeng
dc.subject.proposalTraffic riskeng
dc.subject.proposalComputer visioneng
dc.subject.unescoTráfico urbano
dc.subject.unescoUrban traffic
dc.subject.unescoSeguridad del transporte
dc.subject.unescoTransport safety
dc.titleA computational tool for the automatic detection of exposure to traffic risk from elementary eventseng
dc.title.translatedUna herramienta computacional para la detección automática de la exposición al riesgo vial a partir de eventos elementalesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032464886.2021.pdf
Tamaño:
43.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Transporte

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: