Evaluación del potencial de detección y determinación mediante fluorescencia de excitación–emisión de metabolitos de hidrocarburos aromáticos asociados a la industria del petróleo
| dc.contributor.advisor | Velasco Santamaría, Yohana María | spa |
| dc.contributor.advisor | Jiménez Pizarro, Rodrigo | spa |
| dc.contributor.advisor | Duarte Ruiz, Álvaro | spa |
| dc.contributor.advisor | Brinkmann, Markus | spa |
| dc.contributor.author | Mora-Solarte, Diego Alejandro | spa |
| dc.contributor.researchgroup | Calidad del Aire | spa |
| dc.date.accessioned | 2020-07-17T21:18:33Z | spa |
| dc.date.available | 2020-07-17T21:18:33Z | spa |
| dc.date.issued | 2020-07-12 | spa |
| dc.description.abstract | Globally, industrial discharges with a high xenobiotic load are discharged to water sources. For example, in the Colombian Orinoco region, at the wellhead ~ 16 barrels of water are produced for each barrel of oil. Even after treatment, the discharged waters contain substantial amounts of Polycyclic Aromatic Hydrocarbons (PAHs). These compounds are highly toxic and of global environmental priority, due to their persistence in the environment and accumulation in the food chain. In this work, an analytical excitation-emission fluorescence (EEMS) technique was developed for the detection and quantification of HAPs, and their metabolites in a complex biological matrix (fish bile). This spectroscopic technique is sensitive, faster and less expensive than chromatography. The EEMS allowed detecting the presence of metabolites of PAHs (1-hydroxypyrene, 1- and 2-hydroxynaphthalene, 9-hydroxyphenanthrene) in fish exposed in the laboratory (Piaractus brachypomus and Aequidens metae). High spectral specificity (fluorometric fingerprint) and high sensitivity (up to ppt) were found for the measured compounds and mixtures (precursors, metabolites and bile). For this, a metrological optimization of the fluorometer was made and of the measurement methodology (including the solvent). A high species-species and individual-individual variability was found in the spectral surfaces of the bile. Despite this, it was possible to detect and spectrally quantify the presence of metabolites in bile from their reference spectra (pure compounds in ethanol), with excellent precision (r2> 0.9). The internal filter effects were appropriately captured by a mathematical model. | spa |
| dc.description.abstract | A nivel global se descargan a las fuentes de agua vertimientos industriales con alta carga de xenobióticos. Por ejemplo, en la Orinoquia Colombiana, en boca de pozo se producen ~16 barriles de agua por cada barril de petróleo. Incluso después de tratamiento, las aguas vertidas contienen cantidades sustanciales de Hidrocarburos Aromáticos Policíclicos (HAPs). Estos compuestos son altamente tóxicos y de prioridad ambiental a nivel global, debido a su persistencia en el ambiente y acumulación en la cadena trófica. En este trabajo se desarrolló una técnica analítica de fluorescencia de excitación-emisión (EEMS) para la detección y cuantificación de HAPs, y sus metabolitos en una matriz biológica compleja (bilis de peces). Esta técnica espectroscópica es sensitiva, más rápida y menos costosa que la cromatografía. La EEMS permitió detectar la presencia de metabolitos de HAPs (1-hidroxipireno, 1-, y 2hidroxinaftaleno, 9-hidroxifenantreno) en peces expuestos en laboratorio (Piaractus brachypomus y Aequidens metae). Se encontró una gran especificidad espectral (huella fluorométrica), y alta sensibilidad (hasta ppt) para los compuestos y mezclas medidas (precursores, metabolitos y bilis). Para esto se hizo una optimización metrológica del fluorómetro, y de la metodología de medición (incluyendo del solvente). Se encontró una alta variabilidad especie-especie e individuo-individuo en las superficies espectrales de la bilis. A pesar de esto se logró detectar y cuantificar espectralmente la presencia de los metabolitos en bilis, a partir de sus espectros de referencia (compuestos puros en etanol), con una excelente precisión (r2 > 0.9). Los efectos filtro interno fueron apropiadamente capturados por un modelo matemático. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 156 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Mora-Solarte, Diego Alejandro. (2020). Evaluación del potencial de detección y determinación mediante fluorescencia de excitación–emisión de metabolitos de hidrocarburos aromáticos asociados a la industria del petróleo(Tesis de maestría). Universidad Nacional de Colombia, sede Bogotá, Bogotá, Colombia. | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77793 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental | spa |
| dc.relation.references | Aas, E., Beyer, J., & Goksoyr, A. (2000). Fixed wavelength fluorescence (FF) of bile as a monitoring tool for polyaromatic hydrocarbon exposure in fish: an evaluation of compound specificity, inner filter effect and signal interpretation. Biomarkers, 5(1), 9-23. doi:10.1080/135475000230505 | spa |
| dc.relation.references | Acree Jr, W. E. (2013). IUPAC-NIST Solubility Data Series. 98. Solubility of Polycyclic Aromatic Hydrocarbons in Pure and Organic Solvent Mixtures— Revised and Updated. Part 3. Neat Organic Solvents. Journal of Physical and Chemical Reference Data, 42(1), 013105. | spa |
| dc.relation.references | Al-Rawashdeh, N. A. (2012). Current achievement and future potential of fluorescence spectroscopy Macro To Nano Spectroscopy: InTech. | spa |
| dc.relation.references | Bark, K.-M., & Forcé, R. K. (1991). Analysis of polynuclear aromatic hydrocarbon mixtures in various environments by time-resolved fluorescence spectroscopy. Talanta, 38(2), 181-188. | spa |
| dc.relation.references | Baszanowska, E., & Otremba, Z. (2017). Fluorometric index for sensing oil in the sea environment. Sensors, 17(6), 1276. | spa |
| dc.relation.references | Beltran, J., Ferrer, R., & Guiteras, J. (1998). Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation–emission fluorescence spectra. Analytica chimica acta, 373(2), 311-319. | spa |
| dc.relation.references | Beyer, J., Jonsson, G., Porte, C., Krahn, M. M., & Ariese, F. (2010). Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: A review. Environmental Toxicology and Pharmacology., 30(3), 224-244. doi:10.1016/j.etap.2010.08.004 | spa |
| dc.relation.references | Correia, A. D., Gonçalves, R., Scholze, M., Ferreira, M., & Henriques, M. A.-R. (2007). Biochemical and behavioral responses in gilthead seabream (Sparus aurata) to phenanthrene. Journal of Experimental Marine Biology and Ecology, 347(1-2), 109-122. doi:10.1016/j.jembe.2007.03.015 | spa |
| dc.relation.references | Coskun, O. (2016). Separation techniques: chromatography. Northern clinics of Istanbul, 3(2), 156. | spa |
| dc.relation.references | Chen, S., Yu, Y.-L., & Wang, J.-H. (2018). Inner filter effect-based fluorescent sensing systems: a review. Analytica chimica acta, 999, 13-26. | spa |
| dc.relation.references | Christensen, J. H., Hansen, A. B., Mortensen, J., & Andersen, O. (2005). Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Analytical Chemistry, 77(7), 22102217. | spa |
| dc.relation.references | Christensen, J. H., Tomasi, G., Strand, J., & Andersen, O. (2009). PARAFAC Modeling of Fluorescence Excitation− Emission Spectra of Fish Bile for Rapid En Route Screening of PAC Exposure. Environmental Science & Technology, 43(12), 4439-4445. | spa |
| dc.relation.references | Gao, J., Ellis, L. B., & Wackett, L. P. (2009). The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic acids research, 38(suppl_1), D488-D491. | spa |
| dc.relation.references | Henderson, R. K., Baker, A., Murphy, K., Hambly, A., Stuetz, R., & Khan, S. (2009). Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Research, 43(4), 863-881. | spa |
| dc.relation.references | Hur, J., Hwang, S.-J., & Shin, J.-K. (2008). Using synchronous fluorescence technique as a water quality monitoring tool for an urban river. Water, air, and soil pollution, 191(1-4), 231-243. | spa |
| dc.relation.references | Jiménez, P. (2004). Development and application of UV-visible and mid-IR differential absorption spectroscopy techniques for pollutant trace gas monitoring. Ph. D. thesis. | spa |
| dc.relation.references | Jimenez, R. (2018). Excitation-emission matrix spectroscopy (EEMS) (total luminescence spectrometry) fundamentals. Bogota. | spa |
| dc.relation.references | Jonsson, G., Sundt, R. C., Aas, E., & Beyer, J. (2004). An evaluation of two fluorescence screening methods for the determination of chrysene metabolites in fish bile. Chemosphere, 56(1), 81-90. | spa |
| dc.relation.references | Khan, A. H. A., Ayaz, M., Arshad, M., Yousaf, S., Khan, M. A., Anees, M., . . . Iqbal, M. (2019). Biogeochemical cycle, occurrence and biological treatments of polycyclic aromatic hydrocarbons (PAHs). Iranian Journal of Science and Technology, Transactions A: Science, 43(3), 1393-1410. | spa |
| dc.relation.references | Kim, M., Yim, U. H., Hong, S. H., Jung, J. H., Choi, H. W., An, J., . . . Shim, W. J. (2010). Hebei Spirit oil spill monitored on site by fluorometric detection of residual oil in coastal waters off Taean, Korea. Mar Pollut Bull, 60(3), 383389. doi:10.1016/j.marpolbul.2009.10.015 | spa |
| dc.relation.references | Koller, E., Quehenberger, O., Jürgens, G., Wolfbeis, O. S., & Esterbauer, H. (1986). Investigation of human plasma low density lipoprotein by three‐dimensional flourescence spectroscopy. FEBS letters, 198(2), 229-234. | spa |
| dc.relation.references | Krahn, M. M., Ylitalo, G. M., Buzitis, J., Chan, S. L., Varanasi, U., Wade, T. L., . . . Manen, C. A. (1993). Comparison of high-performance liquid chromatography/fluorescence screening and gas chromatography/mass spectrometry analysis for aromatic compounds in sediments sampled after the Exxon Valdez oil spill. Environmental Science & Technology, 27(4), 699708. | spa |
| dc.relation.references | Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy (Third edition ed.): Springer US. | spa |
| dc.relation.references | Lombana Charfuelan, O. L. (2016). Desarrollo tecnológico y evaluación de un prototipo para el análisis de la contaminación de aguas mediante fluorescencia de matriz de excitación-emisión. (Maestría thesis), Universidad Nacional de Colombia-Sede Bogotá, Bogota. | spa |
| dc.relation.references | Martín Tornero, E., Espinosa-Mansilla, A., Muñoz de la Peña, A., & Durán Merás, I. (2018). Phenanthrene metabolites determination in human breast and cow milk by combining elution time-emission fluorescence data with multiway calibration. Talanta, 188, 299-307. doi:https://doi.org/10.1016/j.talanta.2018.05.096 | spa |
| dc.relation.references | Mathias, P. I., Connor, T. H., & B’Hymer, C. (2017). A review of high performance liquid chromatographic-mass spectrometric urinary methods for anticancer drug exposure of health care workers. Journal of Chromatography B, 1060, 316-324 | spa |
| dc.relation.references | Mora-Solarte, D. A., Calderón-Delgado, I. C., & Velasco-Santamaría, Y. M. (2020). Biochemical responses and proximate analysis of Piaractus brachypomus (Pisces: Characidae) exposed to phenanthrene. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 228, 108649. doi:https://doi.org/10.1016/j.cbpc.2019.108649 | spa |
| dc.relation.references | Niessner, R., Panne, U., & Schröder, H. (1991). Fibre-optic sensor for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence. Analytica chimica acta, 255(2), 231-243. | spa |
| dc.relation.references | Pampanin, D. M., Kemppainen, E. K., Skogland, K., Jørgensen, K. B., & Sydnes, M. O. (2016). Investigation of fixed wavelength fluorescence results for biliary metabolites of polycyclic aromatic hydrocarbons formed in Atlantic cod (Gadus morhua). Chemosphere, 144, 1372-1376. | spa |
| dc.relation.references | Pampanin, D. M., & Sydnes, M. O. (2013). Polycyclic aromatic hydrocarbons a constituent of petroleum: presence and influence in the aquatic environment Hydrocarbon (Vol. 5, pp. 83-118): InTech Rijeka, Croatia | spa |
| dc.relation.references | Patra, D. (2003). Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons. | spa |
| dc.relation.references | Patra, D., & Mishra, A. K. (2002). Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trends in Analytical Chemistry, 21(12), 787-798. doi:https://doi.org/10.1016/S01659936(02)01201-3 | spa |
| dc.relation.references | Patra, D., Sireesha, L. K., & Mishra, A. (2001). Characterization and investigation of polycyclic aromatic compounds present in petrol, diesel, kerosene and 2T oil using excitation emission matrix fluorescence. | spa |
| dc.relation.references | Pena, E. A., Ridley, L. M., Murphy, W. R., Sowa, J. R., & Bentivegna, C. S. (2015). Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development. Environmental Toxicology and Chemistry, 34(9), 1946-1958. | spa |
| dc.relation.references | Ridley-Hoffman, L. M. (2018). Assessment of the Viability of Microwell Plates as Sample Holders for Analytical Excitation-Emission Spectroscopy of Polyaromatic Hydrocarbons in 75% Ethanol. | spa |
| dc.relation.references | Ruczyńska, W., Szlinder-Richert, J., Malesa-Ciećwierz, M., & Warzocha, J. (2011). Assessment of PAH pollution in the southern Baltic Sea through the analysis of sediment, mussels and fish bile. Journal of Environmental Monitoring, 13(9), 2535-2542. | spa |
| dc.relation.references | Vethaak, A. D., Baggelaar, P. K., van Lieverloo, J. H. M., & Ariese, F. (2016). Decadal Trends in Polycyclic Aromatic Hydrocarbon (PAH) Contamination Assessed by 1-Hydroxypyrene in Fish Bile Fluid in the Netherlands: Declining in Marine Waters but Still a Concern in Estuaries. Frontiers in Marine Science, 3(215). doi:10.3389/fmars.2016.00215 | spa |
| dc.relation.references | Vuorinen, P. J., Keinänen, M., Vuontisjärvi, H., Baršienė, J., Broeg, K., Förlin, L., . . . Schiedek, D. (2006). Use of biliary PAH metabolites as a biomarker of pollution in fish from the Baltic Sea. Marine pollution bulletin, 53(8), 479-487. doi:https://doi.org/10.1016/j.marpolbul.2005.11.020 | spa |
| dc.relation.references | Wilchek, M., & Chaiken, I. (2000). An overview of affinity chromatography Affinity Chromatography (pp. 1-6): Springer. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
| dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas) | spa |
| dc.subject.ddc | 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales | spa |
| dc.subject.proposal | water pollution | eng |
| dc.subject.proposal | contaminación de aguas | spa |
| dc.subject.proposal | Polycyclic aromatic hydrocarbons | eng |
| dc.subject.proposal | metabolitos | spa |
| dc.subject.proposal | bilis de pez | spa |
| dc.subject.proposal | metabolites | eng |
| dc.subject.proposal | fluorometría | spa |
| dc.subject.proposal | fish bile | eng |
| dc.subject.proposal | matriz de excitación-emisión | spa |
| dc.subject.proposal | fluorometry | eng |
| dc.subject.proposal | excitation-emission matrix | eng |
| dc.subject.proposal | metrología | spa |
| dc.subject.proposal | metrology | eng |
| dc.subject.proposal | hidrocarburos aromáticos policíclicos | spa |
| dc.title | Evaluación del potencial de detección y determinación mediante fluorescencia de excitación–emisión de metabolitos de hidrocarburos aromáticos asociados a la industria del petróleo | spa |
| dc.title.alternative | Evaluation of detection and determination potential using excitation-emission fluorescence of aromatic hydrocarbon metabolites associated with the petroleum industry | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

