Generation and evaluation of agbiogeneric glyphosate tolerant soybean plants
dc.contributor.advisor | López Carrascal, Camilo Ernesto | |
dc.contributor.author | Mora Oberlaender, Julián Oliverio | |
dc.contributor.cvlac | Mora Oberlaender, Julián Oliverio [0001426306] | spa |
dc.contributor.googlescholar | Mora Oberlaender, Julian | spa |
dc.contributor.orcid | Mora Oberlaender, Julián Oliverio [0000-0003-0304-2380] | spa |
dc.contributor.researchgate | Mora-Oberlaender, Julian | spa |
dc.contributor.researchgroup | Ingeniería Genética de Plantas | spa |
dc.contributor.scopus | Mora Oberlaender, Julián Oliverio [55918882500] | spa |
dc.date.accessioned | 2024-07-16T17:28:53Z | |
dc.date.available | 2024-07-16T17:28:53Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | Soybean is one of the main crops worldwide to which biotechnology has contributed greatly since the first genetically modified, herbicide-tolerant crops were introduced. In particular, glyphosate tolerance facilitates soybean production by reducing inputs, environmental impact and the need for tillage. First generation glyphosate tolerance technology is now in the public domain and therefore creates an opportunity for the development of agbiogeneric soybean. In Colombia, this can contribute in reducing the dependence on imported soybean by boosting competitiveness. This work contributes to the development of agbiogeneric glyphosate-tolerant soybeans by furthering the phenotypic and molecular evaluation and characterization of potential transgenic events. Colombian soybean varieties Brasilera 1, Brasilera 2 and FNS 01 were subjected to transformation, regeneration and selection, together with variety Soy-SK7 which had been included in previous work. Twenty-one potential primary transformants were obtained after adjusting in vitro selection and regeneration. A workflow was established for the obtention of subsequent generations derived from primary transformants and for their molecular evaluation via PCR and phenotypic selection using different doses of glyphosate. Tolerance to this herbicide was linked to the presence of an optimized version of the cp4epsps transgene in transformed plants. The results obtained here have helped identify bottlenecks in the generation of potentially transformed events and have highlighted the need for more efficient transformation protocols. Phenotypic and molecular selection requires a pool from which to identify those lines with more promising characteristics. | eng |
dc.description.abstract | La soya es uno de los principales cultivos en los que la biotecnología ha contribuido desde la introducción de los primeros cultivos transgénicos tolerantes a herbicidas. En particular la tolerancia al glifosato facilita la producción al reducir insumos, impacto ambiental y labranza. La primera generación de la tecnología está ahora en el dominio público, lo que crea una oportunidad para el desarrollo de soya agrobiogenérica. En Colombia esto contribuye a reducir la dependencia de las importaciones al impulsar la competitividad de este cultivo. Este trabajo contribuye al desarrollo de soya agrobiogenérica tolerante al glifosato mediante la evaluación fenotípica y molecular y la caracterización de eventos potenciales. Las variedades de soya colombianas Brasilera 1, Brasilera 2 y FNS 01 fueron sometidas a transformación, regeneración y selección, junto con la variedad Soy-SK7 que había sido incluida en trabajos previos. Se obtuvieron veintiún posibles transformantes primarios después de ajustar la selección in vitro y la regeneración. Se estableció un flujo de trabajo para la obtención de generaciones posteriores derivadas de los transformantes primarios y para su evaluación molecular mediante PCR y selección fenotípica utilizando diferentes dosis de glifosato. La tolerancia a este herbicida se asoció a la presencia de una versión optimizada del gen cp4epsps en las plantas transformadas. Los resultados obtenidos aquí han ayudado a identificar obstáculos en la generación de eventos potencialmente transformados y han destacado la necesidad de protocolos de transformación más eficientes. La selección fenotípica y molecular requiere de un conjunto del cual identificar aquellas líneas con características más prometedoras. (Texto tomado de la fuente) | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Biotecnología | spa |
dc.description.researcharea | Biotecnología Agrícola | spa |
dc.format.extent | xxv, 91 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86464 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Biotecnología | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | AgbioInvestor. 2024. Global GM Crop Area 2023 Review. At: https://gm.agbioinvestor.com; Accessed: May 2024. | spa |
dc.relation.references | Aragão, F., Faria, J. 2009. First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27, 1086–1088. Doi: 10.1038/nbt1209-1086 | spa |
dc.relation.references | Ávila, L., Chaparro-Giraldo, A. 2009. Patentes e ingeniería genética de plantas. In: Chaparro-Giraldo, A. (Ed.). Propiedad intelectual en la era de los cultivos trangénicos. Bogotá, Colombia: Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología. Pp 89-110 | spa |
dc.relation.references | Barry, G., Kishore, G., Padgette, S., Stalling, W. 1997. Patent nº US 6248876 B1. USA. | spa |
dc.relation.references | Bernal, J.H. 2006. Manejo de malezas en el cultivo de la soya. En: C.A. Jaramillo, N. Cubillos (Ed.). Soya (Glycine max (L.) Merril), alternativa para los sistemas de producción de la Orinoquia colombiana. Villavicencio (Meta), Colombia: Corpoica C.I La Libertad. pp. 173‐180. | spa |
dc.relation.references | Bevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12(22), 8711-21. Doi: 10.1093/nar/12.22.8711 | spa |
dc.relation.references | Bhat, S.R., Srinivasan, S. 2002. Molecular and genetic analyses of transgenic plants: Considerations and approaches. Plant Sci 163(4), 673-681. Doi: 10.1016/S0168-9452(02)00152-8 | spa |
dc.relation.references | Bonny, S. 2016. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact. Environ Manage 57(1), 31-48. Doi: 10.1007/s00267-015-0589-7 | spa |
dc.relation.references | Brookes, G., Barfoot, P. 2020. Environmental impacts of genetically modified (GM) crop use 1996–2018: impacts on pesticide use and carbon emissions. GM Crops & Food 11(4), 215-241. Doi: 10.1080/21645698.2020.1773198 | spa |
dc.relation.references | Brookes, G. 2022a. Farm income and production impacts from the use of genetically modified (GM) crop technology 1996-2020. GM Crops & Food 13(1), 171-195. Doi: 10.1080/21645698.2022.2105626 | spa |
dc.relation.references | Brookes, G. 2022b. Genetically Modified (GM) Crop Use 1996–2020: Impacts on Carbon Emissions. GM Crops & Food 13(1), 242-261. Doi: 10.1080/21645698.2022.2118495 | spa |
dc.relation.references | Brookes, G. 2022c. Genetically Modified (GM) Crop Use 1996–2020: Environmental Impacts Associated with Pesticide Use Change. GM Crops & Food 13(1), 262-269. Doi: 10.1080/21645698.2022.2118497 | spa |
dc.relation.references | Butelli, E., Titta, L., Giorgio, M., Mock, H.P., Matros, A. Peterek, S., Schijlen, E.G.W.M., Hall, R.D., Bovy, A.G., Luo, J., Martin, C. 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26, 1301–1308 Doi: 10.1038/nbt.1506 | spa |
dc.relation.references | CAN. 1993. Decisión 345. Régimen común de protección a los derechos de los obtentores de variedades vegetales. At: https://www.comunidadandina.org/StaticFiles/DocOf/DEC345.pdf; Accessed: May 2024. | spa |
dc.relation.references | Carreño-Venegas, A., Mora-Oberlaender, J., Chaparro-Giraldo, A. 2017. Identification and freedom to operate analysis of potential genes for drought tolerance in maize. Agron colomb 35(2), 150-157. Doi: 10.15446/agron.colomb.v35n2.60706 | spa |
dc.relation.references | Chaparro‐Giraldo, A. 2011. Cultivos transgénicos: entre los riesgos biológicos y los beneficios ambientales y económicos. Acta Biolo Colomb 16(3), 231‐252. | spa |
dc.relation.references | Chaparro‐Giraldo, A. 2013. Regulación para el uso agrícola de cultivos genéticamente modificados (GM). In: Chaparro-Giraldo, A. (Ed). Propiedad intelectual y regulación en biotecnología vegetal: el caso de los cultivos genéticamente modificados (GM). Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, Bogotá. Pp. 69-97 | spa |
dc.relation.references | Chaparro-Giraldo, A., Ávila, K. 2013. El problema de la propiedad intelectual y la regulación en la liberación comercial de cultivos genéticamente modificados (GM) en Colombia. In Chaparro-Giraldo, A. (Ed). Propiedad intelectual y regulación en biotecnología vegetal: el caso de los cultivos genéticamente modificados (GM). Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, Bogotá. Pp. 1-14. | spa |
dc.relation.references | Chaparro-Giraldo, A. 2015. La ingeniería genética de plantas en Colombia: un camino en construcción. Acta Biolo. Colomb. 20(2), 13‐22. Doi: 10.15446/abc.v20n2.43412 | spa |
dc.relation.references | Chen, P. 2016. Soybean cultivar UA 5414RR. US patent 9,326,478, B2, 3 May 2016 | spa |
dc.relation.references | Chen P., Shannon, G., Scaboo, A., Crisel, M., Smothers, S., Clubb, M., Selves, S., Vieira, C.C., Ali, M.L., Mitchum, M.G., Nguyen, H., Li, Z., Bond, J., Meinhardt, C., Klepadlo, M., Li, S., Mengitsu, A., Robbins, R.T. 2020a. Registration of ‘S14‐15146GT’ soybean, a high‐yielding RR1 cultivar with high oil content and broad disease resistance and adaptation. J Plant Regist 14(1), 35–42. Doi: 10.1002/plr2.20018 | spa |
dc.relation.references | Chen, P., Shannon, G., Crisel, M., Smmothers, S., Clubb, M., Vieira, C.C., Ali, M.L., Selves, S., Lee, D.H., Scaboo, A., Usovsky, M., Nguyen, H.T., Mitchum, M.G., Meinhardt, C., Li, Z., Bond, J., Robbins, R.T., Li, S., Smith, J.R., Mengitsu, A. 2020b. Registration of ‘S14‐15138GT’ Soybean as a High‐yielding RR1/STS Cultivar with Broad Disease Resistance and Adaptation. J Plant Regist 14(3), 311-317. Doi: 10.1002/plr2.20054 | spa |
dc.relation.references | Chen P., Shannon, G., Ali, M., Scaboo, A., Smothers, S., Clubb, M., Selves, S., Vieira, C.C., Mitchum, M.G., Nguyen, H.T., Li, Z., Bond, J., Meinhardt, C., Usovsky, M., Li, S., Mengistu, A., Robbins, R.T. 2020c. Registration of ‘S14‐9017GT’ soybean cultivar with high yield, resistance to multiple diseases, and high seed oil content. J Plant Regist 14(3), 347-356. Doi:10.1002/plr2.20011 | spa |
dc.relation.references | Chiera, J., Bouchard, R., Dorsey, S., Park, E., Buenrostro-Nava, M., Ling, P., Finer, J. 2007. Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Rep 26(9), 1501–1509. Doi: 10.1007/s00299-007-0359-y | spa |
dc.relation.references | Clemente, T.E., LaVallee, B.J., Howe, A.R., Conner-Ward, D., Rozman, R.J., Hunter, P.E., Broyles, D.L., Kasten, D.S., Hinchee, M.A. 2000. Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Science 40(3), 797-803. Doi: 10.2135/cropsci2000.403797x | spa |
dc.relation.references | Dale, J., James, A., Paul, J.Y., Khanna, H., Smith, M., Peraza-Echeverria, S., Garcia-Bastidas, F., Kema, G., Waterhouse, P., Mengersen, K., Harding, R. 2017. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat Commun 8, 1496. Doi: 10.1038/s41467-017-01670-6 | spa |
dc.relation.references | De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gosselé, V., Movva, N.R., Thompson, C., Montagu, M.V., Leemans, J. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6(9), 2513-8. Doi: 10.1002/j.1460-2075.1987.tb02537.x | spa |
dc.relation.references | Deeba, F., Hyder, M.Z., Shah, S.H., Naqvi, S.M. 2014. Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus 15, 358-364. Doi: 10.1186/2193-1801-3-358 | spa |
dc.relation.references | Della-Cioppa, G., Bauer, C., Klein, B.K., Shah, D.M., Fraley, R.T., Kishore, G.M. 1986. Translocation of the Precursor of 5-enolpyruvylshikimate-3-phosphate Synthase into Chloroplasts of Higher Plants in vitro. Proc Natl Acad Sci USA 83(18), 6873-6877. Doi: 10.1073/pnas.83.18.6873 | spa |
dc.relation.references | DNP. 2014. Documento CONPES 3797. Política para el desarrollo integral de la Orinoquia: Altillanura – Fase I. Bogotá, Colombia: Departamento Nacional de Planeación. | spa |
dc.relation.references | Duke, S.O., Cerdeira, A.L. 2010. Transgenic Crops for Herbicide Resistance. En: C. Kole, C.H. Michler, A.G. Abbott, T.C. Hall (Eds.). Transgenic Crop Plants Volume 2: Utilization and Biosafety. Heidelberg, Germany: Springer. Pp 133-166. | spa |
dc.relation.references | FAOSTAT. 2023. Food and agriculture data. At: https://www.fao.org/faostat/en; Accessed: September, 2023. | spa |
dc.relation.references | Fenalce. 2023. Estadísticas. At: https://fenalce.co/estadisticas; Accessed: September 2023. | spa |
dc.relation.references | Funke, T., Han, H., Healy-Fried, M.L., Fischer, M., Schonbrunn, E. 2006. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc Natl Acad Sci USA 103(35), 13010–13015. Doi: 10.1073/pnas.0603638103 | spa |
dc.relation.references | Galinat, W.C. 1988. The origin of corn. In: Sprague, G.F., Dudley, J.W. (Eds.). Corn and corn improvement - Agronomy monograph No. 18, 3rd edn. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. Madison. Pp 1–31. Doi: 10.2134/agronmonogr18.3ed.c1 | spa |
dc.relation.references | Gelvin, S.B. 2003. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67(1), 16-37. Doi: 10.1128/MMBR.67.1.16-37 | spa |
dc.relation.references | Ghislain, M., Byarugaba, A.A., Magembe, E., Njoroge, A., Rivera, C., Román, M.L., Tovar, J.C., Gamboa, S., Forbes, G.A., Kreuze, J.F., Barekye, A., Kiggundu, A. 2019. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotechnol J 17(6), 1119-1129. Doi: 10.1111/pbi.13042 | spa |
dc.relation.references | González, F.G., Capella, M., Ribichich, K.F., Curín, F., Giacomelli, J.I., Ayala, F., Watson, G., Otegui, M.E., Chan, R.L. 2019. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. J Exp Bot 70(5), 1669-1681. Doi: 10.1093/jxb/erz037 | spa |
dc.relation.references | Green, J.M. 2012. The benefits of herbicide-resistant crops. Pest Manag Sci 68(10), 1323-1331. Doi: 10.1002/ps.3374 | spa |
dc.relation.references | Green, J.M., Siehl, D.L. 2021. History and Outlook for Glyphosate-Resistant Crops. Rev Environ Contam Toxicol 255, 67-91. Doi: 10.1007/398_2020_54 | spa |
dc.relation.references | Gressel, J. 2018. Herbicide tolerance and resistance: alteration of site of activity. In: Duke, S.O. (Ed.). Weed Physiology. Volume 2: Herbicide Physiology. CRC Press, Boca Raton. Pp 159-189. Doi: 10.1201/0781351077736 | spa |
dc.relation.references | Gruskin, D. 2012. Agbiotech 2.0. Nat Biotechnol 30(3), 211–214. Doi: 10.1038/nbt.2144 | spa |
dc.relation.references | Herrera-Estrella, L., Depicker, A., Van Montagu, M., Schell, J. 1983. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303, 209–213. Doi: 10.1038/303209a0 | spa |
dc.relation.references | Hinchee, M.A., Connor-Ward, D.V., Newell, C.A., McDonnell, R.E., Sato, S.J., Gasser, C.S., Fischhoff, D.A., Re, D.B., Fraley, R.T., Horsch, R.B. 1988 . Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer. Nat Biotechnol 6, 915–922. Doi: 10.1038/nbt0888-915 | spa |
dc.relation.references | ICA. 2000. Resolución 1219 del 18 de mayo de 2000 “Por la cual se autoriza la introducción de plantas de clavel modificado genéticamente.” Instituto Colombiano Agropecuario, Bogotá. | spa |
dc.relation.references | ICA. 2003. Resolución 1247 del 20 de mayo de 2003 “Por la cual se autorizan siembras comerciales de algodón con la tecnología Bollgard®.” Instituto Colombiano Agropecuario, Bogotá. | spa |
dc.relation.references | ICA. 2007. Resolución 465 del 26 de febrero de 2007 “Por la cual se autorizan siembras de maíz con la tecnología Yieldgard® (MON 810).” Instituto Colombiano Agropecuario, Bogotá. | spa |
dc.relation.references | ICA. 2010. Resolución 2404 del 19 de Julio de 2010 “Por la cual se autoriza siembras comerciales de soya Roundup Ready (MON-04032-6).” Instituto Colombiano Agropecuario, Bogotá. | spa |
dc.relation.references | ICA. 2019. Resolución 13025 del 26 de Agosto de 2019 “Por medio de la cual se autoriza a la Federación Nacional de Cultivadores de Cereales, Leguminosas y soya - FENALCE, siembras comerciales de los genotipos de maíz que contengan el evento TC1507 (DAS-Ø15Ø7–1).” Instituto Colombiano Agropecuario, Bogotá. | spa |
dc.relation.references | ICA. 2020a. Resolución 82351 del 29 de Diciembre de 2020 “Por la cual se autoriza a la empresa SEMILLAS PANORAMA S.A.S, siembras comerciales de la soya (Glycine max) genéticamente modificada con tolerancia a glifosato (evento GTS 40-3-2). Instituto Colombiano Agropecuario, Bogotá. | spa |
dc.relation.references | ICA. 2020b. Resolución 82352 del 29 de Diciembre de 2020 “Por la cual se autoriza a la empresa Alimentos FINCA S.A.S. con sigla FINCA S.A.S. siembras comerciales de la soya (Glycine max) genéticamente modificada con tolerancia a glifosato (evento GTS 40-3-2).” Instituto Colombiano Agropecuario, Bogotá. | spa |
dc.relation.references | ICA. 2021a. Resolución 91505 del 15 de Febrero de 2021 “Por medio de la cual se establece el trámite de las solicitudes de los Organismos Vivos Modificados – OVM con fines exclusivamente agrícolas, pecuarios, pesqueros, plantaciones forestales comerciales y agroindustriales ante el ICA.” Instituto Colombiano Agropecuario, Bogotá. | spa |
dc.relation.references | ICA. 2021b. Resolución 95613 del 19 de Abril de 2021 “Por la cual se autoriza a la empresa AGROPECUARIA ALIAR S.A., con sigla ALIAR S.A., siembras comerciales de la soya (Glycine max) genéticamente modificada con tolerancia a glifosato (evento GTS 40-3-2).” Instituto Colombiano Agropecuario, Bogotá. | spa |
dc.relation.references | ISAAA. 2019. Global status of commercialized biotech/GM crops in 2019: Biotech crops drive socio economic development and sustainable environment in the new frontier. ISAAA Brief No.55. ISAAA, Ithaca. | spa |
dc.relation.references | ISAAA. 2023. GM Approval Database. At: http://www.isaaa.org/gmapprovaldatabase; Accessed December 2023. | spa |
dc.relation.references | Jauhar, P.P. 2006. Modern biotechnology as an integral supplement to conventional plant breeding: The prospects and challenges. Crop Sci 46(5), 1841-1859. Doi: 10.2135/cropsci2005.07-0223 | spa |
dc.relation.references | Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6(13), 3901-3907. Doi: 10.1002/j.1460-2075.1987.tb02730.x | spa |
dc.relation.references | Jefferson, D.J., Graff, G.D., Chi-Ham, C.L., Bennett, A.B. 2015. The emergence of agbiogenerics. Nat Biotechnol 33(8), 819-823. Doi: 10.1038/nbt.3306 | spa |
dc.relation.references | Jiménez-Barreto, J., Chaparro-Giraldo, A., Mora-Oberlaender, J., Vargas-Sánchez, J.E. 2016. Molecular characterization and freedom to operate analysis of maize hybrids from genetically modified and Colombian varieties. Agron Colomb 34(3), 309–316. Doi: 10.15446/agron.colomb.v34n3.60350 | spa |
dc.relation.references | Jiménez-Barreto, J.P., Mora-Oberlaender, J., Chaparro-Giraldo, A. 2020. Freedom to operate analysis, design and evaluation of expression cassettes that confertolerance to glyphosate. Agron Colomb 38(2), 216–225. Doi: 10.15446/agron.colomb.v38n2.79150 | spa |
dc.relation.references | Jiménez-Barreto, J.P., Vargas Sánchez, J.E., Mora-Oberlaender, J., Chaparro-Giraldo, A. 2024. First Latin American off-patent corn event. Fenaltec 22. Crop Breed Appl Technol 24(2), e46582428. Doi: 10.1590/1984-70332024v24n2n21 | spa |
dc.relation.references | Kohli, A., Miro, B., Twyman R.M. 2010. Transgene integration,, expression and stability in plants: strategies for improvements. In: Kole, C., Michler, C., Abbott, A. and T. Hall (Eds.). Transgenic crop plants. Principles and development. Berlin: Springer-Verlag. Pp 201-237. | spa |
dc.relation.references | Kim, M.Y., Van, K., Kang, Y.J., Kim, K.H., Lee, S.H. 2012. Tracing soybean domestication history: From nucleotide to genome. Breed Sci 61(5), 445-52. Doi: 10.1270/jsbbs.61.445 | spa |
dc.relation.references | Kishore, G.M., Padgette, S.R., Fraley, R.T. 1992. History of Herbicide-Tolerant Crops, Methods of Development and Current State of the Art – Emphasis on Glyphosate Tolerance. Weed Technol 6(3), 626-634. Doi: 10.1017/S0890037X00035934 | spa |
dc.relation.references | Klümper, W., Qaim, M. 2014. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 9, e111629. Doi: 10.1371/journal.pone.0111629 | spa |
dc.relation.references | Kumudini, S. 2010. Soybean growth and development. In: Singh, G. (Ed). The Soybean: botany, production and uses. Oxford, United Kingdom: CAB International. Pp 48-73. | spa |
dc.relation.references | Kyndt, T., Quispe, D., Zhai, H., Jarret, R., Ghislain, M., Liu, Q., Gheysen, G., Kreuze. J.F. 2015. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112(18), 5844-5849. Doi: 10.1073/pnas.1419685112. | spa |
dc.relation.references | Lacroix, B., Citovsky, V. 2019. Pathways of DNA transfer to plants from Agrobacterium tumefaciens and related bacterial species. Annu Rev Phytopathol 57, 231–251. Doi: 10.1146/annurev-phyto-082718-100101 | spa |
dc.relation.references | Li S, Cong, Y., Liu, Y. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci 8, 246. Doi: 10.3389/fpls.2017.00246 | spa |
dc.relation.references | Lin, J., Mazarei, M., Zhao, N., Hatcher, C.N., Wuddineh, W.A., Rudis, M., Tschaplinski, T.J., Pantalone, V.R., Arelli, P.R., Hewezi, T., Chen, F., Stewart Jr, C.N. 2016. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines. Plant Biotechnol J 14(11), 2100-2109. Doi: 10.1111/pbi.12566 | spa |
dc.relation.references | Malven, M., Rinehart, J., Taylor, N., Dickinson, E. 2009. Soybean event MON89788 and methods for detection thereof. Patent nº US 7632985 B2. USA. | spa |
dc.relation.references | Mangena, P. 2019. The role of plant genotype, culture medium and Agrobacterium on soybean plantlets regeneration during genetic transformation. In Khan, M.S., Malik, K.A. (Eds) Transgenic Crops - Emerging Trends and Future Perspectives. IntechOpen, London. Pp. 17-40. | spa |
dc.relation.references | McCabe, D.E., Swain, W.F., Martinell, B.J., Christou, P. 1988. Stable Transformation of Soybean (Glycine Max) by Particle Acceleration. Nat Biotechnol 6, 923–926. Doi: 10.1038/nbt0888-923 | spa |
dc.relation.references | McDougall P. 2011. The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Consultancy Study for Crop Life International by P McDougall, Midlothian, UK. | spa |
dc.relation.references | Meyer, J., Horak, M., Rosenbaum, E., Schneider, R. 2006. Petition for the Determination of Nonregulated Status for Roundup RReady2Yield™ Soybean MON 89788. Saint Louis: Monsanto Company. | spa |
dc.relation.references | MinAgricultura. 2015. Colombia Siembra. Ministerio de Agricultura y Desarrollo Rural. At: https://www.minagricultura.gov.co/ColombiaSiembra; Accessed December 2023. | spa |
dc.relation.references | MinAgricultura. 2021. Soya-Maíz: Proyecto país. Ministerio de Agricultura y Desarrollo Rural, Bogotá. | spa |
dc.relation.references | Molano, J. 1998. Biogeografía de la Orinoquia colombiana. In: Colombia Orinoco. Fondo para la Protección del Medio Ambiente “José Celestino Mutis” FEN-Colombia. Biblioteca virtual Luis Ángel Arango. | spa |
dc.relation.references | Mora-Oberlaender, J., Castaño, A., López-Pazos, S., Chaparro-Giraldo, A. 2018. Genetic engineering of crop plants: Colombia as a case study. In: Kuntz, M. (Ed.). Advances in Botanical Research. Elsevier, Amsterdam. Pp. 169-206. Doi: 10.1016/ bs.abr.2017.11.005 | spa |
dc.relation.references | Mora-Oberlaender, J., Jiménez-Barreto, J.P., Rodríguez-Abril, E., Estrada-Arteaga, M., Chaparro-Giraldo, A. 2022. Opportunities for Generic Cisgenic Crops. In: Chaurasia, A., Chittaranjan, K. (Eds.). Cisgenic Crops: Potential and Prospects. Springer Nature. Pp 89-119. Doi: 10.1007/978-3-031-06628-3_6 | spa |
dc.relation.references | Mora-Oberlaender, J., Rodríguez-Abril, Y., Estrada-Arteaga, M., Galindo-Sotomonte, L., Romero-Betancourt, J.D., Jiménez-Barreto, J., López-Carrascal, C., Chaparro-Giraldo, A. 2024. Agbiogeneric soybean with glyphosate tolerance: genetic transformation of new Colombian varieties. Crop Breed Appl Technol 24(1), e474324113. Doi: 10.1590/1984-70332024v24n1a13 | spa |
dc.relation.references | Nester, E.W. 2015. Agrobacterium: nature’s genetic engineer. Front Plant Sci 5,730. Doi: 10.3389/fpls.2014.00730 | spa |
dc.relation.references | Orazaly M., Florez-Palacios, L., Manjarrez-Sandoval, P., Mozzoni, L., Dombek, D., Wu, C., Chen, P. 2019. Registration of ‘UA 5715GT’ Soybean Cultivar. J Plant Regist 13(1), 31-37. Doi: 10.3198/jpr2018.03.0011crc | spa |
dc.relation.references | Padgette, S.R., Kolacz, K.H., Delannay, X., Re, D.B., LaVallee, B.J., Tinius, C.N., Rhodes, W.K., Otero, Y.I., Barry, G.F., Eichholtz, D.A., Peschke, V.M., Nida, D.L., Taylor, N.B., Kishore., G.M. 1995. Development, identification and characterization of a glyphosate-tolerant soybean line. Crop Sci 35(5), 1451–1461. Doi: 10.2135/cropsci1995.0011183X003500050032x | spa |
dc.relation.references | Panthee, D.R. 2010. Varietal improvement in soybean. In: Singh, G. (Ed.). The soybean. Botany, production and uses. Ludhiana, India: Department of plant breeding and genetics, Punjab Agricultural University. Pp 92-112. | spa |
dc.relation.references | Paz, M.M., Martinez, J.C., Kalvig, A.B., Fonger, T.M., Wang, K. 2006. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25(3), 206-213. Doi: 10.1007/s00299-005-0048-7 | spa |
dc.relation.references | Pereira, L., Christin, P-A., Dunning, L.T. 2022. The mechanisms underpinning lateral gene transfer between grasses. Plants People Planet 5(5), 672-682. Doi: 10.1002/ppp3.10347 | spa |
dc.relation.references | Pline, W.A., Wu, J., Hatzios, K.K. 1999. Effects of Temperature and Chemical Additives on the Response of Transgenic Herbicide-Resistant Soybeans to Glufosinate and Glyphosate Applications. Pestic Biochem Physiol 65(2), 119–131. Doi: 10.1006/pest.1999.2437 | spa |
dc.relation.references | Pollegioni, L., Schonbrunn, E., Siehl, D. 2011. Molecular basis of glyphosate resistance: Different approaches through protein engineering. FEBS J 278(16), 2753-2766. Doi: 10.1111/j.1742-4658.2011.08214.x. | spa |
dc.relation.references | Prado, J.R., Segers, G., Voelker, T., Carson, D., Dobert, R., Phillips, J., Cook, K., Cornejo, C., Monken, J., Grapes, L., Reynolds, T., Martino-Catt, S. 2014. Biotech Crop Development: From Idea to Product. Annu Rev Plant Biol 65(1), 769-790. Doi: 10.1146/annurev-arplant-050213-040039. | spa |
dc.relation.references | Qiu, L.J., Chang, R.Z. 2010. The origin and history of soybean. In: Singh, G. (Ed.). The soybean. Botany, production and uses. Ludhiana, India: Department of plant breeding and genetics, Punjab Agricultural University. Pp 1-23 | spa |
dc.relation.references | Raghuvanshi, R.S., Bisht, K. 2010. Uses of soybean: Products and preparation. In: Singh, G. (Ed.). The soybean. Botany, production and uses. Ludhiana, India: Department of plant breeding and genetics, Punjab Agricultural University. Pp 404-426 | spa |
dc.relation.references | Reddy, M.S., Dinkins, R.D., Collins, G.B. 2003. Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep 21(7), 676-83. Doi: 10.1007/s00299-002-0567-4 | spa |
dc.relation.references | Rippstein, G., Amézquita, E., Escobar, G., Grollier, C. 2001. Condiciones naturales de la sabana. In: Rippstein, G., Escobar, G., Motta, F. Agroecología y biodiversidad de las sabanas en los Llanos Orientales de Colombia. Cali: Centro Internacional de Agricultura Tropical. Pp 1-21. | spa |
dc.relation.references | Rojas-Arias, A.C., Palacio, J.L., Chaparro-Giraldo, A., López-Pazos,S.A. 2017. Patents and genetically modified soybean for glyphosate resistance. World Pat Inf 48:47–51. Doi: 10.1016/j. wpi.2017.01.002 | spa |
dc.relation.references | Rojas, A., López-Pazos, S., Chaparro-Giraldo, A. 2018. Screening of Colombian soybean genotypes for Agrobacterium mediated genetic transformation conferring tolerance to Glyphosate. Agron Colomb 36(1), 24–34. Doi: 10.15446/agron.colomb.v36n1.67440 | spa |
dc.relation.references | Rüdelsheim, P., Dumont, P., Freyssinet, G., Pertry, I., Heijde, M. 2018. Off-Patent transgenic events: Challenges and opportunities for new actors and markets in agriculture. Front Bioeng Biotechnol 6, 71. Doi: 10.3389/fbioe.2018.00071 | spa |
dc.relation.references | Schiek, B., Hareau, G., Baguma, Y., Medakker, A., Douches, D., Shotkoski, F., Ghislain, M. 2016. Demystification of GM crop costs: releasing late blight resistant potato varieties as public goods in developing countries. Int J Biotechnol 14(2), 112-131. Doi: 10.1504/IJBT.2016.077942 | spa |
dc.relation.references | Schmidt, M.A., Parrot, W.A. 2001. Quantitative detection of transgenes in soybean [Glycine max (L.) Merrill] and peanut (Arachis hypogaea L.) by real-time polymerase chain reaction. Plant Cell Rep 20(5), 422-428. Doi: 10.1007/s002990100326 | spa |
dc.relation.references | Schnell, J., Steele, M., Bean, J., Neuspiel, M., Girard, C., Dormann, N., Pearson, C., Savoie, A., Bourbonnière, L., Macdonald, P. 2015. A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 24, 1–17. Doi: 10.1007/s11248-014-9843-7 | spa |
dc.relation.references | Schönbrunn, E., Eschenburg, S., Shuttleworth, W.A., Schloss, J.V., Amrhein, N., Evans, J.N., Kabsch, W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci USA 98(4), 1376–1380. Doi: 10.1073/pnas.98.4.1376. | spa |
dc.relation.references | Steinrücken, H.C., Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94(4), 1207–1212. Doi: 10.1016/0006-291x(80)90547-1. | spa |
dc.relation.references | Valencia, R.A. 2006. La producción de soya en la Orinoquía colombiana, potencialidades y limitantes. In: C.A. Jaramillo, N. Cubillos (Eds.). Soya (Glycine max (L.) Merril), alternativa para los sistemas de producción de la Orinoquia colombiana. Villavicencio (Meta), Colombia: Corpoica C.I La Libertad. Pp. 65‐72. | spa |
dc.relation.references | Valencia, R.A., Ligarreto, G.A. 2010. Mejoramiento genético de la soya (Glycine max [L.] Merril) para su cultivo en la altillanura colombiana: una visión conceptual prospectiva. Agron Colomb 28(2), 155-164. | spa |
dc.relation.references | Varanasi, A., Prasad, P.V.V., Jugulam, M. 2016. Impact of Climate Change Factors on Weeds and Herbicide Efficacy. In: Sparks, D.L. (Ed.). Advances in Agronomy 135. Pp 107–146. Doi:10.1016/bs.agron.2015.09.002 | spa |
dc.relation.references | Xu, H., Guo, Y., Qiu, L., Ran, Y. 2022. Progress in soybean genetic transformation over the last decade. Front Plant Sci 13, 900318. Doi: 10.3389/fpls.2022.900318 | spa |
dc.relation.references | Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., Potrykus, I. 2000. Engineering the Provitamin A (-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 287(5451), 303–305. Doi: 10.1126/science.287.5451.303 | spa |
dc.relation.references | Yue, J., Hu, X., Sun, H., Yang, Y., Huang, J. 2012. Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 3, 1152. Doi: 10.1038/ncomms2148 | spa |
dc.relation.references | Zhang, Z., Xing, A., Staswick, P., Clemente, T.E. 1999. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult 56(1), 37–46. Doi: 10.1023/A:1006298622969 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.subject.agrovoc | Herbicida | |
dc.subject.agrovoc | Transformación genética | |
dc.subject.agrovoc | Cultivo de tejidos | |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.proposal | GM crops | eng |
dc.subject.proposal | Herbicides | eng |
dc.subject.proposal | Intellectual Property | eng |
dc.subject.proposal | Genetic transformation | eng |
dc.subject.proposal | Plant tissue culture | eng |
dc.subject.proposal | Selection | eng |
dc.title | Generation and evaluation of agbiogeneric glyphosate tolerant soybean plants | eng |
dc.title.translated | Generación y evaluación de plantas de soya agrobiogenéricas tolerantes al glifosato | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | MinCiencias | spa |
oaire.fundername | Fenalce | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 79954927.2024.pdf
- Tamaño:
- 1.2 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Doctor en Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: