Evaluation of the magnetocaloric effect in nano-crystalline La0.7Ca0.3Mn1-xAlxO3 manganites synthesized via wet-chemistry methods

dc.contributor.advisorMorán Campaña, Jesús Oswaldo
dc.contributor.authorChaverra González, Diego Fernando
dc.contributor.orcidMoran Campaña, Oswaldo [0000-000170720343]
dc.date.accessioned2026-01-26T15:38:21Z
dc.date.available2026-01-26T15:38:21Z
dc.date.issued2026-01-25
dc.description.abstractNanosized La0.7Ca0.3Mn1-xAlxO3 (x=0, 0.02, 0.07, 0.1) manganites were synthesized via two different wet-chemistry methods, namely Pechini auto-combustion. The samples were carefully studied after their structural, chemical, and magnetic properties by means of standard characterization methods. Analysis of the X-ray diffraction patterns indicated that the samples were single phase with orthorhombic perovskite-type structure, within the accuracy limit of the technique. The lattice parameters were obtained by means of Rietveld refinement of the X-ray diffraction patterns. The targeted Al3+ doping of the pristine La0.7Ca0.3MnO3 sample was verified by the systematic shifting of the diffraction peaks towards higher values of the 2-angle. The elemental composition of the samples as well as the chemical environment of Mn-ion were investigated by means of X-ray photoelectron spectroscopy. The magnetic properties of the samples were carefully studied using vibrating sample magnetometry. The dependence of the magnetization on the temperature recorded, in field as high as 200 Oe, showed a clear paramagnetic-ferromagnetic transition for all studied samples. In turn, well-defined hysteresis was observed at several temperatures below the Curie temperature for all the measured samples. The magnetocaloric function of the samples was evaluated from the isothermal magnetization versus field curves, recorded around the Curie temperature. From the static magnetic measurement results, near the respective transition temperatures, the critical behavior of the different samples was carefully investigated. The analysis of the experimental data was carried out by means of various techniques, such as modified Arrott plots, the Kouvel-Fisher method, and critical isotherm analysis. The application of these models allowed determining the values of the critical exponents , , and .eng
dc.description.curricularareaFísica.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.notesSe sintetizaron manganitas nanométricas de La0.7Ca0.3Mn1−xAlxO3 (x = 0, 0.02, 0.07, 0.1) mediante dos métodos diferentes de química húmeda, a saber, auto-combustión tipo Pechini. Las muestras se estudiaron cuidadosamente en cuanto a sus propiedades estructurales, químicas y magnéticas mediante métodos estándar de caracterización. El análisis de los patrones de difracción de rayos X indicó que las muestras eran monofásicas con una estructura ortorrómbica tipo perovskita, dentro del límite de precisión de la técnica. Los parámetros de red se obtuvieron mediante el refinamiento de Rietveld de los patrones de difracción de rayos X. El dopaje objetivo con Al³⁺ de la muestra prístina La0.7Ca0.3MnO3 se verificó por el desplazamiento sistemático de los picos de difracción hacia valores más altos del ángulo 2θ. La composición elemental de las muestras, así como el entorno químico del ion Mn, se investigaron mediante espectroscopía de fotoelectrones de rayos X. Las propiedades magnéticas de las muestras se estudiaron cuidadosamente utilizando magnetometría de muestra vibrante. La dependencia de la magnetización con la temperatura, registrada bajo un campo de hasta 200 Oe, mostró una clara transición paramagnética–ferromagnética para todas las muestras estudiadas. A su vez, se observó una histéresis bien definida a varias temperaturas por debajo de la temperatura de Curie para todas las muestras medidas. La función magnetocalórica de las muestras se evaluó a partir de las curvas de magnetización isotérmica en función del campo, registradas alrededor de la temperatura de Curie. A partir de los resultados de las mediciones magnéticas estáticas, cerca de las respectivas temperaturas de transición, se investigó cuidadosamente el comportamiento crítico de las diferentes muestras. El análisis de los datos experimentales se realizó mediante diversas técnicas, como los diagramas de Arrott VIII Evaluation of the magnetocaloric effect in nano-crystalline La0.7Ca0.3Mn1- xAlxO3 manganites synthesized via wet-chemistry methods modificados, el método de Kouvel-Fisher y el análisis de isotermas críticas. La aplicación de estos modelos permitió determinar los valores de los exponentes críticos β, γ y δ. (Texto tomado de la fuente)spa
dc.description.researchareaMateriales magnetocáloricos
dc.format.extent1 recurso en línea (83 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89319
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Física
dc.relation.references[1] A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, A. Poredoš. Springer Ser. 1 (2015) 4. [2] V. Franco, V. Es. Condens. Matter Phys. 1 (2016) 34. [3] A. Gomez. Ph.D. Thesis. Universidad Nacional de Colombia (2019) 20. [4] J. Izquierdo. Ph.D. Thesis. Universidad Nacional de Colombia (2017). 53. [5] V. K. Pecharsky, K. A. Gschneidner Jr. Phys. Rev. Lett. 78 (1997) 4494. [6] L. Tocado, E. Palacios, R. Burriel. J. Appl. Phys. 105 (2009) 07A901. [7] X. Moya, L. Mañosa, A. Planes. J. Phys. Condens. Matter. 21 (2009) 233201. [8] A. M. Tishin, Y. I. Spichkin. J Magn Magn Mater. 200 (1999) 248. [9] C. Zimm, A. Jastrab, A. Sternberg, V. K. Pecharsky, K. A. Gschneidner Jr., M. [10] Osborne, I. Anderson. Adv Cryog Eng, 43 (1998) 1759. [11] B. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, Z. H. Cheng. Adv Mater, 21 (2009) 4545. [12] N. T. Trung, W. Ou, L. Zhang, K. A. Gschneidner Jr., V. K. Pecharsky. J Appl Phys, 103 (2008) 07B302. [13] M. Foldeaki, R. Chahine, T. K. Bose. Phys Rev B, 54 (1996) 3525. [14] J. D. Moore, K. Morrison, K. Sandeman, S. K. S. Lyubina. Scr Mater, 67 (2012) 584. [15] T. Goto, Y. Yamasaki, H. Watanabe, T. Kimura, Y. Tokura. Phys Rev B Condens Matter. Mater. Phys. 728 (2005) 22. [16] A.-M. Haghiri-Gosnet, J.-P. Renard. J. Phys. 36 (2003) 127. [17] L. W. Martin, Y. H. Chu, R. Ramesh. Mater. Sci. Eng. 68 (2010) 4. [18] F. Reif, McGraw-Hill (1968) 52 [19] M. H. Phan, S. C. Yu. J. Magn. Magn. Mater. 308 (2007) 2 [20] P. Sfirloaga, M. Poienar, I. Malaescu, A. Lungu, C.V. Mihali. Ceram. Int. 44 (2018) 582 [21] J.A. Saleh, I.A. Sarsari, P. Kameli, H. Salamati. Dep. Phys. IUT, 2 (2018) 84156-8311 [22] J.S. H.Q. Perera, D.C. Frost, C.A. McDowell. J Chem Phys. 72 (1980) 5151. [23] O. I. Klyushnikov, V. V. Sal’nikov, N. M. Bogdanovich. Inorg. Mater. 38 (2002) 261. [24] I.A. Serrano, Solid State (2004) 32. [25] N. Astik, S. Patil, P. Bhargava, and P.K. Jha. 1728 (2016) 84 [26] G. Devendra, K. Pandeya. (2019) 63. [27] M. A. B. Narreto, H. S. Alagoz, J. Jeon, K. H. Chow, J. Jung. J Appl. Phys. 115 (2014) 22 [28] S. J. Hibble, S. P. Cooper, A. C. Hannon, I. D. Fawcett, M. Greenblatt. J. Phys. Condens. Mater. 11 (1999) 9221 [29] S. Daengsakul, C. Mongkolkachit, C. Thomas, S. Siri, I. Thomas, V. Amornkitbamrung, S. Maensiri. Appl. Phys. A Mater. Sci. Process. 96 (2009) 3. [30] M. Bochalya, S. Kumar. J Appl Phys 127 (2020) 5 [31] K. Huang, Statistical Mechanics. New York: Wiley, 1987. [32] M. Fisher, S. Ma, B. Nickel. Phys. Rev. Lett. 29 (1972) 14. [33] S. Banerjee. Phys. Lett. 12 (1964) 1. [34] J. Mira, J. Rivas, F. Rivadulla, C. Vázquez-Vázquez, M. A. López-Quintela, Phys. Rev. B. 60 (1999) 5. [35] M. H. Phan, S. C. Yu, N. H. Hur, Y. H. Jeong. J Appl Phys 96 (2004) 2. [36] T. L. Phan, Q. T. Tran, P. Q. Thanh, P. D. H. Yen, T. D. Thanh, and S. C. Yu. Solid State Comm. 184 (2014) 85. [37] K. P. Shinde, S. S. Oh, S. K. Baik, H. S. Kim, B. B. Sinha, K. C. Chung. J Korean Phys Soc, 61 (2012) 12. [38] T. Sarkar, P. K. Mukhopadhyay, A. K. Raychaudhuri, S. Banerjee. J Appl Phys, 101 (2007) 12. [39] A. Bid, A. Guha, and A. K. Raychaudhuri. Phys Rev B Condens Matter Mater Phys, 67 (2003) 17. [40] L.E. Hueso, P. Sande, D.R. Miguéns, J. Rivas, F. Rivadulla, M. A. López-Quintela. J Appl Phys, 91 (2002) 12. [41] J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, Phys. Rev. Lett. 81 (1998) 9. [42] A. Gómez, E. Chavarriaga, I. Supelano, C. A. Parra, O. Morán. Phys. Lett. A. 382 (2018) 13. [43] V. K. Pecharsky and K. A. Gschneidner. J Appl Phys, 86 (1999) 1. [44] B. Arayedh, S. Kallel, N. Kallel, and O. Peña. J Magn Magn Mater, 361 (2014). [45] P. Lampen, N. S. Bingham, M. H. Phan, H. Kim, M. Osofsky, A. Pique, T. L. Phan, S. C. Yu, H. Srikanth. Appl Phys Lett, 102 (2013) 6. [46] A. v. Kimel, A. Kirilyuk, A. Tsvetkov, R. v. Pisarev, T. Rasing. Nature 429 (2004) 6994. [47] C. Saravanan, R. Thiyagarajan, K. Manikandan, M. Sathiskumar, P. V. Kanjariya, J. A. Bhalodia, S.Arumugam. J. Appl. Phys. 122 (2017) 24. [48] Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng. Phys. Rev. Lett. 78 (1997) 6. [49] C. P. Reshmi, S. Savitha Pillai, M. Vasundhara, G. R. Raji, K. G. Suresh, M. Raama Varma, J. Appl. Phys. 114 (2013) 3. [50] R. K. Pramod Kumar, Phys. Rev. Lett., 114 (2015) 067202. [51] H. Oesterreicher, F. T. Parker. J. Appl. Phys. 55 (1984) 12. [52] V. Franco, J. M. Borrego, C. F. Conde, A. Conde, M. Stoica, and S. Roth, J. Appl. Phys. 100 (2006) 8. [53] V. Franco, J. S. Blázquez, A. Conde. Appl. Phys. Lett. 89 (2006) 22. [54] C. Rau, S. Gmund, J. Alloys Compd. 12 (1999) 257. [55] F. Saadaoui, M. Nofal, R. M’Nassri, M. Koubaa, N. Chniba-Boudjada, and A. Cheikhrouhou, RSC Adv. 9 (2019) 43. [56] R. L. Hadimani, Y. Melikhov, D. L. Schlagel, A. Lograsso, W. Dennis, R. W. McCallum, D. C. Jiles. J. Appl. Phys. 117 (2015) 17. [57] A. Krichene, W. Boujelben, and A. Cheikhrouhou, J. Alloys Compd, 550 (2013) 362. [58] T. V. Manh, K. P. Shinde, D. Nanto, H. Lin, Y. Pham, D. S. Razaq, D. R. Munazat, Budhy Kurniwan,S. C. Yu, K. C. Chung, D. H. Kim, AIP Adv. 9 (2019) 3. [59] S. N. Kaul, J. Magn. Magn. Mater. 53 (1985) 5. [60] B. Widow, J. Chem. Phys. 43 (1965) 11. [61] A. ben Jazia Kharrat, K. Khirouni, and W. Boujelben, Phys Leter A. 382 (2018) 48. [62] J. S. Kquvkl and M. E. Fisher, Phys. Rev. Lett, 136 (1964) 6A. [63] Harry Eugene Stanley. Oxford University Press, 1971. [64] J. L. Alonso, L. A. Fernández, F. Guinea, V. Laliena, V. Martín-Mayor. Nucl. Phys. A. 596 (2001) 587. [65] V. K. Pecharsky, K. A. Gschneidner Jr., Giant Magnetocaloric Effect in Gd5(Si2Ge2), 78 (1997) 4494 [66] F. Albertini, F. Canepa, S. Cirafici, E. Franceschi, M. Napoletano, A. Paoluzi, L. Pareti, M. Solzi, Composition dependence of magnetic and magnetothermal properties of NiMnGa shape memory alloys, J. Magn. Magn. Matter. 272 (2004) 2111. [67] L. Han, F. Maccari, I. R. Souza Filho, N. J. Peter, Y. Wei, B. Gault, O. Gutfleisch, Z . Li, D. Raabe, Nature 608 (2022) 310. [68]...Y. Hadouch, D. Mezzane, M. Amjoud, L. Hajji, Y. Gagou, Z. Kutnjak, V. Laguta, Y. ………Kopelevi, M. El Marssi, Enhanced Relative cooling Power and large inverse ………magnetocaloric effect of cobalt ferrite nanoparticles synthesized by auto-………combustion method, J. Mag. Mag. Mater. 563 (2022)169925. [69] Y. Wang, D. Guo, B. Wu, S. Geng, Y. Zhang, Magnetocaloric effect and ………refrigeration performance in RE60Co20Ni20 (RE=Ho and Er) amorphous ribbons, J. ………Mag. Mag. Mater. 498 (2020) 166179 [70] M.-H. Phan, S.-C. Yu, Review of the magnetocaloric effect in manganite materials, J. ……..Mag. Mag. Mater. 308 (2007) 325
dc.relation.referencesV. Franco, V. Es. Condens. Matter Phys. 1 (2016) 34.
dc.relation.referencesL. Tocado, E. Palacios, R. Burriel. J. Appl. Phys. 105 (2009) 07A901.
dc.relation.referencesB. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, Z. H. Cheng. Adv Mater, 21 (2009) 4545.
dc.relation.referencesM. Foldeaki, R. Chahine, T. K. Bose. Phys Rev B, 54 (1996) 3525
dc.relation.referencesS. Daengsakul, C. Mongkolkachit, C. Thomas, S. Siri, I. Thomas, V. Amornkitbamrung, S. Maensiri. Appl. Phys. A Mater. Sci. Process. 96 (2009) 3.
dc.relation.referencesK. P. Shinde, S. S. Oh, S. K. Baik, H. S. Kim, B. B. Sinha, K. C. Chung. J Korean Phys Soc, 61 (2012) 12
dc.relation.referencesV. K. Pecharsky and K. A. Gschneidner. J Appl Phys, 86 (1999) 1.
dc.relation.referencesZ. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng. Phys. Rev. Lett. 78 (1997) 6.
dc.relation.referencesB. Widow, J. Chem. Phys. 43 (1965) 11.
dc.relation.referencesL. Han, F. Maccari, I. R. Souza Filho, N. J. Peter, Y. Wei, B. Gault, O. Gutfleisch, Z . Li, D. Raabe, Nature 608 (2022) 310.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Física::538 - Magnetismo
dc.subject.lembMagnetrometría
dc.subject.lembMagnetización
dc.subject.proposalManganitasspa
dc.subject.proposalPeroskitasspa
dc.subject.proposalEfectos magnetocalórico,spa
dc.subject.proposalAutocombustionspa
dc.subject.proposalExponentes críticosspa
dc.subject.proposalMagnetocaloriceng
dc.subject.proposalAuto-combustioneng
dc.subject.proposalCritical exponentseng
dc.titleEvaluation of the magnetocaloric effect in nano-crystalline La0.7Ca0.3Mn1-xAlxO3 manganites synthesized via wet-chemistry methodseng
dc.title.translatedEvaluación del efecto magnetocalórico en la manganita nano cristalina La0.7Ca0.3Mn1-xAlxO3 sintetizada vía métodos de química mojada
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Física.pdf
Tamaño:
6.84 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: