Evaluación de la resistencia a la corrosión debida a carbonatación en concretos con cementos pórtland adicionados con caliza y arcilla calcinada

dc.contributor.advisorLizarazo Marriaga, Juan Manuel
dc.contributor.advisorArango Londoño, Juan Fernando
dc.contributor.authorSalazar Mayorga, Luis Felipe
dc.contributor.cvlacSALAZAR MAYORGA, LUIS FELIPEspa
dc.contributor.orcidLuis Felipe Salazar Mayorga [0000-0001-6110-9470]spa
dc.contributor.researchgateLuis Felipe Salazar Mayorgaspa
dc.contributor.researchgroupGIES – Grupo de investigación en análisis, diseño y materialesspa
dc.date.accessioned2023-02-21T15:49:17Z
dc.date.available2023-02-21T15:49:17Z
dc.date.issued2023-02-18
dc.descriptionilustraciones, fotografías (principalmente a color)spa
dc.description.abstractEl cemento pórtland adicionado con caliza y arcilla calcinada (LC3) es un material capaz de desarrollar propiedades mecánicas comparables al cemento pórtland ordinario (OPC), de permitir la obtención de una microestructura densa y rica en aluminatos que mejora la resistencia del concreto al ataque por cloruros y la reacción álcali sílice (RAS), y trae beneficios ambientales, técnicos y económicos a la sociedad. En este trabajo se evaluó la resistencia a la corrosión debida a la carbonatación en concretos fabricados con cementos LC3 encontrando que esta fue directamente proporcional al factor clínker del cemento, particularmente en condición acelerada. Los cementos LC3 fueron formulados ajustando su contenido de SO3 mediante la evaluación del proceso de hidratación en la pasta de cemento. Las pruebas de carbonatación fueron ejecutadas mediante métodos acelerados en la pasta, mortero y concreto, y también se desarrollaron pruebas en condición natural. También, se estudió el efecto de la carbonatación sobre la resistencia a la compresión del mortero, encontrando un buen desempeño para cementos con mayores factores clínker. El estado del acero de refuerzo en concretos expuestos a carbonatación natural y acelerada fue evaluado mediante las técnicas electroquímicas de resistencia a la polarización lineal (LPR) y espectroscopia de impedancia electroquímica (EIS), evidenciando que los efectos de la carbonatación acelerada en la reducción de la resistencia eléctrica de los concretos LC3 y la presencia de corrosión del acero inician antes de que el frente de carbonatación alcance la superficie de la barra de acero. Adicionalmente, la evaluación de la corrosión mostró que los concretos con cementos adicionados en grandes proporciones son más vulnerables a la corrosión debida a la carbonatación, existiendo un mayor riesgo en aquellos con menores factores clínker. (Texto tomado de la fuente)spa
dc.description.abstractPortland cement blended with limestone and calcined clay (LC3) is a material capable of developing mechanical properties comparable to ordinary Portland cement (OPC), allowing a dense microstructure rich in aluminates to be obtained that improves the resistance of concrete to attack by chlorides and the alkali silica reaction, and brings environmental, technical and economic benefits to society. In this work, the resistance to corrosion due to carbonation in concrete made with LC3 cements was evaluated finding that it was directly proportional to the clinker factor of the cement, particularly in the accelerated condition. LC3 cements were formulated by adjusting their SO3 content by evaluating the hydration process in the cement paste. Carbonation tests were carried out using accelerated methods on paste, mortar and concrete, although tests were also carried out in natural conditions. Also, the effect of carbonation on the compressive strength of the mortar was studied, finding a good performance for cements with higher clinker factors. The state of reinforcing steel in concrete exposed to natural and accelerated carbonation was evaluated by electrochemical techniques of linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS), showing that the effects of accelerated carbonation on the reduction of the electrical resistance of the LC3 concrete and the presence of steel corrosion begin before the carbonation front reaches the surface of the steel bar. Additionally, the corrosion evaluation showed that concretes with cements blended in large proportions are more vulnerable to corrosion due to carbonation, with a higher risk in those with lower clinker factors.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Estructurasspa
dc.description.researchareaMateriales para construcciónspa
dc.format.extentxxxi, 265 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83535
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesY. Dhandapani, T. Sakthivel, M. Santhanam, R. Gettu, and R. G. Pillai, “Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3),” Cem Concr Res, vol. 107, pp. 136–151, May 2018, doi: 10.1016/j.cemconres.2018.02.005.spa
dc.relation.referencesA. Alujas, R. Fernández, R. Quintana, K. L. Scrivener, and F. Martirena, “Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration,” Appl Clay Sci, vol. 108, pp. 94–101, 2015, doi: 10.1016/j.clay.2015.01.028.spa
dc.relation.referencesF. Avet, R. Snellings, A. Alujas Diaz, M. ben Haha, and K. Scrivener, “Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays,” Cem Concr Res, vol. 85, pp. 1–11, 2016, doi: https://doi.org/10.1016/j.cemconres.2016.02.015.spa
dc.relation.referencesK. Scrivener, F. Martirena, S. Bishnoi, and S. Maity, “Calcined clay limestone cements (LC3),” Cem Concr Res, vol. 114, pp. 49–56, 2018, doi: 10.1016/j.cemconres.2017.08.017.spa
dc.relation.referencesF. Zunino, F. Martirena, and K. Scrivener, “Limestone calcined clay cements (LC3),” ACI Mater J, vol. 118, no. 3, pp. 49–60, May 2021, doi: 10.14359/51730422.spa
dc.relation.referencesS. Rathnarajan, B. S. Dhanya, R. G. Pillai, R. Gettu, and M. Santhanam, “Carbonation model for concretes with fly ash, slag, and limestone calcined clay - using accelerated and five - year natural exposure data,” Cem Concr Compos, vol. 126, Feb. 2022, doi: 10.1016/j.cemconcomp.2021.104329.spa
dc.relation.referencesS. Rathnarajan and R. Pillai, “Carbonation rate and service life of reinforced concrete systems with mineral admixtures and special cements,” 2017.spa
dc.relation.referencesQ. D. Nguyen and A. Castel, “Reinforcement corrosion in limestone flash calcined clay cement-based concrete,” Cem Concr Res, vol. 132, no. February, 2020, doi: 10.1016/j.cemconres.2020.106051.spa
dc.relation.referencesM. Sharma, S. Bishnoi, F. Martirena, and K. Scrivener, “Limestone calcined clay cement and concrete: A state-of-the-art review,” Cem Concr Res, vol. 149, Nov. 2021, doi: 10.1016/j.cemconres.2021.106564.spa
dc.relation.referencesK. L. Scrivener, V. M. John, and E. M. Gartner, “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry,” Cem Concr Res, vol. 114, pp. 2–26, Dec. 2018, doi: 10.1016/j.cemconres.2018.03.015.spa
dc.relation.referencesP.-C. Aitcin, Binders for Durable and Sustainable Concrete. New York: Taylor & Francis, 2008.spa
dc.relation.referencesK. Scrivener et al., “Impacting factors and properties of limestone calcined clay cements (LC3),” Green Mater, vol. 7, no. 1, pp. 3–14, Jul. 2018, doi: 10.1680/jgrma.18.00029.spa
dc.relation.referencesS. Bishnoi, S. Maity, A. Mallik, S. Joseph, and S. Krishnan, “Pilot scale manufacture of limestone calcined clay cement : The Indian experience Limestone Calcined Clay Cement View project LC3-Limestone Calcined Clay Cement View project Soumen Maity Special iSSue-Future cements,” The Indian Concrete Journal, vol. 88, no. 77, pp. 22–28, 2014.spa
dc.relation.referencesA. C. Emmanuel, P. Haldar, S. Maity, and S. Bishnoi, “Second pilot production of limestone calcined clay cement in India: The experience,” Indian Concrete Journal, vol. 90, no. 5, pp. 57–63, 2016.spa
dc.relation.referencesR. Matallana, El concreto fundamentos y nuevas tecnologías. Constructora Conconcreto, Corona, 2019.spa
dc.relation.referencesA. Poursaee, Corrosion of steel in concrete structures. Woodhead Publishing, 2016.spa
dc.relation.referencesNACE International, “Corrosion costs and preventive strategies in the United States,” 2002, [Online]. Available: http://impact.nace.org/documents/ccsupp.pdfspa
dc.relation.referencesU. M. Angst, “Challenges and opportunities in corrosion of steel in concrete,” Mater Struct, vol. 51, no. 4, p. 20, 2018, doi: 10.1617/s11527-017-1131-6.spa
dc.relation.referencesnternational Energy Agency, “Technology Roadmap - Low-Carbon Transition in the Cement Industry,” 2018.spa
dc.relation.referencesWorld Business Council for Sustainable Development, “Cement Sustainability Initiative, Getting the Numbers Right, Project Emissions Report 2014,” 2016.spa
dc.relation.referencesS. Sánchez Berriel et al., “Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba,” J Clean Prod, vol. 124, pp. 361–369, Jun. 2016, doi: 10.1016/j.jclepro.2016.02.125.spa
dc.relation.referencesY. Cancio Díaz et al., “Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies,” Dev Eng, vol. 2, pp. 82– 91, 2017, doi: 10.1016/j.deveng.2017.06.001spa
dc.relation.referencesB. Lothenbach, K. Scrivener, and R. D. Hooton, “Supplementary cementitious materials,” Cem Concr Res, vol. 41, pp. 1244–1256, Dec. 2011, doi: 10.1016/j.cemconres.2010.12.001.spa
dc.relation.referencesV. L. Bonavetti, V. F. Rahhal, and E. F. Irassar, “Studies on the carboaluminate formation in limestone filler-blended cements,” Cem Concr Res, vol. 31, no. 6, pp. 853–859, 2001, doi: 10.1016/S0008-8846(01)00491-4.spa
dc.relation.referencesL. M. Vizcaíno-Andrés, S. Sánchez-Berriel, S. Damas-Carrera, A. PérezHernández, K. L. Scrivener, and J. F. Martirena-Hernández, “Industrial trial to produce a low clinker, low carbon cement,” Materiales de Construcción, vol. 65, no317, Mar. 2015, doi: 10.3989/mc.2015.00614.spa
dc.relation.referencesR. Fernandez, F. Martirena, and K. L. Scrivener, “The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite,” Cem Concr Res, vol. 41, no. 1, pp. 113–122, 2011, doi: 10.1016/j.cemconres.2010.09.013.spa
dc.relation.referencesA. M. Rashad, “Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview,” Constr Build Mater, vol. 41, pp. 303– 318, 2013, doi: 10.1016/j.conbuildmat.2012.12.001.spa
dc.relation.referencesA. T. Bakera and M. G. Alexander, “Use of metakaolin as a supplementary cementitious material in concrete, with a focus on durability properties,” RILEM Technical Letters, vol. 4, pp. 89–102, May 2019, doi: 10.21809/rilemtechlett.2019.94.spa
dc.relation.referencesM. Antoni, J. Rossen, F. Martirena, and K. Scrivener, “Cement substitution by a combination of metakaolin and limestone,” Cem Concr Res, vol. 42, pp. 1579– 1589, 2012, doi: 10.1016/j.cemconres.2012.09.006.spa
dc.relation.referencesB. Lothenbach, G. le Saout, E. Gallucci, and K. Scrivener, “Influence of limestone on the hydration of Portland cements,” Cem Concr Res, vol. 38, pp. 848–860, 2008, doi: 10.1016/j.cemconres.2008.01.002.spa
dc.relation.referencesC. Rodríguez and J. I. Tobón, “Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance,” Constr Build Mater, vol. 251, p. 119050, 2020, doi: 10.1016/j.conbuildmat.2020.119050.spa
dc.relation.referencesF. Zunino and K. Scrivener, “Factors influencing the sulfate balance in pure phase C3S/C3A systems,” Cem Concr Res, vol. 133, Jul. 2020, doi: 10.1016/j.cemconres.2020.106085.spa
dc.relation.referencesF. Zunino and K. Scrivener, “The influence of the filler effect on the sulfate requirement of blended cements,” Cem Concr Res, vol. 126, Dec. 2019, doi: 10.1016/j.cemconres.2019.105918.spa
dc.relation.referencesA. Campos Silva, G. Fajardo, and J. Mendoza Rangel, “Estudio del comportamiento del avance de la carbonatación del concreto reforzado en ambiente natural y acelerado,” Concreto y Cemento: Investigación y Desarrollo, vol. 8, no. 1, pp. 14–34, 2016.spa
dc.relation.referencesL. Bertolini, B. Elsener, P. Pedeferri, and R. P. Polder, Corrosion of steel in concrete: prevention, diagnosis, repair. Weinheim: Wiley-VCH, 2004.spa
dc.relation.referencesA. Licor, “Evaluación de la carbonatación en hormigones elaborados con cemento de bajo carbono LC3,” Universidad Central Marta Abreu de Las Villas, 2016. [Online]. Available: https://dspace.uclv.edu.cu/handle/123456789/7393spa
dc.relation.referencesA. A. Elgalhud, R. K. Dhir, and G. S. Ghataora, “Carbonation resistance of concrete: Limestone addition effect,” Magazine of Concrete Research, vol. 69, no.2, pp. 84–106, Jan. 2017, doi: 10.1680/jmacr.16.00371.spa
dc.relation.referencesY. D. Cárdenas, E. D. Caballero, and J. F. Martirena-Hernandez, “Evaluation of Carbonation in Specimens Made with LC3 Low Carbon Cement,” in RILEM Bookseries, vol. 22, 2020. doi: 10.1007/978-3-030-22034-1_35.spa
dc.relation.referencesM. S. H. Khan, Q. D. Nguyen, and A. Castel, “Carbonation of limestone calcined clay cement concrete,” RILEM Bookseries, vol. 16, pp. 238–243, 2018, doi: 10.1007/978-94-024-1207-9_38.spa
dc.relation.referencesR. Gettu et al., “Summary of 4-years of Research at IIT Madras on Concrete with Limestone Calcined Clay Cement (LC3),” in International Conference on Sustainable Materials, Systems and Structures, 2019, pp. 449–456.spa
dc.relation.referencesJ. F. Arango Londoño, Patología de la Construcción: fundamentos, En edición. 2022.spa
dc.relation.referencesV. Shah and S. Bishnoi, “Analysis of Pore Structure Characteristics of Carbonated Low-Clinker Cements,” Transp Porous Media, vol. 124, no. 3, pp. 861–881, 2018, doi: 10.1007/s11242-018-1101-7.spa
dc.relation.referencesV. Shah, K. Scrivener, B. Bhattacharjee, and S. Bishnoi, “Changes in microstructure characteristics of cement paste on carbonation,” Cem Concr Res, vol. 109, pp. 184–197, Jul. 2018, doi: 10.1016/j.cemconres.2018.04.016.spa
dc.relation.referencesS. Rathnarajan and R. Pillai, “Determination of pH threshold of corrosion initiation in cementitous systems with supplementary cementitious materials,” Chennai, Mar. 2018.spa
dc.relation.referencesE. Cabrera, A. Alujas, B. Elsener, and J. F. Martirena-Hernandez, “Preliminary Results on Corrosion Rate in Carbonated LC3 Concrete,” in RILEM Bookseries, vol. 22, Springer Netherlands, 2020, pp. 293–298. doi: 10.1007/978-3-030-220341_33.spa
dc.relation.referencesSTM International, “ASTM C125-21a Concrete and Concrete Aggregates.” 2021. doi: 10.1520/C0125-21A.spa
dc.relation.referencesS. Kosmatka, B. Kerkhoff, W. Panarese, and J. Tanesi, Diseño y control de mezclas de concreto. Skokie: Portland Cement Association, 2004.spa
dc.relation.referencesAsociación Colombiana de Productores de Concreto - ASOCRETO, Tecnología del concreto Materiales, Propiedades y Diseño de Mezclas Tomo 1. Bogotá D.C., 2018.spa
dc.relation.referencesK. Mehta and P. J. M. Monteiro, CONCRETE Microstructure, Properties and Materials, 4th ed. New York: McGraw-Hill Education, 2014.spa
dc.relation.referencesH. M. Owaid, R. B. Hamid, and M. R. Taha, “A review of sustainable supplementary cementitious materials as an alternative to all-portland cement mortar and concrete,” Aust J Basic Appl Sci, vol. 6, no. 9, 2012.spa
dc.relation.referencesZ. Li, Advanced Concrete Technology. Hoboken: John Wiley & Sons, INC., 2011.spa
dc.relation.referencesASTM International, “ASTM C618-19 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.” 2019. doi: 10.1520/C061819.spa
dc.relation.referencesS. S. Reddy and M. A. K. Reddy, “LIME CALCINED CLAY CEMENT (LC3): A Review,” in IOP Conference Series: Earth and Environmental Science, Aug. 2021, vol. 796, no. 1. doi: 10.1088/1755-1315/796/1/012037.spa
dc.relation.referencesASTM International, “ASTM C150/C150M-21 Standard Specification for Portland Cement.” 2021. doi: 10.1520/C0150_C0150M-21.spa
dc.relation.referencesASTM International, “ASTM C595/C595M-21 Standard Specification for Blended Hydraulic Cements.” 2021. doi: 10.1520/C0595_C0595M-21.spa
dc.relation.referencesASTM International, “ASTM C1157/C1157M-20 Standard Performance Specification for Hydraulic Cement.” ASTM Standards, 2020. doi: 10.1520/C1157_C1157M-20.spa
dc.relation.referencesC. P. Rodríguez Hidalgo, “Evaluación de la interacción en el uso conjunto de un material arcilloso activado térmicamente, caliza y sulfato sobre la cinética de hidratación y desempeño mecánico del cemento,” Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesMETTLER TOLEDO, “Determination of calcium sulfate dihydrate and hemihydrate in cement,” 2010. [Online]. Available: www.mt.comspa
dc.relation.referencesF. Zunino and K. Scrivener, “The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties,” Cem Concr Res, vol. 140, 2021, doi: 10.1016/j.cemconres.2020.106307.spa
dc.relation.referencesM. A. Giraldo and J. I. Tobón, “Evolución mineralógica del cemento Pórtland durante el proceso de hidratación,” Dyna (Medellin), vol. 73, no. 148, pp. 69–81, 2006.spa
dc.relation.referencesL. E. Romero Robles, “Evaluación de factores que afectan la aparición de etringita secundaria como simulación del envejecimiento de mezclas de concreto y su papel dentro de procesos de expansión y agrietamiento,” in 10th Latin American and Caribbean Conference for Engineering and Technology, Jul. 2012.spa
dc.relation.referencesS. Krishnan, A. C. Emmanuel, and S. Bishnoi, “Hydration and phase assemblage of ternary cements with calcined clay and limestone,” Constr Build Mater, vol. 222, pp. 64–72, Oct. 2019, doi: 10.1016/j.conbuildmat.2019.06.123.spa
dc.relation.referencesL. M. Vizcaíno Andrés, M. G. Antoni, A. A. Diaz, J. F. Martirena Hernández, and K. L. Scrivener, “Effect of fineness in clinker-calcined clays-limestone cements,” Advances in Cement Research, vol. 27, no. 9, pp. 546–556, Oct. 2015, doi: 10.1680/adcr.14.00095.spa
dc.relation.referencesL. C. Lopera Agudelo, “Los principales fenómenos en la reacción del cemento hidráulico,” Jun. 2021. https://alion.com.co/reaccion-del-cemento-hidraulico/#:~:text=En%20el%20cemento%2C%20ocurre%20principalmente,la%20reducci%C3%B3n%20en%20la%20resistencia. (accessed Jul. 22, 2022).spa
dc.relation.referencesD. Jansen, F. Goetz-Neunhoeffer, B. Lothenbach, and J. Neubauer, “The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD,” Cem Concr Res, vol. 42, no. 1, pp. 134–138, Jan. 2012, doi: 10.1016/j.cemconres.2011.09.001.spa
dc.relation.referencesZ. Li, D. Lu, and X. Gao, “Analysis of correlation between hydration heat release and compressive strength for blended cement pastes,” Constr Build Mater, vol. 260, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.120436.spa
dc.relation.referencesF. Yousuf, X. Wei, and J. Zhou, “Monitoring the setting and hardening behaviour of cement paste by electrical resistivity measurement,” Constr Build Mater, vol. 252, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.118941.spa
dc.relation.referencesL. Chi, Z. Wang, S. Lu, H. Wang, K. Liu, and W. Liu, “Early assessment of hydration and microstructure evolution of belite-calcium sulfoaluminate cement pastes by electrical impedance spectroscopy,” Electrochim Acta, vol. 389, Sep. 2021, doi: 10.1016/j.electacta.2021.138699.spa
dc.relation.referencesL. Liu et al., “Study on hydration reaction and structure evolution of cemented paste backfill in early-age based on resistivity and hydration heat,” Constr Build Mater, vol. 272, Feb. 2021, doi: 10.1016/j.conbuildmat.2020.121827.spa
dc.relation.referencesASTM International, “ASTM C563-20 Standard Guide for Approximation of Optimum SO3 in Hydraulic Cement Using Compressive Strength.” 2020. doi: 10.1520/C0563-20.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “GTC 302 Cementos. Guía para determinar el contenido óptimo aproximado de SO3 en el cemento hidráulico.” 2020.spa
dc.relation.referencesH. Maraghechi, F. Avet, H. Wong, H. Kamyab, and K. Scrivener, “Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport,” Materials and Structures/Materiaux et Constructions, vol. 51, no. 5, Oct. 2018, doi: 10.1617/s11527-018-1255-3.spa
dc.relation.referencesS. Narayanan and G. Muniasamy, “STRENGTH CHARACTERISTICS OF HIGH TICS OF HIGH PERFORMANCE LIME CALCINED CLAY CLAY CEMENT (LC3) CONCRETE,” International Journal of Civil Engineering and Technology (IJCIET), vol. 9, no. 13, pp. 1883–1889, 2018.spa
dc.relation.referencesV. Shah, A. Parashar, G. Mishra, S. Medepalli, S. Krishnan, and S. Bishnoi, “Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete,” Advances in Cement Research, vol. 32, no. 3, pp. 101–111, Aug. 2018, doi: 10.1680/jadcr.18.00073.spa
dc.relation.referencesApsa and R. Rao, “Performance of Limestone Calcined Clay Cement,” International Journal of Recent Technology and Engineering (IJRTE), vol. 7, no. 6C2, 2019.spa
dc.relation.referencesG. Mishra, A. C. Emmanuel, and S. Bishnoi, “Influence of temperature on hydration and microstructure properties of limestone-calcined clay blended cement,” Mater Struct, vol. 52, no. 5, Oct. 2019, doi: 10.1617/s11527-019-1390-5.spa
dc.relation.referencesS. Rengaraju, L. Neelakantan, and R. G. Pillai, “Investigation on the polarization resistance of steel embedded in highly resistive cementitious systems – An attempt and challenges,” Electrochim Acta, vol. 308, pp. 131–141, Jun. 2019, doi: 10.1016/j.electacta.2019.03.200.spa
dc.relation.referencesJ. Ston and K. Scrivener, “Basic creep of limestone–calcined clay cements: An experimental and numerical approach,” Theoretical and Applied Fracture Mechanics, vol. 103, Oct. 2019, doi: 10.1016/j.tafmec.2019.102270.spa
dc.relation.referencesF. Avet, E. Boehm-Courjault, and K. Scrivener, “Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3),” Cem Concr Res, vol. 115, pp. 70–79, Jan. 2019, doi: 10.1016/j.cemconres.2018.10.011.spa
dc.relation.referencesY. Dhandapani and M. Santhanam, “Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination,” Cem Concr Res, vol. 129, no. December 2019, p. 105959, 2020, doi: 10.1016/j.cemconres.2019.105959.spa
dc.relation.referencesN. Nair, K. Mohammed Haneefa, M. Santhanam, and R. Gettu, “A study on fresh properties of limestone calcined clay blended cementitious systems,” Constr Build Mater, vol. 254, p. 119326, 2020, doi: 10.1016/j.conbuildmat.2020.119326.spa
dc.relation.referencesQ. D. Nguyen, T. Kim, and A. Castel, “Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3),” Cem Concr Res, vol. 137, no. June, p. 106176, 2020, doi: 10.1016/j.cemconres.2020.106176.spa
dc.relation.referencesF. Bahman-Zadeh, A. A. Ramezanianpour, and A. Zolfagharnasab, “Effect of carbonation on chloride binding capacity of limestone calcined clay cement (LC3) and binary pastes,” Journal of Building Engineering, vol. 52, p. 104447, Jul. 2022, doi: 10.1016/j.jobe.2022.104447.spa
dc.relation.referencesM. Santhanam, R. Pillai, and Y. Dhandapani, “Recent Research on Limestone Calcined Clay Cement (LC3) at IIT Madras,” 2018.spa
dc.relation.referencesF. A. Zunino Sommariva, “Limestone calcined clay cements (LC3): raw material processing, sulfate balance and hydration kinetics,” École Polytecnhique Fédérale de Lausanne, Lausanne, 2020.spa
dc.relation.referencesD. Sánchez de Guzmán, Durabilidad y Patología del Concreto, Segunda. Bogotá: Asociación Colombiana de Productores de Concreto - ASOCRETO, 2017.spa
dc.relation.referencesW. Stumm and J. J. Morgan, AQUATIC CHEMISTRY Chemical Equilibria and Rates in Natural Waters, vol. Third Edition. John Wiley & Sons, INC., 1995.spa
dc.relation.referencesS. von Greve-Dierfeld et al., Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC, vol. 53, no. 6. 2020. doi: 10.1617/s11527-020-01558-w.spa
dc.relation.referencesE. F. Félix, R. Carrazedo, and E. Possan, “Análise paramétrica da carbonatação em estruturas de concreto armado via Redes Neurais Artificiais,” Revista ALCONPAT, vol. 7, no. 3, pp. 302–316, 2017, doi: 10.21041/ra.v7i3.245.spa
dc.relation.referencesK. T. Kunal Tongaria, S. M. S.Mandal, and D. M. Devendra Mohan, “A Review on Carbonation of Concrete and Its Prediction Modelling,” Journal of Environmental Nanotechnology, vol. 7, no. 4, pp. 75–90, 2018, doi: 10.13074/jent.2018.12.184325.spa
dc.relation.referencesV. Papadakis, C. Vayenas, and M. Fardis, “Fundamental Modeling and Experimental Investigation of Concrete Carbonation,” ACI Mater J, vol. 88, no. 4, pp. 363–373, 1991.spa
dc.relation.referencesY. F. Houst and F. H. Wittmann, “Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste,” Cem Concr Res, vol. 24, no. 6, pp. 1165–1176, 1994, doi: 10.1016/0008-8846(94)90040-X.spa
dc.relation.referencesP. L. Valdez-Tamez, A. Durán-Herrera, G. Fajardo-San Miguel, and C. A. Juárez-Alvarado, “Influencia de la carbonatación en morteros de cemento Pórtland y ceniza volante,” Ingeniería, investigación y tecnología, vol. 10, no. 1, pp. 39–49, 2009, doi: 10.22201/fi.25940732e.2009.10n1.005.spa
dc.relation.referencesN. V. Rao and T. Meena, “A review on carbonation study in concrete,” in IOP Conference Series: Materials Science and Engineering, Dec. 2017, vol. 263, no. 3. doi: 10.1088/1757-899X/263/3/032011.spa
dc.relation.referencesJ. L. Omen Bolaños and O. Bolaños, “Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC),” Universidad Nacional de Colombia, Bogotá, 2021.spa
dc.relation.referencesR. Montani, “La carbonatación, enemigo olvidado del concreto,” Instituto Mexicano del Cemento y del Concreto, A.C, 2000. https://www.imcyc.com/revista/2000/dic2000/carbonatacion.htm (accessed Jul. 22, 2022).spa
dc.relation.referencesN. Singh and S. P. Singh, “Reviewing the Carbonation Resistance of Concrete,” Journal of Materials and Engineering Structures, vol. 3, pp. 35–57, 2016.spa
dc.relation.referencesB. Šavija and M. Luković, “Carbonation of cement paste: Understanding, challenges, and opportunities,” Constr Build Mater, vol. 117, pp. 285–301, 2016, doi: 10.1016/j.conbuildmat.2016.04.138.spa
dc.relation.referencesW. Ashraf, “Carbonation of cement-based materials: Challenges and opportunities,” Constr Build Mater, vol. 120, pp. 558–570, Jun. 2016, doi: 10.1016/j.conbuildmat.2016.05.080.spa
dc.relation.referencesM. Richardson, Fundamentals of Durable Reinforced Concrete. Taylor & Francis Group, 2002.spa
dc.relation.referencesJ. M. Lizarazo Marriaga, “Elementos básicos de durabilidad del concreto: Corrosión del refuerzo,” En edición., 2018.spa
dc.relation.referencesK. Tuutti, Corrosion of steel concrete. Stockholm: Swedish Cement and Concrete Research Institute, 1982.spa
dc.relation.referencesL. Bertolini, “Steel corrosion and service life of reinforced concrete structures,” Structure and Infrastructure Engineering, vol. 4, no. 2, pp. 123–137, Apr. 2008, doi: 10.1080/15732470601155490.spa
dc.relation.referencesDURAR, Manual de inspección, evaluación y diagnóstico de corrosión de estructuras de hormigón armado, 2nd ed. 1998.spa
dc.relation.referencesP. R. D. L. Helene, “Contribuição ao estudo da corrosão en armaduras de concreto armado,” Universidade de São Paulo Escola Politécnica, São Paulo, 1993.spa
dc.relation.referencesPortland Cement Association (PCA), “Types and Causes of Concrete Deterioration,” Portland Cement Association - Concrete Information, vol. PCA R & D Se, pp. 1–16, 2002.spa
dc.relation.referencesP. Helene and F. Pereira, Manual de Rehabilitación de Estructuras de Hormigón. CYTED, 2003.spa
dc.relation.referencesJ. Broomfield, Corrosion in concrete steel, no. april. Taylor & Francis Group, 2007.spa
dc.relation.referencesASTM International, “ASTM C109/C109M-20b Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” 2020. 2021. doi: 10.1520/C0109_C0109M-20B.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación (ICONTEC), “NTC 6270:2018 CEMENTOS. MÉTODO DE ENSAYO PARA MEDIR EL CALOR DE HIDRATACIÓN DE MATERIALES CEMENTANTES HIDRÁULICOS USANDO CALORIMETRÍA DE CONDUCCIÓN ISOTÉRMICA.” 2018.spa
dc.relation.referencesASTM International, “ASTM C1702: Standard Test Method for Measurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal Conduction Calorimetry,” 2017, doi: 10.1520/C1702-17.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 1377:2021 Concretos. Elaboración y curado de especímenes de concreto para ensayos en el laboratorio.” 2021.spa
dc.relation.referencesASTM International, “ASTM C192/C192M-19 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory.” 2019. doi: 10.1520/C0192_C0192M-19.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 673:2021 Concretos. Método de ensayo de resistencia a la compresión de especímenes cilíndricos de concreto.” 2021.spa
dc.relation.referencesASTM International, “ASTM C39/C39M-21 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.” 2021. doi: 10.1520/C0039_C0039M-21.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 6041:2019 CEMENTOS. MÉTODO DE ENSAYO PARA DETERMINAR LA CONTRACCIÓN POR SECADO DEL MORTERO QUE CONTIENE CEMENTO HIDRÁULICO.” 2019.spa
dc.relation.referencesASTM International, “ASTM C596-18 Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement.” 2018. doi: 10.1520/C0596-18.spa
dc.relation.referencesL. N. Peña Leal, “Desarrollo de un sistema semi-adiabático para medir calor de hidratación de pastas de cemento y morteros.,” Universidad Nacional de Colombia, Bogotá, 2011.spa
dc.relation.referencesBritish Standards Institution (BSI), “BS EN 196-9:2003 Methods of testing cement - Heat of hydration. Semi-adiabatic method.” 2004.spa
dc.relation.referencesS. D. Peñaranda Sanjuan, “Metodología para la medición de la hidratación del cemento adicionado con ceniza volante a partir de impedancia electroquímica (En edición),” Universidad Nacional de Colombia, Bogotá D.C., 2022.spa
dc.relation.referencesA. F. Sosa Gallardo and J. L. Provis, “Electrochemical cell design and impedance spectroscopy of cement hydration,” J Mater Sci, vol. 56, no. 2, pp. 1203–1220, Jan. 2021, doi: 10.1007/s10853-020-05397-6.spa
dc.relation.referencesH. Magar, R. Hassan, and A. Mulchandani, “Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications,” Sensors, vol. 21, 2021, doi: 10.3390/s21196578.spa
dc.relation.referencesF. Iloro, L. Traveesa, and N. Ortega, “Correlación entre carbonatación natural y acelerada del hormigón con distintos cementos,” in VII Congreso Internacional - 21a Reunión Técnica de la AATH “Ing. Nélida del Valle Castría,” 2016, pp. 333–340.spa
dc.relation.referencesBritish Standards Institution (BSI), “BS EN 12390-12:2020 Determination of the carbonation resistance of concrete — Accelerated carbonation method.” 2020.spa
dc.relation.referencesM. D. Newlands, “Development of a simulated natural carbonation test and durability of selected CEM II concretes,” Univesity of Dundee, 2001.spa
dc.relation.referencesGamry Instruments, “Potentiostat Fundamentals,” 2022. https://www.gamry.com/application-notes/instrumentation/potentiostat-fundamentals/ (accessed Jun. 04, 2022).spa
dc.relation.referencesGamry Instruments, “Faraday Cage: What Is It? How Does It Work?,” 2022. https://www.gamry.com/application-notes/instrumentation/faraday-cage/ (accessed Jun. 04, 2022).spa
dc.relation.referencesASTM International, “ASTM C876-15 Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.” 2015. doi: 10.1520/C0876-15.spa
dc.relation.referencesE. Mccafferty, Introduction to Corrosion Science. Springer Sciencie+ Business Media, 2010. doi: 10.1007/978-1-4419-0455-3.spa
dc.relation.referencesA. M. Aguirre-Guerrero, R. Mejía-De-Gutiérrez, and M. J. R. Montês-Correia, “Corrosion performance of blended concretes exposed to different aggressive environments,” Constr Build Mater, vol. 121, pp. 704–716, Sep. 2016, doi: 10.1016/j.conbuildmat.2016.06.038.spa
dc.relation.referencesA. F. Barragán Ramos, “Durability Performance Assessment of Fly Ash Concrete Using Fine Recycled Aggregates,” Universidad Nacional de Colombia, Bogotá D.C., 2021.spa
dc.relation.referencesASTM International, “ASTM G59-97(2020) Standard test method for conducting potentiodynamic polarization resistance measurements.” 2014. doi: 10.1520/G0059-97R14.2.spa
dc.relation.referencesA. D. Obando Ramírez, “Propuesta de procedimientos de las técnicas: ruido electroquímico, resistencia a la polarización e impedancia electroquímica usadas en la medición de la corrosión del refuerzo en el concreto reforzado,” Universidad Nacional de Colombia, Bogotá D.C., 2013.spa
dc.relation.referencesF. J. Rodríguez Gómez, “Técnicas electroquímicas de corriente directa para la medición de la velocidad de corrosión,” México D.F.spa
dc.relation.referencesAmerican Concrete Institute (ACI), “ACI PRC-211.1-91 Selecting Proportions for Normal-Density and High Density Concrete - Guide.” 2002.spa
dc.relation.referencesICONTEC, “NTC 121:2021 Especificación de desempeño para cemento hidráulico.”spa
dc.relation.referencesICONTEC, “NTC 5806:2019 ALAMBRE DE ACERO LISO Y GRAFILADO Y MALLAS LECTROSOLDADAS PARA REFUERZO DE CONCRETO.”spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 221:2019 Cementos. Método de ensayo para determinar la densidad del cemento hidráulico.” 2019.spa
dc.relation.referencesASTM International, “ASTM C188-17 Standard Test Method for Density of Hydraulic Cement.” 2017. doi: 10.1520/C0188-17.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 33:2019 Cementos. Método de ensayo para determinar la finura del cemento hidráulico por medio del aparato Blaine de permeabilidad al aire.” 2019.spa
dc.relation.referencesASTM International, “ASTM C204-18E01 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus,” 2018, doi: 10.1520/C0204-18E01.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 110:2019 CEMENTOS. CANTIDAD DE AGUA REQUERIDA PARA LA CONSISTENCIA NORMAL DE UNA PASTA DE CEMENTO HIDRÁULICO.” 2019.spa
dc.relation.referencesASTM International, “ASTM C187-16 Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste.” 2016. doi: 10.1520/C0187-16.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 118:2019 Cementos. Método de ensayo para determinar el tiempo de fraguado del cemento hidráulico mediante aguja de vicat.” 2019.spa
dc.relation.referencesASTM International, “ASTM C191-19 Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle.” 2019. doi: 10.1520/C0191-19.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 220:2021 Cementos. Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm o 2 pulgadas de lado.” 2021.spa
dc.relation.referencesASTM International, “ASTM C778-17.2 Standard Specification for Standard Sand.” 2017. doi: 10.1520/C0778-17.2.spa
dc.relation.referencesASTM International, “ASTM C33/C33M-16 Specification for Concrete Aggregates.” 2016. doi: 10.1520/C0033_C0033M-16.spa
dc.relation.referencesASTM Internnational, “ASTM C40/C40M-20 Standard Test Method for Organic Impurities in Fine Aggregates for Concrete.” 2020. doi: 10.1520/C0040_C0040M-20.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 92:2019 MÉTODO DE ENSAYO PARA LA DETERMINACIÓN DE LA DENSIDAD VOLUMÉTRICA (MASA UNITARIA) Y VACÍOS EN AGREGADOS.” 2019.spa
dc.relation.referencesASTM International, “ASTM C29/C29M-17A Standard Test Method for Bulk Density (‘Unit Weight’) and Voids in Aggregate.” 2017. doi: 10.1520/C0029_C0029M-17A.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 78:2019 MÉTODO DE ENSAYO PARA DETERMINAR POR LAVADO EL MATERIAL QUE PASA EL TAMIZ 75 µm (No. 200) EN AGREGADOS MINERALES.” 2019.spa
dc.relation.referencesASTM International, “ASTM C117-17 Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing.” ASTM International, 2020. doi: 10.1520/C0117-17.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 1776:2019 MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO TOTAL DE HUMEDAD EVAPORABLE POR SECADO DE LOS AGREGADOS.” 2019.spa
dc.relation.referencesASTM International, “ASTM C566-19 Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying,” 2019. doi: 10.1520/C0566-19.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 237:2020 Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino.” 2020.spa
dc.relation.referencesASTM International, “ASTM C128-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.” 2015. doi: 10.1520/C0128-15.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 176:2019 Método de ensayo para determinar la densidad relativa (gravedad específica) y la absorción del agregado grueso.” 2019.spa
dc.relation.referencesASTM International, “ASTM C127-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate.” 2016. doi: 10.1520/C0127-15.spa
dc.relation.referencesASTM International, “ASTM C494/C494M-19 Standard Specification for Chemical Admixtures for Concrete.” 2019. doi: 10.1520/C0494.spa
dc.relation.referencesInvesa, “Pintura Epóxica,” 2017. https://www.invesa.com/product/pintura-epoxica/ (accessed Aug. 09, 2022).spa
dc.relation.referencesASTM International, “ASTM C305-14 Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency.” 2014. doi: 10.1520/C0305-14.spa
dc.relation.referencesASTM International, “ASTM C1437-20 Standard Test Method for Flow of Hydraulic Cement Mortar.” 2020. doi: 10.1520/C1437-20.spa
dc.relation.referencesASTM International, “ASTM C143/C143M-20 Standard Test Method for Slump of Hydraulic-Cement Concrete.” 2020. doi: 10.1520/C0143_C0143M-20.spa
dc.relation.referencesASTM International, “ASTM C31/C31M-21 Standard Practice for Making and Curing Concrete Test Specimens in the Field.” 2020. doi: 10.1520/C0031_C0031M-21.spa
dc.relation.referencesASTM International, “ASTM C511-19 Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes.” 2019. doi: 10.1520/C0511-19.spa
dc.relation.referencesASTM International, “ASTM C642-21 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.” 2021. doi: 10.1520/C0642-21.spa
dc.relation.referencesASTM International, “ASTM C1202-19 Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration.” 2019. doi: 10.1520/C1202-19.spa
dc.relation.referencesDiEs, “Cámaras de estabilidad climáticas carbonatación CO2.” Itagüi, 2022.spa
dc.relation.referencesW. Navidi, Estadística para ingenieros y científicos. México D.F.: Mc Graw Hill, 2006.spa
dc.relation.referencesGamry Instruments, “Reference 600+ Potentiostat/Galvanostat/ZRA Operator’s Manual,” 2019. [Online]. Available: www.gamry.com/service-support/spa
dc.relation.referencesJ. Bermúdez, “Inhibición de la corrosión del acero embebido en mortero de cal al emplear Aloe vera como anticorrosivo,” Universidad Nacional de Colombia, Bogotá D.C., 2020.spa
dc.relation.referencesASTM International, “ASTM E178-21 Standard Practice for Dealing With Outlying Observations.” 2021. doi: 10.1520/E0178-21.spa
dc.relation.referencesM. Y. F. Câmara, Y. S. B. Fraga, and V. M. S. Capuzzo, “Hydration of Cement Pastes Using the Cement LC3,” in RILEM Bookseries, vol. 22, Springer Netherlands, 2020, pp. 69–75. doi: 10.1007/978-3-030-22034-1_8.spa
dc.relation.referencesM. B. Díaz García, L. A. Ruíz, and J. F. Martirena-Hernandez, “Effect of the Addition of Calcined Clay-Limestone-Gypsum in the Hydration of Portland Cement Pastes,” in RILEM Bookseries, vol. 22, Springer Netherlands, 2020, pp. 23–29. doi: 10.1007/978-3-030-22034-1_3.spa
dc.relation.referencesY. Dhandapani, K. Vignesh, T. Raja, and M. Santhanam, “Development of the microstructure in LC3 systems and its effect on concrete properties,” in RILEM Bookseries, 2018, vol. 16, pp. 131–140. doi: 10.1007/978-94-024-1207-9_21.spa
dc.relation.referencesR. Downs and H. Yang, “RRUFF Project.” https://rruff.info/ (accessed Jul. 08, 2022).spa
dc.relation.referencesJ. Lizarazo-Marriaga, C. Higuera, and P. Claisse, “Measuring the effect of the ITZ on the transport related properties of mortar using electrochemical impedance,” Constr Build Mater, vol. 52, pp. 9–16, Feb. 2014, doi: 10.1016/j.conbuildmat.2013.10.077.spa
dc.relation.referencesG. Y. Koga, B. Albert, and R. Pereira Nogueira, “Revisiting the ASTM C876 standard for corrosion of reinforcing steel: On the correlation between corrosion potential and polarization resistance during the curing of different cement mortars,” Electrochem commun, vol. 94, pp. 1–4, 2018, doi: 10.1016/j.elecom.2018.07.017.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 5551:2007 Concretos. Durabilidad de estructuras de concreto.” 2007.spa
dc.relation.referencesInternational Standard Organization, “ISO 16204:2012 Durability — Service life design of concrete structures.” 2012.spa
dc.relation.referencesK. Wanderly, Encyclopedia of Interfacial Chemistry, vol. Seven. Elsevier, 2018.spa
dc.relation.referencesK. L. Scrivener, A. K. C. Lyon, and F. P. Laugesen, “The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete,” INTERFACE SCIENCE, vol. 12, pp. 411–421, 2004.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicosspa
dc.subject.lembHormigónspa
dc.subject.lembConcreteeng
dc.subject.lembCompuestos cementososspa
dc.subject.lembCement compositeseng
dc.subject.proposalCemento con caliza y arcilla calcinada (LC3)spa
dc.subject.proposalCarbonataciónspa
dc.subject.proposalCorrosiónspa
dc.subject.proposalLimestone calcined clay cement (LC3eng
dc.subject.proposalCarbonationeng
dc.subject.proposalCorrosioneng
dc.titleEvaluación de la resistencia a la corrosión debida a carbonatación en concretos con cementos pórtland adicionados con caliza y arcilla calcinadaspa
dc.title.translatedEvaluation of corrosion resistance due to carbonation in concrete with portland cements blended with limestone and calcined clayeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032472679.2023.pdf
Tamaño:
9.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: