Generation and evaluation of agbiogeneric glyphosate tolerant soybean plants

dc.contributor.advisorLópez Carrascal, Camilo Ernesto
dc.contributor.authorMora Oberlaender, Julián Oliverio
dc.contributor.cvlacMora Oberlaender, Julián Oliverio [0001426306]spa
dc.contributor.googlescholarMora Oberlaender, Julianspa
dc.contributor.orcidMora Oberlaender, Julián Oliverio [0000-0003-0304-2380]spa
dc.contributor.researchgateMora-Oberlaender, Julianspa
dc.contributor.researchgroupIngeniería Genética de Plantasspa
dc.contributor.scopusMora Oberlaender, Julián Oliverio [55918882500]spa
dc.date.accessioned2024-07-16T17:28:53Z
dc.date.available2024-07-16T17:28:53Z
dc.date.issued2024
dc.descriptionIlustraciones a color, diagramas, fotografíasspa
dc.description.abstractSoybean is one of the main crops worldwide to which biotechnology has contributed greatly since the first genetically modified, herbicide-tolerant crops were introduced. In particular, glyphosate tolerance facilitates soybean production by reducing inputs, environmental impact and the need for tillage. First generation glyphosate tolerance technology is now in the public domain and therefore creates an opportunity for the development of agbiogeneric soybean. In Colombia, this can contribute in reducing the dependence on imported soybean by boosting competitiveness. This work contributes to the development of agbiogeneric glyphosate-tolerant soybeans by furthering the phenotypic and molecular evaluation and characterization of potential transgenic events. Colombian soybean varieties Brasilera 1, Brasilera 2 and FNS 01 were subjected to transformation, regeneration and selection, together with variety Soy-SK7 which had been included in previous work. Twenty-one potential primary transformants were obtained after adjusting in vitro selection and regeneration. A workflow was established for the obtention of subsequent generations derived from primary transformants and for their molecular evaluation via PCR and phenotypic selection using different doses of glyphosate. Tolerance to this herbicide was linked to the presence of an optimized version of the cp4epsps transgene in transformed plants. The results obtained here have helped identify bottlenecks in the generation of potentially transformed events and have highlighted the need for more efficient transformation protocols. Phenotypic and molecular selection requires a pool from which to identify those lines with more promising characteristics.eng
dc.description.abstractLa soya es uno de los principales cultivos en los que la biotecnología ha contribuido desde la introducción de los primeros cultivos transgénicos tolerantes a herbicidas. En particular la tolerancia al glifosato facilita la producción al reducir insumos, impacto ambiental y labranza. La primera generación de la tecnología está ahora en el dominio público, lo que crea una oportunidad para el desarrollo de soya agrobiogenérica. En Colombia esto contribuye a reducir la dependencia de las importaciones al impulsar la competitividad de este cultivo. Este trabajo contribuye al desarrollo de soya agrobiogenérica tolerante al glifosato mediante la evaluación fenotípica y molecular y la caracterización de eventos potenciales. Las variedades de soya colombianas Brasilera 1, Brasilera 2 y FNS 01 fueron sometidas a transformación, regeneración y selección, junto con la variedad Soy-SK7 que había sido incluida en trabajos previos. Se obtuvieron veintiún posibles transformantes primarios después de ajustar la selección in vitro y la regeneración. Se estableció un flujo de trabajo para la obtención de generaciones posteriores derivadas de los transformantes primarios y para su evaluación molecular mediante PCR y selección fenotípica utilizando diferentes dosis de glifosato. La tolerancia a este herbicida se asoció a la presencia de una versión optimizada del gen cp4epsps en las plantas transformadas. Los resultados obtenidos aquí han ayudado a identificar obstáculos en la generación de eventos potencialmente transformados y han destacado la necesidad de protocolos de transformación más eficientes. La selección fenotípica y molecular requiere de un conjunto del cual identificar aquellas líneas con características más prometedoras. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaBiotecnología Agrícolaspa
dc.format.extentxxv, 91 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86464
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAgbioInvestor. 2024. Global GM Crop Area 2023 Review. At: https://gm.agbioinvestor.com; Accessed: May 2024.spa
dc.relation.referencesAragão, F., Faria, J. 2009. First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27, 1086–1088. Doi: 10.1038/nbt1209-1086spa
dc.relation.referencesÁvila, L., Chaparro-Giraldo, A. 2009. Patentes e ingeniería genética de plantas. In: Chaparro-Giraldo, A. (Ed.). Propiedad intelectual en la era de los cultivos trangénicos. Bogotá, Colombia: Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología. Pp 89-110spa
dc.relation.referencesBarry, G., Kishore, G., Padgette, S., Stalling, W. 1997. Patent nº US 6248876 B1. USA.spa
dc.relation.referencesBernal, J.H. 2006. Manejo de malezas en el cultivo de la soya. En: C.A. Jaramillo, N. Cubillos (Ed.). Soya (Glycine max (L.) Merril), alternativa para los sistemas de producción de la Orinoquia colombiana. Villavicencio (Meta), Colombia: Corpoica C.I La Libertad. pp. 173‐180.spa
dc.relation.referencesBevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12(22), 8711-21. Doi: 10.1093/nar/12.22.8711spa
dc.relation.referencesBhat, S.R., Srinivasan, S. 2002. Molecular and genetic analyses of transgenic plants: Considerations and approaches. Plant Sci 163(4), 673-681. Doi: 10.1016/S0168-9452(02)00152-8spa
dc.relation.referencesBonny, S. 2016. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact. Environ Manage 57(1), 31-48. Doi: 10.1007/s00267-015-0589-7spa
dc.relation.referencesBrookes, G., Barfoot, P. 2020. Environmental impacts of genetically modified (GM) crop use 1996–2018: impacts on pesticide use and carbon emissions. GM Crops & Food 11(4), 215-241. Doi: 10.1080/21645698.2020.1773198spa
dc.relation.referencesBrookes, G. 2022a. Farm income and production impacts from the use of genetically modified (GM) crop technology 1996-2020. GM Crops & Food 13(1), 171-195. Doi: 10.1080/21645698.2022.2105626spa
dc.relation.referencesBrookes, G. 2022b. Genetically Modified (GM) Crop Use 1996–2020: Impacts on Carbon Emissions. GM Crops & Food 13(1), 242-261. Doi: 10.1080/21645698.2022.2118495spa
dc.relation.referencesBrookes, G. 2022c. Genetically Modified (GM) Crop Use 1996–2020: Environmental Impacts Associated with Pesticide Use Change. GM Crops & Food 13(1), 262-269. Doi: 10.1080/21645698.2022.2118497spa
dc.relation.referencesButelli, E., Titta, L., Giorgio, M., Mock, H.P., Matros, A. Peterek, S., Schijlen, E.G.W.M., Hall, R.D., Bovy, A.G., Luo, J., Martin, C. 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26, 1301–1308 Doi: 10.1038/nbt.1506spa
dc.relation.referencesCAN. 1993. Decisión 345. Régimen común de protección a los derechos de los obtentores de variedades vegetales. At: https://www.comunidadandina.org/StaticFiles/DocOf/DEC345.pdf; Accessed: May 2024.spa
dc.relation.referencesCarreño-Venegas, A., Mora-Oberlaender, J., Chaparro-Giraldo, A. 2017. Identification and freedom to operate analysis of potential genes for drought tolerance in maize. Agron colomb 35(2), 150-157. Doi: 10.15446/agron.colomb.v35n2.60706spa
dc.relation.referencesChaparro‐Giraldo, A. 2011. Cultivos transgénicos: entre los riesgos biológicos y los beneficios ambientales y económicos. Acta Biolo Colomb 16(3), 231‐252.spa
dc.relation.referencesChaparro‐Giraldo, A. 2013. Regulación para el uso agrícola de cultivos genéticamente modificados (GM). In: Chaparro-Giraldo, A. (Ed). Propiedad intelectual y regulación en biotecnología vegetal: el caso de los cultivos genéticamente modificados (GM). Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, Bogotá. Pp. 69-97spa
dc.relation.referencesChaparro-Giraldo, A., Ávila, K. 2013. El problema de la propiedad intelectual y la regulación en la liberación comercial de cultivos genéticamente modificados (GM) en Colombia. In Chaparro-Giraldo, A. (Ed). Propiedad intelectual y regulación en biotecnología vegetal: el caso de los cultivos genéticamente modificados (GM). Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, Bogotá. Pp. 1-14.spa
dc.relation.referencesChaparro-Giraldo, A. 2015. La ingeniería genética de plantas en Colombia: un camino en construcción. Acta Biolo. Colomb. 20(2), 13‐22. Doi: 10.15446/abc.v20n2.43412spa
dc.relation.referencesChen, P. 2016. Soybean cultivar UA 5414RR. US patent 9,326,478, B2, 3 May 2016spa
dc.relation.referencesChen P., Shannon, G., Scaboo, A., Crisel, M., Smothers, S., Clubb, M., Selves, S., Vieira, C.C., Ali, M.L., Mitchum, M.G., Nguyen, H., Li, Z., Bond, J., Meinhardt, C., Klepadlo, M., Li, S., Mengitsu, A., Robbins, R.T. 2020a. Registration of ‘S14‐15146GT’ soybean, a high‐yielding RR1 cultivar with high oil content and broad disease resistance and adaptation. J Plant Regist 14(1), 35–42. Doi: 10.1002/plr2.20018spa
dc.relation.referencesChen, P., Shannon, G., Crisel, M., Smmothers, S., Clubb, M., Vieira, C.C., Ali, M.L., Selves, S., Lee, D.H., Scaboo, A., Usovsky, M., Nguyen, H.T., Mitchum, M.G., Meinhardt, C., Li, Z., Bond, J., Robbins, R.T., Li, S., Smith, J.R., Mengitsu, A. 2020b. Registration of ‘S14‐15138GT’ Soybean as a High‐yielding RR1/STS Cultivar with Broad Disease Resistance and Adaptation. J Plant Regist 14(3), 311-317. Doi: 10.1002/plr2.20054spa
dc.relation.referencesChen P., Shannon, G., Ali, M., Scaboo, A., Smothers, S., Clubb, M., Selves, S., Vieira, C.C., Mitchum, M.G., Nguyen, H.T., Li, Z., Bond, J., Meinhardt, C., Usovsky, M., Li, S., Mengistu, A., Robbins, R.T. 2020c. Registration of ‘S14‐9017GT’ soybean cultivar with high yield, resistance to multiple diseases, and high seed oil content. J Plant Regist 14(3), 347-356. Doi:10.1002/plr2.20011spa
dc.relation.referencesChiera, J., Bouchard, R., Dorsey, S., Park, E., Buenrostro-Nava, M., Ling, P., Finer, J. 2007. Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Rep 26(9), 1501–1509. Doi: 10.1007/s00299-007-0359-yspa
dc.relation.referencesClemente, T.E., LaVallee, B.J., Howe, A.R., Conner-Ward, D., Rozman, R.J., Hunter, P.E., Broyles, D.L., Kasten, D.S., Hinchee, M.A. 2000. Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Science 40(3), 797-803. Doi: 10.2135/cropsci2000.403797xspa
dc.relation.referencesDale, J., James, A., Paul, J.Y., Khanna, H., Smith, M., Peraza-Echeverria, S., Garcia-Bastidas, F., Kema, G., Waterhouse, P., Mengersen, K., Harding, R. 2017. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat Commun 8, 1496. Doi: 10.1038/s41467-017-01670-6spa
dc.relation.referencesDe Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gosselé, V., Movva, N.R., Thompson, C., Montagu, M.V., Leemans, J. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6(9), 2513-8. Doi: 10.1002/j.1460-2075.1987.tb02537.xspa
dc.relation.referencesDeeba, F., Hyder, M.Z., Shah, S.H., Naqvi, S.M. 2014. Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus 15, 358-364. Doi: 10.1186/2193-1801-3-358spa
dc.relation.referencesDella-Cioppa, G., Bauer, C., Klein, B.K., Shah, D.M., Fraley, R.T., Kishore, G.M. 1986. Translocation of the Precursor of 5-enolpyruvylshikimate-3-phosphate Synthase into Chloroplasts of Higher Plants in vitro. Proc Natl Acad Sci USA 83(18), 6873-6877. Doi: 10.1073/pnas.83.18.6873spa
dc.relation.referencesDNP. 2014. Documento CONPES 3797. Política para el desarrollo integral de la Orinoquia: Altillanura – Fase I. Bogotá, Colombia: Departamento Nacional de Planeación.spa
dc.relation.referencesDuke, S.O., Cerdeira, A.L. 2010. Transgenic Crops for Herbicide Resistance. En: C. Kole, C.H. Michler, A.G. Abbott, T.C. Hall (Eds.). Transgenic Crop Plants Volume 2: Utilization and Biosafety. Heidelberg, Germany: Springer. Pp 133-166.spa
dc.relation.referencesFAOSTAT. 2023. Food and agriculture data. At: https://www.fao.org/faostat/en; Accessed: September, 2023.spa
dc.relation.referencesFenalce. 2023. Estadísticas. At: https://fenalce.co/estadisticas; Accessed: September 2023.spa
dc.relation.referencesFunke, T., Han, H., Healy-Fried, M.L., Fischer, M., Schonbrunn, E. 2006. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc Natl Acad Sci USA 103(35), 13010–13015. Doi: 10.1073/pnas.0603638103spa
dc.relation.referencesGalinat, W.C. 1988. The origin of corn. In: Sprague, G.F., Dudley, J.W. (Eds.). Corn and corn improvement - Agronomy monograph No. 18, 3rd edn. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. Madison. Pp 1–31. Doi: 10.2134/agronmonogr18.3ed.c1spa
dc.relation.referencesGelvin, S.B. 2003. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67(1), 16-37. Doi: 10.1128/MMBR.67.1.16-37spa
dc.relation.referencesGhislain, M., Byarugaba, A.A., Magembe, E., Njoroge, A., Rivera, C., Román, M.L., Tovar, J.C., Gamboa, S., Forbes, G.A., Kreuze, J.F., Barekye, A., Kiggundu, A. 2019. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotechnol J 17(6), 1119-1129. Doi: 10.1111/pbi.13042spa
dc.relation.referencesGonzález, F.G., Capella, M., Ribichich, K.F., Curín, F., Giacomelli, J.I., Ayala, F., Watson, G., Otegui, M.E., Chan, R.L. 2019. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. J Exp Bot 70(5), 1669-1681. Doi: 10.1093/jxb/erz037spa
dc.relation.referencesGreen, J.M. 2012. The benefits of herbicide-resistant crops. Pest Manag Sci 68(10), 1323-1331. Doi: 10.1002/ps.3374spa
dc.relation.referencesGreen, J.M., Siehl, D.L. 2021. History and Outlook for Glyphosate-Resistant Crops. Rev Environ Contam Toxicol 255, 67-91. Doi: 10.1007/398_2020_54spa
dc.relation.referencesGressel, J. 2018. Herbicide tolerance and resistance: alteration of site of activity. In: Duke, S.O. (Ed.). Weed Physiology. Volume 2: Herbicide Physiology. CRC Press, Boca Raton. Pp 159-189. Doi: 10.1201/0781351077736spa
dc.relation.referencesGruskin, D. 2012. Agbiotech 2.0. Nat Biotechnol 30(3), 211–214. Doi: 10.1038/nbt.2144spa
dc.relation.referencesHerrera-Estrella, L., Depicker, A., Van Montagu, M., Schell, J. 1983. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303, 209–213. Doi: 10.1038/303209a0spa
dc.relation.referencesHinchee, M.A., Connor-Ward, D.V., Newell, C.A., McDonnell, R.E., Sato, S.J., Gasser, C.S., Fischhoff, D.A., Re, D.B., Fraley, R.T., Horsch, R.B. 1988 . Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer. Nat Biotechnol 6, 915–922. Doi: 10.1038/nbt0888-915spa
dc.relation.referencesICA. 2000. Resolución 1219 del 18 de mayo de 2000 “Por la cual se autoriza la introducción de plantas de clavel modificado genéticamente.” Instituto Colombiano Agropecuario, Bogotá.spa
dc.relation.referencesICA. 2003. Resolución 1247 del 20 de mayo de 2003 “Por la cual se autorizan siembras comerciales de algodón con la tecnología Bollgard®.” Instituto Colombiano Agropecuario, Bogotá.spa
dc.relation.referencesICA. 2007. Resolución 465 del 26 de febrero de 2007 “Por la cual se autorizan siembras de maíz con la tecnología Yieldgard® (MON 810).” Instituto Colombiano Agropecuario, Bogotá.spa
dc.relation.referencesICA. 2010. Resolución 2404 del 19 de Julio de 2010 “Por la cual se autoriza siembras comerciales de soya Roundup Ready (MON-04032-6).” Instituto Colombiano Agropecuario, Bogotá.spa
dc.relation.referencesICA. 2019. Resolución 13025 del 26 de Agosto de 2019 “Por medio de la cual se autoriza a la Federación Nacional de Cultivadores de Cereales, Leguminosas y soya - FENALCE, siembras comerciales de los genotipos de maíz que contengan el evento TC1507 (DAS-Ø15Ø7–1).” Instituto Colombiano Agropecuario, Bogotá.spa
dc.relation.referencesICA. 2020a. Resolución 82351 del 29 de Diciembre de 2020 “Por la cual se autoriza a la empresa SEMILLAS PANORAMA S.A.S, siembras comerciales de la soya (Glycine max) genéticamente modificada con tolerancia a glifosato (evento GTS 40-3-2). Instituto Colombiano Agropecuario, Bogotá.spa
dc.relation.referencesICA. 2020b. Resolución 82352 del 29 de Diciembre de 2020 “Por la cual se autoriza a la empresa Alimentos FINCA S.A.S. con sigla FINCA S.A.S. siembras comerciales de la soya (Glycine max) genéticamente modificada con tolerancia a glifosato (evento GTS 40-3-2).” Instituto Colombiano Agropecuario, Bogotá.spa
dc.relation.referencesICA. 2021a. Resolución 91505 del 15 de Febrero de 2021 “Por medio de la cual se establece el trámite de las solicitudes de los Organismos Vivos Modificados – OVM con fines exclusivamente agrícolas, pecuarios, pesqueros, plantaciones forestales comerciales y agroindustriales ante el ICA.” Instituto Colombiano Agropecuario, Bogotá.spa
dc.relation.referencesICA. 2021b. Resolución 95613 del 19 de Abril de 2021 “Por la cual se autoriza a la empresa AGROPECUARIA ALIAR S.A., con sigla ALIAR S.A., siembras comerciales de la soya (Glycine max) genéticamente modificada con tolerancia a glifosato (evento GTS 40-3-2).” Instituto Colombiano Agropecuario, Bogotá.spa
dc.relation.referencesISAAA. 2019. Global status of commercialized biotech/GM crops in 2019: Biotech crops drive socio economic development and sustainable environment in the new frontier. ISAAA Brief No.55. ISAAA, Ithaca.spa
dc.relation.referencesISAAA. 2023. GM Approval Database. At: http://www.isaaa.org/gmapprovaldatabase; Accessed December 2023.spa
dc.relation.referencesJauhar, P.P. 2006. Modern biotechnology as an integral supplement to conventional plant breeding: The prospects and challenges. Crop Sci 46(5), 1841-1859. Doi: 10.2135/cropsci2005.07-0223spa
dc.relation.referencesJefferson, R.A., Kavanagh, T.A., Bevan, M.W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6(13), 3901-3907. Doi: 10.1002/j.1460-2075.1987.tb02730.xspa
dc.relation.referencesJefferson, D.J., Graff, G.D., Chi-Ham, C.L., Bennett, A.B. 2015. The emergence of agbiogenerics. Nat Biotechnol 33(8), 819-823. Doi: 10.1038/nbt.3306spa
dc.relation.referencesJiménez-Barreto, J., Chaparro-Giraldo, A., Mora-Oberlaender, J., Vargas-Sánchez, J.E. 2016. Molecular characterization and freedom to operate analysis of maize hybrids from genetically modified and Colombian varieties. Agron Colomb 34(3), 309–316. Doi: 10.15446/agron.colomb.v34n3.60350spa
dc.relation.referencesJiménez-Barreto, J.P., Mora-Oberlaender, J., Chaparro-Giraldo, A. 2020. Freedom to operate analysis, design and evaluation of expression cassettes that confertolerance to glyphosate. Agron Colomb 38(2), 216–225. Doi: 10.15446/agron.colomb.v38n2.79150spa
dc.relation.referencesJiménez-Barreto, J.P., Vargas Sánchez, J.E., Mora-Oberlaender, J., Chaparro-Giraldo, A. 2024. First Latin American off-patent corn event. Fenaltec 22. Crop Breed Appl Technol 24(2), e46582428. Doi: 10.1590/1984-70332024v24n2n21spa
dc.relation.referencesKohli, A., Miro, B., Twyman R.M. 2010. Transgene integration,, expression and stability in plants: strategies for improvements. In: Kole, C., Michler, C., Abbott, A. and T. Hall (Eds.). Transgenic crop plants. Principles and development. Berlin: Springer-Verlag. Pp 201-237.spa
dc.relation.referencesKim, M.Y., Van, K., Kang, Y.J., Kim, K.H., Lee, S.H. 2012. Tracing soybean domestication history: From nucleotide to genome. Breed Sci 61(5), 445-52. Doi: 10.1270/jsbbs.61.445spa
dc.relation.referencesKishore, G.M., Padgette, S.R., Fraley, R.T. 1992. History of Herbicide-Tolerant Crops, Methods of Development and Current State of the Art – Emphasis on Glyphosate Tolerance. Weed Technol 6(3), 626-634. Doi: 10.1017/S0890037X00035934spa
dc.relation.referencesKlümper, W., Qaim, M. 2014. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 9, e111629. Doi: 10.1371/journal.pone.0111629spa
dc.relation.referencesKumudini, S. 2010. Soybean growth and development. In: Singh, G. (Ed). The Soybean: botany, production and uses. Oxford, United Kingdom: CAB International. Pp 48-73.spa
dc.relation.referencesKyndt, T., Quispe, D., Zhai, H., Jarret, R., Ghislain, M., Liu, Q., Gheysen, G., Kreuze. J.F. 2015. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112(18), 5844-5849. Doi: 10.1073/pnas.1419685112.spa
dc.relation.referencesLacroix, B., Citovsky, V. 2019. Pathways of DNA transfer to plants from Agrobacterium tumefaciens and related bacterial species. Annu Rev Phytopathol 57, 231–251. Doi: 10.1146/annurev-phyto-082718-100101spa
dc.relation.referencesLi S, Cong, Y., Liu, Y. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci 8, 246. Doi: 10.3389/fpls.2017.00246spa
dc.relation.referencesLin, J., Mazarei, M., Zhao, N., Hatcher, C.N., Wuddineh, W.A., Rudis, M., Tschaplinski, T.J., Pantalone, V.R., Arelli, P.R., Hewezi, T., Chen, F., Stewart Jr, C.N. 2016. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines. Plant Biotechnol J 14(11), 2100-2109. Doi: 10.1111/pbi.12566spa
dc.relation.referencesMalven, M., Rinehart, J., Taylor, N., Dickinson, E. 2009. Soybean event MON89788 and methods for detection thereof. Patent nº US 7632985 B2. USA.spa
dc.relation.referencesMangena, P. 2019. The role of plant genotype, culture medium and Agrobacterium on soybean plantlets regeneration during genetic transformation. In Khan, M.S., Malik, K.A. (Eds) Transgenic Crops - Emerging Trends and Future Perspectives. IntechOpen, London. Pp. 17-40.spa
dc.relation.referencesMcCabe, D.E., Swain, W.F., Martinell, B.J., Christou, P. 1988. Stable Transformation of Soybean (Glycine Max) by Particle Acceleration. Nat Biotechnol 6, 923–926. Doi: 10.1038/nbt0888-923spa
dc.relation.referencesMcDougall P. 2011. The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Consultancy Study for Crop Life International by P McDougall, Midlothian, UK.spa
dc.relation.referencesMeyer, J., Horak, M., Rosenbaum, E., Schneider, R. 2006. Petition for the Determination of Nonregulated Status for Roundup RReady2Yield™ Soybean MON 89788. Saint Louis: Monsanto Company.spa
dc.relation.referencesMinAgricultura. 2015. Colombia Siembra. Ministerio de Agricultura y Desarrollo Rural. At: https://www.minagricultura.gov.co/ColombiaSiembra; Accessed December 2023.spa
dc.relation.referencesMinAgricultura. 2021. Soya-Maíz: Proyecto país. Ministerio de Agricultura y Desarrollo Rural, Bogotá.spa
dc.relation.referencesMolano, J. 1998. Biogeografía de la Orinoquia colombiana. In: Colombia Orinoco. Fondo para la Protección del Medio Ambiente “José Celestino Mutis” FEN-Colombia. Biblioteca virtual Luis Ángel Arango.spa
dc.relation.referencesMora-Oberlaender, J., Castaño, A., López-Pazos, S., Chaparro-Giraldo, A. 2018. Genetic engineering of crop plants: Colombia as a case study. In: Kuntz, M. (Ed.). Advances in Botanical Research. Elsevier, Amsterdam. Pp. 169-206. Doi: 10.1016/ bs.abr.2017.11.005spa
dc.relation.referencesMora-Oberlaender, J., Jiménez-Barreto, J.P., Rodríguez-Abril, E., Estrada-Arteaga, M., Chaparro-Giraldo, A. 2022. Opportunities for Generic Cisgenic Crops. In: Chaurasia, A., Chittaranjan, K. (Eds.). Cisgenic Crops: Potential and Prospects. Springer Nature. Pp 89-119. Doi: 10.1007/978-3-031-06628-3_6spa
dc.relation.referencesMora-Oberlaender, J., Rodríguez-Abril, Y., Estrada-Arteaga, M., Galindo-Sotomonte, L., Romero-Betancourt, J.D., Jiménez-Barreto, J., López-Carrascal, C., Chaparro-Giraldo, A. 2024. Agbiogeneric soybean with glyphosate tolerance: genetic transformation of new Colombian varieties. Crop Breed Appl Technol 24(1), e474324113. Doi: 10.1590/1984-70332024v24n1a13spa
dc.relation.referencesNester, E.W. 2015. Agrobacterium: nature’s genetic engineer. Front Plant Sci 5,730. Doi: 10.3389/fpls.2014.00730spa
dc.relation.referencesOrazaly M., Florez-Palacios, L., Manjarrez-Sandoval, P., Mozzoni, L., Dombek, D., Wu, C., Chen, P. 2019. Registration of ‘UA 5715GT’ Soybean Cultivar. J Plant Regist 13(1), 31-37. Doi: 10.3198/jpr2018.03.0011crcspa
dc.relation.referencesPadgette, S.R., Kolacz, K.H., Delannay, X., Re, D.B., LaVallee, B.J., Tinius, C.N., Rhodes, W.K., Otero, Y.I., Barry, G.F., Eichholtz, D.A., Peschke, V.M., Nida, D.L., Taylor, N.B., Kishore., G.M. 1995. Development, identification and characterization of a glyphosate-tolerant soybean line. Crop Sci 35(5), 1451–1461. Doi: 10.2135/cropsci1995.0011183X003500050032xspa
dc.relation.referencesPanthee, D.R. 2010. Varietal improvement in soybean. In: Singh, G. (Ed.). The soybean. Botany, production and uses. Ludhiana, India: Department of plant breeding and genetics, Punjab Agricultural University. Pp 92-112.spa
dc.relation.referencesPaz, M.M., Martinez, J.C., Kalvig, A.B., Fonger, T.M., Wang, K. 2006. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25(3), 206-213. Doi: 10.1007/s00299-005-0048-7spa
dc.relation.referencesPereira, L., Christin, P-A., Dunning, L.T. 2022. The mechanisms underpinning lateral gene transfer between grasses. Plants People Planet 5(5), 672-682. Doi: 10.1002/ppp3.10347spa
dc.relation.referencesPline, W.A., Wu, J., Hatzios, K.K. 1999. Effects of Temperature and Chemical Additives on the Response of Transgenic Herbicide-Resistant Soybeans to Glufosinate and Glyphosate Applications. Pestic Biochem Physiol 65(2), 119–131. Doi: 10.1006/pest.1999.2437spa
dc.relation.referencesPollegioni, L., Schonbrunn, E., Siehl, D. 2011. Molecular basis of glyphosate resistance: Different approaches through protein engineering. FEBS J 278(16), 2753-2766. Doi: 10.1111/j.1742-4658.2011.08214.x.spa
dc.relation.referencesPrado, J.R., Segers, G., Voelker, T., Carson, D., Dobert, R., Phillips, J., Cook, K., Cornejo, C., Monken, J., Grapes, L., Reynolds, T., Martino-Catt, S. 2014. Biotech Crop Development: From Idea to Product. Annu Rev Plant Biol 65(1), 769-790. Doi: 10.1146/annurev-arplant-050213-040039.spa
dc.relation.referencesQiu, L.J., Chang, R.Z. 2010. The origin and history of soybean. In: Singh, G. (Ed.). The soybean. Botany, production and uses. Ludhiana, India: Department of plant breeding and genetics, Punjab Agricultural University. Pp 1-23spa
dc.relation.referencesRaghuvanshi, R.S., Bisht, K. 2010. Uses of soybean: Products and preparation. In: Singh, G. (Ed.). The soybean. Botany, production and uses. Ludhiana, India: Department of plant breeding and genetics, Punjab Agricultural University. Pp 404-426spa
dc.relation.referencesReddy, M.S., Dinkins, R.D., Collins, G.B. 2003. Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep 21(7), 676-83. Doi: 10.1007/s00299-002-0567-4spa
dc.relation.referencesRippstein, G., Amézquita, E., Escobar, G., Grollier, C. 2001. Condiciones naturales de la sabana. In: Rippstein, G., Escobar, G., Motta, F. Agroecología y biodiversidad de las sabanas en los Llanos Orientales de Colombia. Cali: Centro Internacional de Agricultura Tropical. Pp 1-21.spa
dc.relation.referencesRojas-Arias, A.C., Palacio, J.L., Chaparro-Giraldo, A., López-Pazos,S.A. 2017. Patents and genetically modified soybean for glyphosate resistance. World Pat Inf 48:47–51. Doi: 10.1016/j. wpi.2017.01.002spa
dc.relation.referencesRojas, A., López-Pazos, S., Chaparro-Giraldo, A. 2018. Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate. Agron Colomb 36(1), 24–34. Doi: 10.15446/agron.colomb.v36n1.67440spa
dc.relation.referencesRüdelsheim, P., Dumont, P., Freyssinet, G., Pertry, I., Heijde, M. 2018. Off-Patent transgenic events: Challenges and opportunities for new actors and markets in agriculture. Front Bioeng Biotechnol 6, 71. Doi: 10.3389/fbioe.2018.00071spa
dc.relation.referencesSchiek, B., Hareau, G., Baguma, Y., Medakker, A., Douches, D., Shotkoski, F., Ghislain, M. 2016. Demystification of GM crop costs: releasing late blight resistant potato varieties as public goods in developing countries. Int J Biotechnol 14(2), 112-131. Doi: 10.1504/IJBT.2016.077942spa
dc.relation.referencesSchmidt, M.A., Parrot, W.A. 2001. Quantitative detection of transgenes in soybean [Glycine max (L.) Merrill] and peanut (Arachis hypogaea L.) by real-time polymerase chain reaction. Plant Cell Rep 20(5), 422-428. Doi: 10.1007/s002990100326spa
dc.relation.referencesSchnell, J., Steele, M., Bean, J., Neuspiel, M., Girard, C., Dormann, N., Pearson, C., Savoie, A., Bourbonnière, L., Macdonald, P. 2015. A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 24, 1–17. Doi: 10.1007/s11248-014-9843-7spa
dc.relation.referencesSchönbrunn, E., Eschenburg, S., Shuttleworth, W.A., Schloss, J.V., Amrhein, N., Evans, J.N., Kabsch, W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci USA 98(4), 1376–1380. Doi: 10.1073/pnas.98.4.1376.spa
dc.relation.referencesSteinrücken, H.C., Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94(4), 1207–1212. Doi: 10.1016/0006-291x(80)90547-1.spa
dc.relation.referencesValencia, R.A. 2006. La producción de soya en la Orinoquía colombiana, potencialidades y limitantes. In: C.A. Jaramillo, N. Cubillos (Eds.). Soya (Glycine max (L.) Merril), alternativa para los sistemas de producción de la Orinoquia colombiana. Villavicencio (Meta), Colombia: Corpoica C.I La Libertad. Pp. 65‐72.spa
dc.relation.referencesValencia, R.A., Ligarreto, G.A. 2010. Mejoramiento genético de la soya (Glycine max [L.] Merril) para su cultivo en la altillanura colombiana: una visión conceptual prospectiva. Agron Colomb 28(2), 155-164.spa
dc.relation.referencesVaranasi, A., Prasad, P.V.V., Jugulam, M. 2016. Impact of Climate Change Factors on Weeds and Herbicide Efficacy. In: Sparks, D.L. (Ed.). Advances in Agronomy 135. Pp 107–146. Doi:10.1016/bs.agron.2015.09.002spa
dc.relation.referencesXu, H., Guo, Y., Qiu, L., Ran, Y. 2022. Progress in soybean genetic transformation over the last decade. Front Plant Sci 13, 900318. Doi: 10.3389/fpls.2022.900318spa
dc.relation.referencesYe, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., Potrykus, I. 2000. Engineering the Provitamin A (-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 287(5451), 303–305. Doi: 10.1126/science.287.5451.303spa
dc.relation.referencesYue, J., Hu, X., Sun, H., Yang, Y., Huang, J. 2012. Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 3, 1152. Doi: 10.1038/ncomms2148spa
dc.relation.referencesZhang, Z., Xing, A., Staswick, P., Clemente, T.E. 1999. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult 56(1), 37–46. Doi: 10.1023/A:1006298622969spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.agrovocHerbicida
dc.subject.agrovocTransformación genética
dc.subject.agrovocCultivo de tejidos
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalGM cropseng
dc.subject.proposalHerbicideseng
dc.subject.proposalIntellectual Propertyeng
dc.subject.proposalGenetic transformationeng
dc.subject.proposalPlant tissue cultureeng
dc.subject.proposalSelectioneng
dc.titleGeneration and evaluation of agbiogeneric glyphosate tolerant soybean plantseng
dc.title.translatedGeneración y evaluación de plantas de soya agrobiogenéricas tolerantes al glifosatospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinCienciasspa
oaire.fundernameFenalcespa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79954927.2024.pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctor en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: