Evaluación del potencial de detección y determinación mediante fluorescencia de excitación–emisión de metabolitos de hidrocarburos aromáticos asociados a la industria del petróleo

dc.contributor.advisorVelasco Santamaría, Yohana Maríaspa
dc.contributor.advisorJiménez Pizarro, Rodrigospa
dc.contributor.advisorDuarte Ruiz, Álvarospa
dc.contributor.advisorBrinkmann, Markusspa
dc.contributor.authorMora-Solarte, Diego Alejandrospa
dc.contributor.researchgroupCalidad del Airespa
dc.date.accessioned2020-07-17T21:18:33Zspa
dc.date.available2020-07-17T21:18:33Zspa
dc.date.issued2020-07-12spa
dc.description.abstractGlobally, industrial discharges with a high xenobiotic load are discharged to water sources. For example, in the Colombian Orinoco region, at the wellhead ~ 16 barrels of water are produced for each barrel of oil. Even after treatment, the discharged waters contain substantial amounts of Polycyclic Aromatic Hydrocarbons (PAHs). These compounds are highly toxic and of global environmental priority, due to their persistence in the environment and accumulation in the food chain. In this work, an analytical excitation-emission fluorescence (EEMS) technique was developed for the detection and quantification of HAPs, and their metabolites in a complex biological matrix (fish bile). This spectroscopic technique is sensitive, faster and less expensive than chromatography. The EEMS allowed detecting the presence of metabolites of PAHs (1-hydroxypyrene, 1- and 2-hydroxynaphthalene, 9-hydroxyphenanthrene) in fish exposed in the laboratory (Piaractus brachypomus and Aequidens metae). High spectral specificity (fluorometric fingerprint) and high sensitivity (up to ppt) were found for the measured compounds and mixtures (precursors, metabolites and bile). For this, a metrological optimization of the fluorometer was made and of the measurement methodology (including the solvent). A high species-species and individual-individual variability was found in the spectral surfaces of the bile. Despite this, it was possible to detect and spectrally quantify the presence of metabolites in bile from their reference spectra (pure compounds in ethanol), with excellent precision (r2> 0.9). The internal filter effects were appropriately captured by a mathematical model.spa
dc.description.abstractA nivel global se descargan a las fuentes de agua vertimientos industriales con alta carga de xenobióticos. Por ejemplo, en la Orinoquia Colombiana, en boca de pozo se producen ~16 barriles de agua por cada barril de petróleo. Incluso después de tratamiento, las aguas vertidas contienen cantidades sustanciales de Hidrocarburos Aromáticos Policíclicos (HAPs). Estos compuestos son altamente tóxicos y de prioridad ambiental a nivel global, debido a su persistencia en el ambiente y acumulación en la cadena trófica. En este trabajo se desarrolló una técnica analítica de fluorescencia de excitación-emisión (EEMS) para la detección y cuantificación de HAPs, y sus metabolitos en una matriz biológica compleja (bilis de peces). Esta técnica espectroscópica es sensitiva, más rápida y menos costosa que la cromatografía. La EEMS permitió detectar la presencia de metabolitos de HAPs (1-hidroxipireno, 1-, y 2hidroxinaftaleno, 9-hidroxifenantreno) en peces expuestos en laboratorio (Piaractus brachypomus y Aequidens metae). Se encontró una gran especificidad espectral (huella fluorométrica), y alta sensibilidad (hasta ppt) para los compuestos y mezclas medidas (precursores, metabolitos y bilis). Para esto se hizo una optimización metrológica del fluorómetro, y de la metodología de medición (incluyendo del solvente). Se encontró una alta variabilidad especie-especie e individuo-individuo en las superficies espectrales de la bilis. A pesar de esto se logró detectar y cuantificar espectralmente la presencia de los metabolitos en bilis, a partir de sus espectros de referencia (compuestos puros en etanol), con una excelente precisión (r2 > 0.9). Los efectos filtro interno fueron apropiadamente capturados por un modelo matemático.spa
dc.description.degreelevelMaestríaspa
dc.format.extent156spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMora-Solarte, Diego Alejandro. (2020). Evaluación del potencial de detección y determinación mediante fluorescencia de excitación–emisión de metabolitos de hidrocarburos aromáticos asociados a la industria del petróleo(Tesis de maestría). Universidad Nacional de Colombia, sede Bogotá, Bogotá, Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77793
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAas, E., Beyer, J., & Goksoyr, A. (2000). Fixed wavelength fluorescence (FF) of bile as a monitoring tool for polyaromatic hydrocarbon exposure in fish: an evaluation of compound specificity, inner filter effect and signal interpretation. Biomarkers, 5(1), 9-23. doi:10.1080/135475000230505spa
dc.relation.referencesAcree Jr, W. E. (2013). IUPAC-NIST Solubility Data Series. 98. Solubility of Polycyclic Aromatic Hydrocarbons in Pure and Organic Solvent Mixtures— Revised and Updated. Part 3. Neat Organic Solvents. Journal of Physical and Chemical Reference Data, 42(1), 013105.spa
dc.relation.referencesAl-Rawashdeh, N. A. (2012). Current achievement and future potential of fluorescence spectroscopy Macro To Nano Spectroscopy: InTech.spa
dc.relation.referencesBark, K.-M., & Forcé, R. K. (1991). Analysis of polynuclear aromatic hydrocarbon mixtures in various environments by time-resolved fluorescence spectroscopy. Talanta, 38(2), 181-188.spa
dc.relation.referencesBaszanowska, E., & Otremba, Z. (2017). Fluorometric index for sensing oil in the sea environment. Sensors, 17(6), 1276.spa
dc.relation.referencesBeltran, J., Ferrer, R., & Guiteras, J. (1998). Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation–emission fluorescence spectra. Analytica chimica acta, 373(2), 311-319.spa
dc.relation.referencesBeyer, J., Jonsson, G., Porte, C., Krahn, M. M., & Ariese, F. (2010). Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: A review. Environmental Toxicology and Pharmacology., 30(3), 224-244. doi:10.1016/j.etap.2010.08.004spa
dc.relation.referencesCorreia, A. D., Gonçalves, R., Scholze, M., Ferreira, M., & Henriques, M. A.-R. (2007). Biochemical and behavioral responses in gilthead seabream (Sparus aurata) to phenanthrene. Journal of Experimental Marine Biology and Ecology, 347(1-2), 109-122. doi:10.1016/j.jembe.2007.03.015spa
dc.relation.referencesCoskun, O. (2016). Separation techniques: chromatography. Northern clinics of Istanbul, 3(2), 156.spa
dc.relation.referencesChen, S., Yu, Y.-L., & Wang, J.-H. (2018). Inner filter effect-based fluorescent sensing systems: a review. Analytica chimica acta, 999, 13-26.spa
dc.relation.referencesChristensen, J. H., Hansen, A. B., Mortensen, J., & Andersen, O. (2005). Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Analytical Chemistry, 77(7), 22102217.spa
dc.relation.referencesChristensen, J. H., Tomasi, G., Strand, J., & Andersen, O. (2009). PARAFAC Modeling of Fluorescence Excitation− Emission Spectra of Fish Bile for Rapid En Route Screening of PAC Exposure. Environmental Science & Technology, 43(12), 4439-4445.spa
dc.relation.referencesGao, J., Ellis, L. B., & Wackett, L. P. (2009). The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic acids research, 38(suppl_1), D488-D491.spa
dc.relation.referencesHenderson, R. K., Baker, A., Murphy, K., Hambly, A., Stuetz, R., & Khan, S. (2009). Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Research, 43(4), 863-881.spa
dc.relation.referencesHur, J., Hwang, S.-J., & Shin, J.-K. (2008). Using synchronous fluorescence technique as a water quality monitoring tool for an urban river. Water, air, and soil pollution, 191(1-4), 231-243.spa
dc.relation.referencesJiménez, P. (2004). Development and application of UV-visible and mid-IR differential absorption spectroscopy techniques for pollutant trace gas monitoring. Ph. D. thesis.spa
dc.relation.referencesJimenez, R. (2018). Excitation-emission matrix spectroscopy (EEMS) (total luminescence spectrometry) fundamentals. Bogota.spa
dc.relation.referencesJonsson, G., Sundt, R. C., Aas, E., & Beyer, J. (2004). An evaluation of two fluorescence screening methods for the determination of chrysene metabolites in fish bile. Chemosphere, 56(1), 81-90.spa
dc.relation.referencesKhan, A. H. A., Ayaz, M., Arshad, M., Yousaf, S., Khan, M. A., Anees, M., . . . Iqbal, M. (2019). Biogeochemical cycle, occurrence and biological treatments of polycyclic aromatic hydrocarbons (PAHs). Iranian Journal of Science and Technology, Transactions A: Science, 43(3), 1393-1410.spa
dc.relation.referencesKim, M., Yim, U. H., Hong, S. H., Jung, J. H., Choi, H. W., An, J., . . . Shim, W. J. (2010). Hebei Spirit oil spill monitored on site by fluorometric detection of residual oil in coastal waters off Taean, Korea. Mar Pollut Bull, 60(3), 383389. doi:10.1016/j.marpolbul.2009.10.015spa
dc.relation.referencesKoller, E., Quehenberger, O., Jürgens, G., Wolfbeis, O. S., & Esterbauer, H. (1986). Investigation of human plasma low density lipoprotein by three‐dimensional flourescence spectroscopy. FEBS letters, 198(2), 229-234.spa
dc.relation.referencesKrahn, M. M., Ylitalo, G. M., Buzitis, J., Chan, S. L., Varanasi, U., Wade, T. L., . . . Manen, C. A. (1993). Comparison of high-performance liquid chromatography/fluorescence screening and gas chromatography/mass spectrometry analysis for aromatic compounds in sediments sampled after the Exxon Valdez oil spill. Environmental Science & Technology, 27(4), 699708.spa
dc.relation.referencesLakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy (Third edition ed.): Springer US.spa
dc.relation.referencesLombana Charfuelan, O. L. (2016). Desarrollo tecnológico y evaluación de un prototipo para el análisis de la contaminación de aguas mediante fluorescencia de matriz de excitación-emisión. (Maestría thesis), Universidad Nacional de Colombia-Sede Bogotá, Bogota.spa
dc.relation.referencesMartín Tornero, E., Espinosa-Mansilla, A., Muñoz de la Peña, A., & Durán Merás, I. (2018). Phenanthrene metabolites determination in human breast and cow milk by combining elution time-emission fluorescence data with multiway calibration. Talanta, 188, 299-307. doi:https://doi.org/10.1016/j.talanta.2018.05.096spa
dc.relation.referencesMathias, P. I., Connor, T. H., & B’Hymer, C. (2017). A review of high performance liquid chromatographic-mass spectrometric urinary methods for anticancer drug exposure of health care workers. Journal of Chromatography B, 1060, 316-324spa
dc.relation.referencesMora-Solarte, D. A., Calderón-Delgado, I. C., & Velasco-Santamaría, Y. M. (2020). Biochemical responses and proximate analysis of Piaractus brachypomus (Pisces: Characidae) exposed to phenanthrene. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 228, 108649. doi:https://doi.org/10.1016/j.cbpc.2019.108649spa
dc.relation.referencesNiessner, R., Panne, U., & Schröder, H. (1991). Fibre-optic sensor for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence. Analytica chimica acta, 255(2), 231-243.spa
dc.relation.referencesPampanin, D. M., Kemppainen, E. K., Skogland, K., Jørgensen, K. B., & Sydnes, M. O. (2016). Investigation of fixed wavelength fluorescence results for biliary metabolites of polycyclic aromatic hydrocarbons formed in Atlantic cod (Gadus morhua). Chemosphere, 144, 1372-1376.spa
dc.relation.referencesPampanin, D. M., & Sydnes, M. O. (2013). Polycyclic aromatic hydrocarbons a constituent of petroleum: presence and influence in the aquatic environment Hydrocarbon (Vol. 5, pp. 83-118): InTech Rijeka, Croatiaspa
dc.relation.referencesPatra, D. (2003). Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons.spa
dc.relation.referencesPatra, D., & Mishra, A. K. (2002). Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trends in Analytical Chemistry, 21(12), 787-798. doi:https://doi.org/10.1016/S01659936(02)01201-3spa
dc.relation.referencesPatra, D., Sireesha, L. K., & Mishra, A. (2001). Characterization and investigation of polycyclic aromatic compounds present in petrol, diesel, kerosene and 2T oil using excitation emission matrix fluorescence.spa
dc.relation.referencesPena, E. A., Ridley, L. M., Murphy, W. R., Sowa, J. R., & Bentivegna, C. S. (2015). Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development. Environmental Toxicology and Chemistry, 34(9), 1946-1958.spa
dc.relation.referencesRidley-Hoffman, L. M. (2018). Assessment of the Viability of Microwell Plates as Sample Holders for Analytical Excitation-Emission Spectroscopy of Polyaromatic Hydrocarbons in 75% Ethanol.spa
dc.relation.referencesRuczyńska, W., Szlinder-Richert, J., Malesa-Ciećwierz, M., & Warzocha, J. (2011). Assessment of PAH pollution in the southern Baltic Sea through the analysis of sediment, mussels and fish bile. Journal of Environmental Monitoring, 13(9), 2535-2542.spa
dc.relation.referencesVethaak, A. D., Baggelaar, P. K., van Lieverloo, J. H. M., & Ariese, F. (2016). Decadal Trends in Polycyclic Aromatic Hydrocarbon (PAH) Contamination Assessed by 1-Hydroxypyrene in Fish Bile Fluid in the Netherlands: Declining in Marine Waters but Still a Concern in Estuaries. Frontiers in Marine Science, 3(215). doi:10.3389/fmars.2016.00215spa
dc.relation.referencesVuorinen, P. J., Keinänen, M., Vuontisjärvi, H., Baršienė, J., Broeg, K., Förlin, L., . . . Schiedek, D. (2006). Use of biliary PAH metabolites as a biomarker of pollution in fish from the Baltic Sea. Marine pollution bulletin, 53(8), 479-487. doi:https://doi.org/10.1016/j.marpolbul.2005.11.020spa
dc.relation.referencesWilchek, M., & Chaiken, I. (2000). An overview of affinity chromatography Affinity Chromatography (pp. 1-6): Springer.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalwater pollutioneng
dc.subject.proposalcontaminación de aguasspa
dc.subject.proposalPolycyclic aromatic hydrocarbonseng
dc.subject.proposalmetabolitosspa
dc.subject.proposalbilis de pezspa
dc.subject.proposalmetaboliteseng
dc.subject.proposalfluorometríaspa
dc.subject.proposalfish bileeng
dc.subject.proposalmatriz de excitación-emisiónspa
dc.subject.proposalfluorometryeng
dc.subject.proposalexcitation-emission matrixeng
dc.subject.proposalmetrologíaspa
dc.subject.proposalmetrologyeng
dc.subject.proposalhidrocarburos aromáticos policíclicosspa
dc.titleEvaluación del potencial de detección y determinación mediante fluorescencia de excitación–emisión de metabolitos de hidrocarburos aromáticos asociados a la industria del petróleospa
dc.title.alternativeEvaluation of detection and determination potential using excitation-emission fluorescence of aromatic hydrocarbon metabolites associated with the petroleum industryspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085298952.2020.pdf
Tamaño:
8.94 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: