Multi-objective optimal power resources planning of microgrids with high penetration of intermittent nature generation and modern storage systems

dc.contributor.advisorCortés Guerrero, Camilo Andrésspa
dc.contributor.advisorMyrzik, Johannaspa
dc.contributor.authorContreras Paredes, Sergio Felipespa
dc.contributor.researchgroupGrupo de Investigación EMC-UNspa
dc.date.accessioned2021-01-19T20:39:18Zspa
dc.date.available2021-01-19T20:39:18Zspa
dc.date.issued2020-12-02spa
dc.description.abstractMicrogrids are self-controlled entities at the distribution voltage level that interconnect distributed energy resources (DERs) with loads and can be operated in either grid-connected or islanded mode. This type of active distribution network has evolved as a powerful concept to guarantee a reliable, efficient and sustainable electricity delivery as part of the power systems of the future. However, benefits of microgrids, such as the ancillary services (AS) provision, are not possible to be properly exploited before traditional planning methodologies are updated. Therefore, in this doctoral thesis, a named Probabilistic Multi-objective Microgrid Planning methodology with two versions, POMMP and POMMP2, is proposed for effective decision-making on the optimal allocation of DERs and topology definition under the paradigm of microgrids with capacity for providing AS to the main power grid. The methodologies are defined to consider a mixed generation matrix with dispatchable and non-dispatchable technologies, as well as, distributed energy storage systems and both conventional and power-electronic-based operation configurations. The planning methodologies are formulated based on a so-called true-multi-objective optimization problem with a configurable set of three objective functions. Accordingly, the capacity to supply AS is optimally enhanced with the maximization of the available active residual power in grid-connected operation mode; the capital, maintenance, and operation costs of microgrid are minimized, while the revenues from the services provision and participation on liberalized markets are maximized in a cost function; and the active power losses in microgrid´s operation are minimized. Furthermore, a probabilistic technique based on the simulation of parameters from their probabilistic density function and Monte Carlo Simulation is adopted to model the stochastic behavior of the non-dispatchable renewable generation resources and load demand as the main sources of uncertainties in the planning of microgrids. Additionally, POMMP2 methodology particularly enhances the proposal in POMMP by modifying the methodology and optimization model to consider the optimal planning of microgrid's topology with the allocation of DERs simultaneously. In this case, the concept of networked microgrid is contemplated, and a novel holistic approach is proposed to include a multilevel graph-partitioning technique and subsequent iterative heuristic optimization for the optimal formation of clusters in the topology planning and DERs allocation process. This microgrid planning problem leads to a complex non-convex mixed-integer nonlinear optimization problem with multiple contradictory objective functions, decision variables, and diverse constraint conditions. Accordingly, the optimization problem in the proposed POMMP/POMMP2 methodologies is conceived to be solved using multi-objective population-based metaheuristics, which gives rise to the adaptation and performance assessment of two existing optimization algorithms, the well-known Non-dominated Sorting Genetic Algorithm II (NSGAII) and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Furthermore, the analytic hierarchy process (AHP) is tested and proposed for the multi-criteria decision-making in the last step of the planning methodologies. The POMMP and POMMP2 methodologies are tested in a 69-bus and 37-bus medium voltage distribution network, respectively. Results show the benefits of an a posteriori decision making with the true-multi-objective approach as well as a time-dependent planning methodology. Furthermore, the results from a more comprehensive planning strategy in POMMP2 revealed the benefits of a holistic planning methodology, where different planning tasks are optimally and simultaneously addressed to offer better planning results.spa
dc.description.abstractLas microrredes son entes autocontrolados que operan en media o baja tensión, interconectan REDs con las cargas y pueden ser operadas ya sea en modo conectado a la red o modo isla. Este tipo de red activa de distribución ha evolucionado como un concepto poderoso para garantizar un suministro de electricidad fiable, eficiente y sostenible como parte de los sistemas de energía del futuro. Sin embargo, para explotar los beneficios potenciales de las microrredes, tales como la prestación de servicios auxiliares (AS), primero es necesario formular apropiadas metodologías de planificación. En este sentido, en esta tesis doctoral, una metodología probabilística de planificación de microrredes con dos versiones, POMMP y POMMP2, es propuesta para la toma de decisiones efectiva en la asignación óptima de DERs y la definición de la topología de microrredes bajo el paradigma de una microrred con capacidad para proporcionar AS a la red principal. Las metodologías se definen para considerar una matriz de generación mixta con tecnologías despachables y no despachables, así como sistemas distribuidos para el almacenamiento de energía y la interconnección de recursos con o sin una interfaz basada en dispositivos de electrónica de potencia. Las metodologías de planificación se formulan sobre la base de un problema de optimización multiobjetivo verdadero con un conjunto configurable de tres funciones objetivo. Con estos se pretende optimizar la capacidad de suministro de AS con la maximización de la potencia activa residual disponible en modo conectado a la red; la minimización de los costos de capital, mantenimiento y funcionamiento de la microrred al tiempo que se maximizan los ingresos procedentes de la prestación de servicios y la participación en los mercados liberalizados; y la minimización de las pérdidas de energía activa en el funcionamiento de la microrred. Además, se adopta una técnica probabilística basada en la simulación de parámetros a partir de la función de densidad de probabilidad y el método de Monte Carlo para modelar el comportamiento estocástico de los recursos de generación renovable no despachables. Adicionalmente,la POMMP2 mejora la propuesta de POMMP modificando la metodología y el modelo de optimización para considerar simultáneamente la planificación óptima de la topología de la microrred con la asignación de DERs. Así pues, se considera el concepto de microrredes interconectadas en red y se propone un novedoso enfoque holístico que incluye una técnica de partición de gráficos multinivel y optimización iterativa heurística para la formación óptima de clusters para el planeamiento de la topología y asignación de DERs. Este problema de planificación de microrredes da lugar a un complejo problema de optimización mixto, no lineal, no convexos y con múltiples funciones objetivo contradictorias, variables de decisión y diversas condiciones de restricción. Por consiguiente, el problema de optimización en las metodologías POMMP/POMMP2 se concibe para ser resuelto utilizando técnicas multiobjetivo de optimización metaheurísticas basadas en población, lo cual da lugar a la adaptación y evaluación del rendimiento de dos algoritmos de optimización existentes, el conocido Non-dominated Sorting Genetic Algorithm II (NSGAII) y el Evolutionary Algorithm Based on Decomposition (MOEA/D). Además, se ha probado y propuesto el uso de la técnica de proceso analítico jerárquico (AHP) para la toma de decisiones multicriterio en el último paso de las metodologías de planificación. Las metodologías POMMP/POMMP2 son probadas en una red de distribución de media tensión de 69 y 37 buses, respectivamente. Los resultados muestran los beneficios de la toma de decisiones a posteriori con el enfoque de optimización multiobjetivo verdadero, así como una metodología de planificación dependiente del tiempo. Además, los resultados de la estrategia de planificación con POMMP2 revelan los beneficios de una metodología de planificación holística, en la que las diferentes tareas de planificación se abordan de manera óptima y simultánea para ofrecer mejores resultados de planificación.spa
dc.description.additionalLínea de investigación: Planificación de redes inteligentes We thank to the Administrative Department of Science, Technology and Innovation - Colciencias, Colombia, for the granted National Doctoral funding program - 647spa
dc.description.degreelevelDoctoradospa
dc.format.extent258spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78825
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesACER (2011). "Framework Guidelines on Electricity System Operation FG -2011-E-003 ".spa
dc.relation.referencesAcosta, A. F., Contreras, S. F., and Cort´es, C. A. (2018). “Performance Assessment of a Modified Multi-objective Cuckoo’s Search Algorithm for Microgrid Planning Considering Uncertainties ”. In Proceedings of the Genetic and Evolutionary Computation Conference Companion on - GECCO ’18, pp. 276–277. ACM Press.spa
dc.relation.referencesAcosta León, A. F. (2017). “Evaluación del desempeño de algoritmos modernos de optimización multiobjetivo para el problema de planeación en microredes ”. Tesis de pregrado, Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá D.C., Colombia.spa
dc.relation.referencesAgarwal, U. and Jain, N. (2019). “Distributed Energy Resources and Supportive Methodologies for their Optimal Planning under Modern Distribution Network: a Review ”. Technology and Economics of Smart Grids and Sustainable Energy, Vol. 4, No. 1, pp. 3.spa
dc.relation.referencesAien, M., Hajebrahimi, A., and Fotuhi-Firuzabad, M. (2016). “A comprehensive review on uncertainty modeling techniques in power system studies ”. Renewable and Sustainable Energy Reviews, Vol. 57, pp. 1077–1089.spa
dc.relation.referencesAlam, M. N., Chakrabarti, S., and Ghosh, A. (2019). “Networked Microgrids: State-of-the- Art and Future Perspectives ”. IEEE Transactions on Industrial Informatics, Vol. 15, No. 3, pp. 1238–1250.spa
dc.relation.referencesAlarcon-Rodriguez, A., Ault, G., and Galloway, S. (2010). “Multi-objective planning of distributed energy resources: A review of the state-of-the-art ”. Renewable and Sustainable Energy Reviews, Vol. 14, No. 5, pp. 1353–1366.spa
dc.relation.referencesAlonso, J. A. and Lamata, M. T. (2006). “Consistency in the analytic hierarchy process: a new approach ”. International journal of uncertainty, fuzziness and knowledge-based systems, Vol. 14, No. 04, pp. 445–459.spa
dc.relation.referencesAnderson, A. A. and Suryanarayanan, S. (2019). “Review of Energy Management and Planning of Islanded Microgrids ”. CSEE Journal of Power and Energy Systems, Vol. 6, No. 2, pp. 1–15.spa
dc.relation.referencesAndersson, M., Bandaru, S., and Ng, A. H. C. (2016). “Tuning of multiple parameter sets in evolutionary algorithms ”. In T., F., editor, 2016 Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 533–540. Association for Computing Machinery, Inc.spa
dc.relation.referencesAndreotti, A., Carpinelli, G., Mottola, F., Proto, D., and Russo, A. (2018). “Decision Theory Criteria for the Planning of Distributed Energy Storage Systems in the Presence of Uncertainties”.spa
dc.relation.referencesArefifar, S. A. and Mohamed, Y. A. R. I. (2014a). “DG mix, reactive sources and energy storage units for optimizing microgrid reliability and supply security ”. IEEE Transactions on Smart Grid, Vol. 5, No. 4, pp. 1835–1844.spa
dc.relation.referencesArefifar, S. A. and Mohamed, Y.-R. (2014b). “Probabilistic Optimal Reactive Power Planning in Distribution Systems With Renewable Resources in Grid-Connected and Islanded Modes ”.spa
dc.relation.referencesArevalo, J., Santos, F., and Rivera, S. (2017). Uncertainty Cost Functions for Solar Photo-voltaic Generation, Wind Energy Generation, and Plug-In Electric Vehicles: Mathematical Expected Value and Verification by Monte Carlo Simulation, Vol. in press. International Journal of Power and Energy Conversion.spa
dc.relation.referencesAtwa, Y. M., El-Saadany, E. F., Salama, M. M. A., Seethapathy, R., Assam, M., and Conti, S. (2011). “Adequacy evaluation of distribution system including wind/solar DG during different modes of operation ”. IEEE Transactions on Power Systems, Vol. 26, No. 4, pp. 1945–1952.spa
dc.relation.referencesAyadi, O., Felfel, H., and Masmoudi, F. (2017). “Analytic hierarchy process-based approach for selecting a Pareto-optimal solution of a multi-objective, multi-site supply-chain planning problem ”. Engineering Optimization, Vol. 49, No. 7, pp. 1264–1280.spa
dc.relation.referencesBaran, M. E. and Wu, F. F. (1989). “Optimal capacitor placement on radial distribution systems ”. IEEE Transactions on Power Delivery, Vol. 4, No. 1, pp. 725–734.spa
dc.relation.referencesBarbir, F. (2013). “Fuel Cell Applications ”. In PEM Fuel Cells, pp. 373–434. Elsevier.spa
dc.relation.referencesBayindir, R., Hossain, E., Kabalci, E., and Billah, K. M. M. (2015). “Investigation on North American microgrid facility ”. International Journal of Renewable Energy Research, Vol. 5, No. 2, pp. 558–574.spa
dc.relation.referencesBender, E. A. and Williamson, S. G. (2010). Lists, Decisions and Graphs. S. Gill Williamson.spa
dc.relation.referencesBichot, C.-E. and Siarry, P., editors (2013). Graph Partitioning. John Wiley & Sons, Inc., Hoboken, NJ, USA.spa
dc.relation.referencesBotero Duque, J. P., García, J. J., and Velásquez, H. (2016). “Efectos del cargo por confiabilidad sobre el precio spot de la energía eléctrica en Colombia ”. Cuadernos de Economía, Vol. 35, No. 68, pp. 491–519.spa
dc.relation.referencesBoyd, G. (2017). “SPEN – DSO Vision ”. CIRED - Open Access Proceedings Journal, Vol. 2017, No. 1, pp. 2007–2010.spa
dc.relation.referencesBranke, J., Deb, K., Miettinen, K., and Slowinski, R. (2008). Multiobjective optimization: interactive and evolutionary approaches, Vol. 5252. Springer.spa
dc.relation.referencesCamacho-Gómez, C., Jiménez-Fernández, S., Mallol-Poyato, R., Del Ser, J., and Salcedo- Sanz, S. (2019). “Optimal design of Microgrid’s network topology and location of the distributed renewable energy resources using the Harmony Search algorithm ”. Soft Com- puting, Vol. 23, No. 15, pp. 6495–6510.spa
dc.relation.referencesCao, X., Wang, J., Wang, J., and Zeng, B. (2020). “A Risk-Averse Conic Model for Networked Microgrids Planning with Reconfiguration and Reorganizations ”. IEEE Transactions on Smart Grid, Vol. 11, No. 1, pp. 696–709.spa
dc.relation.referencesCardoso, G., Stadler, M., Mashayekh, S., and Hartvigsson, E. (2017). “The impact of ancillary services in optimal DER investment decisions ”. Energy, Vol. 130, pp. 99–112.spa
dc.relation.referencesCarvajal, S. X., Serrano, J., and Arango, S. (2013). “Colombian ancillary services and international connections: Current weaknesses and policy challenges ”. Energy Policy, Vol. 52, pp. 770–778.spa
dc.relation.referencesCelli, G., Chowdhury, N., Pilo, F., Soma, G. G., Troncia, M., and Gianinoni, I. M. (2018). “Multi-Criteria Analysis for decision making applied to active distribution network planning ”. Electric Power Systems Research, Vol. 164, pp. 103–111.spa
dc.relation.referencesChe, L., Zhang, X., Shahidehpour, M., Alabdulwahab, A., and Abusorrah, A. (2017a). “Optimal Interconnection Planning of Community Microgrids With Renewable Energy Sources ”. IEEE Transactions on Smart Grid, Vol. 8, No. 3, pp. 1054–1063.spa
dc.relation.referencesChe, L., Zhang, X., Shahidehpour, M., Alabdulwahab, A., and Al-Turki, Y. (2017b). “Optimal Planning of Loop-Based Microgrid Topology ”. IEEE Transactions on Smart Grid, Vol. 8, No. 4, pp. 1771–1781.spa
dc.relation.referencesChen, Y., Zhao, J., Qu, K., and Li, F. (2015). “PQ control of microgrid inverters with axial voltage regulators ”. Journal of Power Electronics, Vol. 15, No. 6, pp. 1601–1608.spa
dc.relation.referencesChowdhury, S., Chowdhury, S. P., and Crossley, P. (2009). “Microgrids and Active Distribution Networks ”.spa
dc.relation.referencesCIGRE WG C6.11 (2009). “Active Distribution Networks general features, present status of implementation and operation practices ”. Technical report, CIGRE Working Group C6.19 Planning and optimisation methods for active distribution systems.spa
dc.relation.referencesCIGRE WG C6.19 (2014). “Planning and Optimization Methods for Active Distribution Systems ”. Technical report, CIGRE Working Group C6.19 Planning and optimisation methods for active distribution systems.spa
dc.relation.referencesCIGRE WG C6.22 (2015a). “Microgrids 1 Engineering, Economics, & Experience ”. Technical Report 635, CIGRE Working Group C6.22 Microgrids Evolution Roadmap.spa
dc.relation.referencesCIGRE WG C6.22 (2015b). “Microgrids 1: engineering, economics, & experience - Capabilities, Benefits, Business Opportunities, and Examples - Microgrids Evolution Roadmap ”. Technical report, CIGRE Working Group C6.22 Microgrids Evolution Roadmap.spa
dc.relation.referencesContreras, S. F., Cortes, C. A., and Myrzik, J. M. (2018). “Multi-Objective Probabilistic Power Resources Planning for Microgrids with Ancillary Services Capacity ”. In 2018 Power Systems Computation Conference (PSCC), pp. 1–8. IEEE.spa
dc.relation.referencesContreras, S. F., Cortes, C. A., and Myrzik, J. M. A. (2019). “Optimal microgrid planning for enhancing ancillary service provision ”. Journal of Modern Power Systems and Clean Energy, Vol. 7, No. 4, pp. 862–875.spa
dc.relation.referencesContreras, S. F., Cortes, C. A., and Myrzik, J. M. A. (2020a). “POMMP-POMMP2 methodologies, technical and economical parameters and markets description for the study cases ”. [Online]. Available: https://tinyurl.com/POMMP-Methodology. Accessed: Jun 2020.spa
dc.relation.referencesContreras, S. F., Cortes, C. A., and Myrzik, J. M. A. (2020b). “Probabilistic multi-objective microgrid planning methodology for optimizing the ancillary services provision”. Electric Power Systems Research, Vol. 189, pp. 106633.spa
dc.relation.referencesCortes, C. A., Contreras, S. F., and Shahidehpour, M. (2018). “Microgrid Topology Planning for Enhancing the Reliability of Active Distribution Networks ”. IEEE Transactions on Smart Grid, Vol. 9, No. 6, pp. 6369–6377.spa
dc.relation.referencesDe Brito, M. M. and Evers, M. (2016). “Multi-criteria decision-making for flood risk management: A survey of the current state of the art”. Natural Hazards and Earth System Sciences, Vol. 16, No. 4, pp. 1019–1033.spa
dc.relation.referencesDeb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002a). “A fast and elitist multiobjective genetic algorithm: NSGA-II”. Evolutionary Computation, IEEE Transactions on, Vol. 6, No. 2, pp. 182–197.spa
dc.relation.referencesDeb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2002b). “Scalable multi-objective optimization test problems ”. In 2002 Congress on Evolutionary Computation, CEC 2002, pp. 825–830. IEEE Computer Society.spa
dc.relation.referencesEdmunds, C., Galloway, S., and Gill, S. (2017). “Distributed electricity markets and distribution locational marginal prices: A review ”. In 2017 52nd International Universities Power Engineering Conference (UPEC), Vol. 2017-Janua, pp. 1–6. IEEE.spa
dc.relation.referencesEhsan, A. and Yang, Q. (2018). “Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques ”. Applied Energy, Vol. 210, pp. 44–59.spa
dc.relation.referencesEhsan, A. and Yang, Q. (2019). “State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review ”. Applied Energy, Vol. 239, pp. 1509–1523spa
dc.relation.referencesEiben, A. E. and Smit, S. K. (2011). “Parameter tuning for configuring and analyzing evolutionary algorithms ”. Swarm and Evolutionary Computation, Vol. 1, No. 1, pp. 19–31.spa
dc.relation.referencesElsaiah, S., Benidris, M., and Mitra, J. (2016). “A method for reliability improvement of microgrids ”. In 2016 Power Systems Computation Conference (PSCC), pp. 1–7. IEEE.spa
dc.relation.referencesEmad, D., El-Hameed, M. A., Yousef, M. T., and El-Fergany, A. A. (2019). “Computational Methods for Optimal Planning of Hybrid Renewable Microgrids: A Comprehensive Review and Challenges ”. Archives of Computational Methods in Engineering, Vol. , pp. 1–23.spa
dc.relation.referencesEuropean Commission (2017). “Commission Regulation (EU) 2017/1485 establishing a guideline on electricity transmission system operation”.spa
dc.relation.referencesEuropean Parliament and Council of the EU (2009). “Directive 2009/72/ec of the european parliament and of the council of 13 july 2009 concerning common rules for the internal market in electricity and repealing directive 2003/54/ec ”.spa
dc.relation.referencesEuropean Parliament and Council of the EU (2019). “Directive (EU) 2019/944 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU ”.spa
dc.relation.referencesFarhangi, H. and Joos, G. (2019). Microgrid Planning and Design. John & Wiley Sons Ltd.spa
dc.relation.referencesFathima, A. H. and Palanisamy, K. (2015). “Optimization in microgrids with hybrid energy systems - A review ”. Renewable and Sustainable Energy Reviews, Vol. 45, pp. 431–446.spa
dc.relation.referencesFlorez Quiroga, C. and Parrado Herrera, J. A. (2017). “Solución de la planeación óptima de redes de distribución activa usando los algorítmos de optimización multiobjetivo NSGA- II y BCMOA ”. Tesis de pregrado, Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá D.C., Colombia.spa
dc.relation.referencesGamarra, C. and Guerrero, J. M. (2015). “Computational optimization techniques applied to microgrids planning: A review ”. Renewable and Sustainable Energy Reviews, Vol. 48, pp. 413–424.spa
dc.relation.referencesGaona, E. E., Trujillo, C. L., and Guacaneme, J. A. (2015). “Rural microgrids and its potential application in Colombia ”. Renewable and Sustainable Energy Reviews, Vol. 51, pp. 125–137.spa
dc.relation.referencesGazijahani, F. S. and Salehi, J. (2017). “Stochastic multi-objective framework for optimal dynamic planning of interconnected microgrids ”. IET Renewable Power Generation, Vol. 11, No. 14, pp. 1749–1759.spa
dc.relation.referencesGazijahani, F. S. and Salehi, J. (2018a). “Optimal Bi-level Model for Stochastic Risk-Based Planning of Microgrids under Uncertainty ”. IEEE Transactions on Industrial Informatics, Vol. 14, No. 7, pp. 3054–3064.spa
dc.relation.referencesGazijahani, F. S. and Salehi, J. (2018b). “Robust Design of Microgrids With Reconfigurable Topology Under Severe Uncertainty ”. IEEE Transactions on Sustainable Energy, Vol. 9, No. 2, pp. 559–569spa
dc.relation.referencesGeorgilakis, P. S. and Hatziargyriou, N. D. (2015). “A review of power distribution planning in the modern power systems era: Models, methods and future research ”. Electric Power Systems Research, Vol. 121, pp. 89–100.spa
dc.relation.referencesGhadi, M. J., Rajabi, A., Ghavidel, S., Azizivahed, A., Li, L., and Zhang, J. (2019). “From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors ”. Applied Energy, Vol. 253, pp. 113543.spa
dc.relation.referencesGholami, A., Shekari, T., Aminifar, F., and Shahidehpour, M. (2016). “Microgrid Scheduling with Uncertainty: The Quest for Resilience ”. IEEE Transactions on Smart Grid, Vol. 7, No. 6, pp. 2849–2858.spa
dc.relation.referencesGlover, J. D. and Sarma, M. S. (2003). Sistemas de potencia: análisis y diseño. Cengage. Learning Editores.spa
dc.relation.referencesGlover, J. D., Sarma, M. S., and Overbye, T. (2012). Power system analysis & design, SI version. Cengage Learning.spa
dc.relation.referencesGlowacki, M. (2020). “Ancillary services (electricity market)”. [Online]. Avail- able: https://www.emissions-euets.com/internal-electricity-market-glossary/ 368-ancillary-services. Accessed: Jun 2020.spa
dc.relation.referencesGomes, M. H. and Saraiva, J. T. (2010). “Allocation of reactive power support, active loss balancing and demand interruption ancillary services in MicroGrids”. Electric Power Systems Research, Vol. 80, No. 10, pp. 1267–1276.spa
dc.relation.referencesGranderson, G. (2019). “The impact of firm membership in an Independent System Operator (ISO) on production cost and cost efficiency in the generation sector of the U.S. electric utility industry ”. Managerial and Decision Economics, Vol. 40, No. 2, pp. 159–168.spa
dc.relation.referencesGuo, L., Liu, W., Jiao, B., Hong, B., and Wang, C. (2014). “Multi-objective stochastic optimal planning method for stand-alone microgrid system ”. IET Generation, Transmission and Distribution, Vol. 8, No. 7, pp. 1263–1273.spa
dc.relation.referencesGuo, L., Wang, N., Lu, H., Li, X., and Wang, C. (2016). “Multi-objective optimal planning of the stand-alone microgrid system based on different benefit subjects ”. Energy, Vol. 116, pp. 353–363.spa
dc.relation.referencesHatziargyriou, N., Asano, H., Iravani, R., and Marnay, C. (2007). “Microgrids ”. IEEE Power and Energy Magazine, Vol. 5, No. 4, pp. 78–94.spa
dc.relation.referencesHe, G., Chen, J., Li, Y., Shi, D., Yang, Z., and Wang, J. (2019). “Topology Evolution of AC- DC Distribution Network ”. In 2019 IEEE Power and Energy Society General Meeting, PESGM 2019, Vol. 2019-Augus. IEEE Computer Society.spa
dc.relation.referencesHidalgo-Rodriguez, D. I. and Myrzik, J. (2018). “Optimal Operation of Interconnected Home-Microgrids with Flexible Thermal Loads: A Comparison of Decentralized, Centralized, and Hierarchical-Distributed Model Predictive Control ”. In 2018 Power Systems Computation Conference (PSCC), pp. 1–7. IEEE.spa
dc.relation.referencesHinker, J., Wohlfahrt, T., Drewing, E., Contreras Paredes, S., Mayorga Gonz´alez, D., and Myrzik, J. (2018). “Adaptable Energy Systems Integration by Modular, Standardized and Scalable System Architectures: Necessities and Prospects of Any Time Transition ”. Energies, Vol. 11, No. 3, pp. 581.spa
dc.relation.referencesHirsch, A., Parag, Y., and Guerrero, J. (2018). “Microgrids: A review of technologies, key drivers, and outstanding issues ”. Renewable and Sustainable Energy Reviews, Vol. 90, pp. 402–411.spa
dc.relation.referencesHohmeyer, O. H. and Bohm, S. (2015). “Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies ”. WIREs Energy and Environment, Vol. 4, No. 1, pp. 74–97.spa
dc.relation.referencesHolguín, M. and Vanegas, K. (2018). “Análisis Aplicado de una metodología multi-objetivo de planeación de microrredes en un caso de estudio Colombiano ”. Tesis de pregrado, Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá D.C., Colombia.spa
dc.relation.referencesHusein, M. and Chung, I.-Y. (2018). “Optimal design and financial feasibility of a university campus microgrid considering renewable energy incentives ”. Applied Energy, Vol. 225, No. February, pp. 273–289.spa
dc.relation.referencesIEEE PES, D. (2020). “1992 Test Feeder Cases, 37-bus Feeder ”. [Online]. Available: http://sites.ieee.org/pes-testfeeders/. Accessed: Jun 2020.spa
dc.relation.referencesIEEE Standard Association (2018). “IEEE Std. 1547-2018. Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces ”.spa
dc.relation.referencesIRENA (2014). “International Renewable Energy Agency (IRENA) ”. [Online]. Available: https://www.irena.org/. Accessed: Jun 2020.spa
dc.relation.referencesJayaweera, D., editor (2016). Smart Power Systems and Renewable Energy System Integration, Vol. 57 of Studies in Systems, Decision and Control. Springer International Publishing.spa
dc.relation.referencesJiayi, H., Chuanwen, J., and Rong, X. (2008). “A review on distributed energy resources and MicroGrid ”. Renewable and Sustainable Energy Reviews, Vol. 12, No. 9, pp. 2472–2483.spa
dc.relation.referencesJiménez-Fernández, S., Camacho-G´omez, C., Mallol-Poyato, R., Fernández, J., Del Ser, J., Portilla-Figueras, A., and Salcedo-Sanz, S. (2018). “Optimal Microgrid Topology Design and Siting of Distributed Generation Sources Using a Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm ”. Sustainability, Vol. 11, No. 1, pp. 169.spa
dc.relation.referencesKargarian Marvasti, A., Fu, Y., DorMohammadi, S., and Rais-Rohani, M. (2014). “Opti- mal Operation of Active Distribution Grids: A System of Systems Framework ”. IEEE Transactions on Smart Grid, Vol. 5, No. 3, pp. 1228–1237.spa
dc.relation.referencesKazmi, S., Shahzad, M., and Shin, D. (2017a). “Multi-Objective Planning Techniques in Distribution Networks: A Composite Review ”. Energies, Vol. 10, No. 2, pp. 208spa
dc.relation.referencesKazmi, S. A. A., Shahzad, M. K., Khan, A. Z., and Shin, D. R. (2017b). “Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective ”. Energies, Vol. 10, No. 4, pp. 501.spa
dc.relation.referencesKeane, A., Ochoa, L. F., Borges, C. L. T., Ault, G. W., Alarcon-Rodriguez, A. D., Currie, R. A. F., Pilo, F., Dent, C., and Harrison, G. P. (2013). “State-of-the-Art Techniques and Challenges Ahead for Distributed Generation Planning and Optimization ”. IEEE Transactions on Power Systems, Vol. 28, No. 2, pp. 1493–1502.spa
dc.relation.referencesKersting, W. (1991). “Radial distribution test feeders ”. IEEE Transactions on Power Systems, Vol. 6, No. 3, pp. 975–985.spa
dc.relation.referencesKhodaei, A., Bahramirad, S., and Shahidehpour, M. (2015). “Microgrid Planning Under Uncertainty ”. IEEE Transactions on Power Systems, Vol. 30, No. 5, pp. 2417–2425.spa
dc.relation.referencesKirschen, D. and Strbac, G. (2004). Fundamentals of Power System Economics. John Wiley & Sons, Ltd.spa
dc.relation.referencesKramer, O. (2017). Genetic Algorithm Essentials, Vol. 679 of Studies in Computational Intelligence. Springer International Publishing.spa
dc.relation.referencesKroposki, B., Lasseter, R., Ise, T., Morozumi, S., Papathanassiou, S., and Hatziargyriou, N. (2008). “Making microgrids work ”. IEEE Power and Energy Magazine, Vol. 6, No. 3, pp. 40–53.spa
dc.relation.referencesKueffner, J. H. (1986). “Wind Hybrid Power Systen for Antartica Inmarsat Link. ”. In Conference Proceedings - INTELEC ’86: International Telecommunications Energy Conference., pp. 297–298. IEEE.spa
dc.relation.referencesKumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., and Bansal, R. (2017). “A review of multi criteria decision making (MCDM) towards sustainable renewable energy development”. Renewable and Sustainable Energy Reviews, Vol. 69, pp. 596–609.spa
dc.relation.referencesKumar Verma, M., Kumar Yadav, V., and Mukherjee, V. (2019). “Objective functions of distribution network expansion planning - a comprehensive and exhaustive review ”. IOP Conference Series: Materials Science and Engineering, Vol. 594, No. 1, pp. 012016.spa
dc.relation.referencesKury, T. J. (2013). “Price effects of independent transmission system operators in the United States electricity market ”. Journal of Regulatory Economics, Vol. 43, No. 2, pp. 147–167.spa
dc.relation.referencesKwasinski, A., Weaver, W., and Balog, R. S. (2016). Microgrids and other Local Area Power and Energy Systems. Cambridge University Press, Cambridge.spa
dc.relation.referencesKyriakides, E., Suryanarayanan, S., and Vittal, V. (2015). Electric Power Engineering Research and Education. Power Electronics and Power Systems. Springer International Publishing.spa
dc.relation.referencesLakshmi, S. and Ganguly, S. (2018). “Transition of Power Distribution System Planning from Passive to Active Networks: A State-of-the-Art Review and a New Proposal”.spa
dc.relation.referencesLasseter, B. (2001). “Microgrids [distributed power generation]”. In 2001 IEEE Power Engineering Society Winter Meeting. Conference, Vol. 1, pp. 146–149. IEEE.spa
dc.relation.referencesLasseter, R., Akhil, A., Marnay, C., Stephens, J., Dagle, J., Guttromsom, R., Meliopoulous, A. S., Yinger, R., and Eto, J. (2002). “Integration of distributed energy resources. The CERTS Microgrid Concept”. Technical report, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA.spa
dc.relation.referencesLCG Consulting (2014). “CAISO (California ISO): Day-Ahead Price ”. [Online]. Avail- able: http://www.energyonline.com/Data/GenericData.aspx?DataId=22&CAISO___Day-Ahead_Price. Accessed: Jun 2020.spa
dc.relation.referencesLede, A. M. R., Molina, M. G., Martinez, M., and Mercado, P. E. (2017). “Microgrid architectures for distributed generation: A brief review ”. In 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, Vol. 2017-Janua, pp. 1–6. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesLee, Y.-D., Jiang, J.-L., Su, H.-J., Ho, Y.-H., and Chang, Y.-R. (2016). “Ancillary voltage control for a distribution feeder by using energy storage system in microgrid ”. In 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1–7. IEEE.spa
dc.relation.referencesLi, R., Wang, W., Chen, Z., Jiang, J., and Zhang, W. (2017). “A review of optimal planning active distribution system: Models, methods, and future researches”. Energies, Vol. 10, No. 11.spa
dc.relation.referencesLiang, R.-H. and Liao, J.-H. (2007). “A fuzzy-optimization approach for generation scheduling with wind and solar energy systems”. IEEE Transactions on Power Systems, Vol. 22, No. 4, pp. 1665–1674.spa
dc.relation.referencesLidula, N. W. A. and Rajapakse, A. D. (2011). “Microgrids research: A review of experimental microgrids and test systems”. Renewable and Sustainable Energy Reviews, Vol.15, No. 1, pp. 186–202.spa
dc.relation.referencesLopes, J. A. P., Madureira, A. G., and Moreira, C. C. L. M. (2013). “A view of microgrids”. Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 2, No. 1, pp. 86–103.spa
dc.relation.referencesLopez Rivera, D. F. and Rodríguez Bejarano, M. A. (2019). “Implementación y evaluación del desempeño del algorítmo MOEA/D para el problema de planificación de una microred”. Technical report, Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá D.C., Colombia.spa
dc.relation.referencesMachado, P., Netto, R. S., de Souza, L. E., and Maun, J.-C. (2019). “Probabilistic and multi-objective approach for planning of microgrids under uncertainty: a distributed architecture proposal”. IET Generation, Transmission & Distribution, Vol. 13, No. 7, pp. 1025–1035.spa
dc.relation.referencesMadureira, A. and Pecas Lopes, J. (2012). “Ancillary services market framework for voltage control in distribution networks with microgrids”. Electric Power Systems Research, Vol. 86, pp. 1–7.spa
dc.relation.referencesMajzoobi, A. and Khodaei, A. (2017). “Application of microgrids in providing ancillary services to the utility grid ”. Energy, Vol. 123, pp. 555–563.spa
dc.relation.referencesMancarella, P. (2014). “MES (multi-energy systems): An overview of concepts and evaluation models”. Energy, Vol. 65, No. Supplement C, pp. 1–17.spa
dc.relation.referencesMarnay, C., Chatzivasileiadis, S., Abbey, C., Iravani, R., Joos, G., Lombardi, P., Mancarella, P., and von Appen, J. (2015). “Microgrid Evolution Roadmap”. In 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST), pp. 139–144. IEEE.spa
dc.relation.referencesMarnay, C., Nordman, B., and Lai, J. (2011). “Future roles of milli, micro, and nano- Grids ”. In CIGRE 2011 Bologna Symposium - The Electric Power System of the Future: Integrating Supergrids and Microgrids, Lawrence Berkeley National Laboratory, United States.spa
dc.relation.referencesMarnay, C., Rubio, F. J., and Siddiqui, A. S. (2001). “Shape of the microgrid”. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Vol. 1, pp. 150–153.spa
dc.relation.referencesMartin-Martínez, F., Sánchez-Miralles, A., and Rivier, M. (2016). “A literature review of Microgrids: A functional layer based classification”. Renewable and Sustainable Energy Reviews, Vol. 62, pp. 1133–1153.spa
dc.relation.referencesMarwali Haili, M. K. C., Shahidehpour, S. M., and Abdul-Rahman, K. H. (1998). “Short term generation scheduling in photovoltaic-utility grid with battery storage”. IEEE Transactions on Power Systems, Vol. 13, No. 3, pp. 1057–1062.spa
dc.relation.referencesMayorga Gonzalez, D., Rehtanz, C., and Myrzik, J. (2020). “The Smart Power Cell Concept: Mastering TSO-DSO Interactions for the Secure and Efficient Operation of Future Power Systems”. IET Generation, Transmission & Distribution, Vol. ,.spa
dc.relation.referencesMcDonald, L., Ahmadi, A. R., Do, S., and Georgiopoulos, S. (2017). “Enabling distributed energy resources to enter the energy market and supporting the evolution to a distribution system operator”. CIRED - Open Access Proceedings Journal, Vol. 2017, No. 1, pp. 2715–2718.spa
dc.relation.referencesMunoz-Delgado, G., Contreras, J., and Arroyo, J. M. (2019). “Distribution System Expansion Planning Considering Non-Utility-Owned DG and an Independent Distribution System Operator”. IEEE Transactions on Power Systems, Vol. 34, No. 4, pp. 2588–2597.spa
dc.relation.referencesOASIS (2014). “California ISO (CAISO), OASIS, AS clearing prices”. [Online]. Available: http://oasis.caiso.com/mrioasis/logon.do. Accessed: Jun 2020.spa
dc.relation.referencesObara, S. O. and Morel, J. M., editors (2017). Clean Energy Microgrids. Institution of Engineering and Technology.spa
dc.relation.referencesOrtiz Hernández, L. S. and Santafé Sanabria, K. M. (2018). “Estudio de metodologías de toma de decisión multicriterio para la optimización multiobjetivo en el planeamiento de microrredes”. Tesis de pregrado, Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá D.C., Colombia.spa
dc.relation.referencesPapoulis, A. and Pillai, S. U. (2002). Probability, random variables, and stochastic processes. Tata McGraw-Hill Education.spa
dc.relation.referencesParhizi, S., Lotfi, H., Khodaei, A., and Bahramirad, S. (2015). “State of the art in research on microgrids: A review”. IEEE Access, Vol. 3, pp. 890–925.spa
dc.relation.referencesPark, J., Liang, W., Choi, J., El-Keib, A. A., Shahidehpour, M., and Billinton, R. (2009). “A probabilistic reliability evaluation of a power system including Solar/Photovoltaic cell generator”. In 2009 IEEE Power & Energy Society General Meeting, pp. 1–6. IEEE.spa
dc.relation.referencesPatel, M. (2005). Wind and Solar Power Systems. CRC Press.spa
dc.relation.referencesPeñaranda Bayona, A. F. and Mosquera Duarte, P. E. (2018). “Modelo de planeación para el suministro de servicios auxiliares a la red eléctrica por medio de una microrred”. Tesis de pregrado, Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá D.C., Colombia.spa
dc.relation.referencesPeñaranda, A. F., Mosquera, P. E., Cortés, C. A., Contreras, S. F., and Myrzik, M. A. (2019). “Planning Model of Microgrids for the Supply of Ancillary Services to the Utility Grid”. In 2019 IEEE Milan PowerTech, pp. 1–6.spa
dc.relation.referencesPereira Junior, B. R., Cossi, A. M., Contreras, J., and Mantovani, J. R. S. (2014). “Multi-objective multistage distribution system planning using tabu search”. IET Generation, Transmission and Distribution, Vol. 8, No. 1, pp. 35–45.spa
dc.relation.referencesPJM (2014a).“Ancillay Service”. [Online]. Available: http:www.pjm.com/markets-and-operations/ancillary-services.aspx. Accessed: Jun 2020.spa
dc.relation.referencesPJM (2014b). “Hourly Real-Time & Day-Ahead LMP”. [Online]. Available: https://dataminer2.pjm.com/feed/rt_da_monthly_lmps/definition. Accessed: Jun 2020.spa
dc.relation.referencesPourbehzadi, M., Niknam, T., Aghaei, J., Mokryani, G., Shafie-khah, M., and Catalao, J. P. (2019). “Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review”. International Journal of Electrical Power & Energy Systems, Vol. 109, No. December 2018, pp. 139–159.spa
dc.relation.referencesProbability Methods Subcommittee (1979). “IEEE Reliability Test System”. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-98, No. 6, pp. 2047–2054.spa
dc.relation.referencesQuaschning, V. (2014). Understanding renewable energy systems. Taylor and Francis.spa
dc.relation.referencesRodriguez, M. A., Lopez, D. F., Contreras, S. F., Cortés, C. A., and Myrzik, J. M. (2020). “Performance evaluation of the MOEA/D algorithm for the solution of a microgrid planning problem”. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 173–174. ACM Press.spa
dc.relation.referencesRoss, M., Abbey, C., Brissette, Y., and JOÓS, G. (2014). “Real-time microgrid control validation on the Hydro-Québec distribution test line”. Technical report, CIGRE.spa
dc.relation.referencesSaaty, T. L. (1990). “How to make a decision: The analytic hierarchy process”. European Journal of Operational Research, Vol. 48, No. 1, pp. 9–26.spa
dc.relation.referencesSaaty, T. L. (2008). “Decision making with the analytic hierarchy process”. International journal of services sciences, Vol. 1, No. 1, pp. 83–98.spa
dc.relation.referencesSaboori, H., Hemmati, R., Ghiasi, S. M. S., and Dehghan, S. (2017). “Energy storage planning in electric power distribution networks – A state-of-the-art review”. Renewable and Sustainable Energy Reviews, Vol. 79, pp. 1108–1121.spa
dc.relation.referencesSahoo, S. K., Sinha, A. K., and Kishore, N. K. (2018). “Control Techniques in AC, DC, and Hybrid AC–DC Microgrid: A Review”. IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, No. 2, pp. 738–759.spa
dc.relation.referencesSalameh, Z. M., Borowy, B. S., and Amin, A. R. A. (1995). “Photovoltaic module-site matching based on the capacity factors”. IEEE Transactions on Energy Conversion, Vol. 10, No. 2, pp. 326–332.spa
dc.relation.referencesSavier, J. S. and Das, D. (2007). “Impact of Network Reconfiguration on Loss Allocation of Radial Distribution Systems”. IEEE Transactions on Power Delivery, Vol. 22, No. 4, pp. 2473–2480.spa
dc.relation.referencesSeifi, H. and Sepasian, M. S. (2011). Electric power system planning: issues, algorithms and solutions. Springer Science & Business Media.spa
dc.relation.referencesSinha, V. (2016). “Battery Energy Storage System The power to control energy ”. [Online]. Available: https://static1.squarespace.com/static/57766ea7d482e9b4340d1531/ t/57f4f42e03596ef330aa6bbe/1475671127497/Battery+Energy+Storage+System+-+ The+power+to+control+energy%2C+Ved+Sinha.pdf. Accessed: Jun 2020.spa
dc.relation.referencesSong, L. (2020). “NGPM – A NSGA-II Program in Matlab v1.4”. [On- line]. Available: https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4. Accessed: Jun 2020.spa
dc.relation.referencesSoroudi, A. (2014). “Taxonomy of Uncertainty Modeling Techniques in Renewable Energy System Studies”. In Hossain, J. and Mahmud, A., editors, Green Energy and Technology, Green Energy and Technology, pp. 1–17. Springer Singapore.spa
dc.relation.referencesStadler, M. (2008).“DER-CAM (Distributed Energy Resources Customer Adoption Model) Lawrence Berkeley National Laboratory (LBNL)”. [Online]. Available: https://building-microgrid.lbl.gov/projects/der-cam. Accessed: Jun 2020.spa
dc.relation.referencesStadler, M., Cardoso, G., Mashayekh, S., Forget, T., DeForest, N., Agarwal, A., and Schönbein, A. (2016). “Value streams in microgrids: A literature review ”. Applied Energy, Vol. 162, pp. 980–989.spa
dc.relation.referencesSurender Reddy, S., Bijwe, P. R., and Abhyankar, A. R. (2015). “Real-Time Economic Dispatch Considering Renewable Power Generation Variability and Uncertainty Over Scheduling Period”. IEEE Systems Journal, Vol. 9, No. 4, pp. 1440–1451.spa
dc.relation.referencesTan, X., Li, Q., and Wang, H. (2013). “Advances and trends of energy storage technology in Microgrid”. International Journal of Electrical Power and Energy Systems, Vol. 44, No. 1, pp. 179–191.spa
dc.relation.referencesThakar, S., A.S., V., and Doolla, S. (2019). “System reconfiguration in microgrids”. Sustainable Energy, Grids and Networks, Vol. 17, pp. 100191.spa
dc.relation.referencesThomopoulos, N. T. (2013). Essentials of Monte Carlo Simulation. Springer New York.spa
dc.relation.referencesUde, N. G., Yskandar, H., and Graham, R. C. (2019). “A Comprehensive State-of-the-Art Survey on the Transmission Network Expansion Planning Optimization Algorithms”. IEEE Access, Vol. 7, pp. 123158–123181.spa
dc.relation.referencesUnamuno, E. and Barrena, J. A. (2015). “Hybrid ac/dc microgrids - Part I: Review and classification of topologies”. Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1251–1259.spa
dc.relation.referencesUnited Nations (2020). “Ensure access to affordable, reliable, sustainable and modern energy”. [Online]. Available: https://www.un.org/sustainabledevelopment/energy/. Accessed: Jun 2020.spa
dc.relation.referencesU.S. Energy Information Administration (2020). “Energy Explained, Your Guide to Understanding Energy”. [Online]. Available: https://www.eia.gov/energyexplained/. Accessed: Jun 2020.spa
dc.relation.referencesUstun, T. S., Ozansoy, C., and Zayegh, A. (2011). “Recent developments in microgrids and example cases around the world—A review”. Renewable and Sustainable Energy Reviews, Vol. 15, No. 8, pp. 4030–4041.spa
dc.relation.referencesvan Bracht, N., Grote, F., Fehler, A., and Moser, A. (2016). “Incorporating long-term uncertainties in generation expansion planning”. In 2016 13th International Conference on the European Energy Market (EEM), pp. 1–5.spa
dc.relation.referencesVerma, M. K., Mukherjee, V., and Yadav, V. K. (2019). “A Review on Optimization Methodologies for Distribution Network Expansion Planning”. In 2019 International Conference on Computing, Power and Communication Technologies (GUCON), pp. 330–336.spa
dc.relation.referencesXiang, Y., Liu, J., Li, F., Liu, Y., Liu, Y., Xu, R., Su, Y., and Ding, L. (2016). “Optimal Active Distribution Network Planning: A Review”. Electric Power Components and Systems, Vol. 44, No. 10, pp. 1075–1094.spa
dc.relation.referencesYang, W., Cheng, L., Qi, N., Liu, Y., and Wang, X. (2018). “Review on distribution network planning methods considering large-scale access of flexible load”. In 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1–6. IEEE.spa
dc.relation.referencesYuen, C. and Oudalov, A. (2007). “The Feasibility and Profitability of Ancillary Services Provision from Multi-MicroGrids”. In 2007 IEEE Lausanne Power Tech, pp. 598–603. IEEE.spa
dc.relation.referencesYura, J. K. (2014). “Electric Schedule E-19 - Medium General Demand-Metered TOU Service”. [Online]. Available: https://www.pge.com/. Accessed: Jun 2020.spa
dc.relation.referencesZhang, Q. and Li, H. (2007). “MOEA/D: A multiobjective evolutionary algorithm based on decomposition”. IEEE Transactions on Evolutionary Computation, Vol. 11, No. 6, pp. 712–731.spa
dc.relation.referencesZhou, A., Zhang, Q., and Guixu Zhang (2012). “A multiobjective evolutionary algorithm based on decomposition and probability model”. In 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE.spa
dc.relation.referencesZhou, Z., Levin, T., and Conzelmann, G. (2016). “Survey of US ancillary services markets”. Technical report, Argonne National Lab, Argonne.spa
dc.relation.referencesZidan, A., Shaaban, M. F., and El-Saadany, E. F. (2013). “Long-term multi-objective distribution network planning by DG allocation and feeders’ reconfiguration”. Electric Power Systems Research, Vol. 105, pp. 95–104.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalMicrogrideng
dc.subject.proposalMicrorredspa
dc.subject.proposalOptimización multi-objetivo verdaderaspa
dc.subject.proposalTrue-multi-objective optimizationeng
dc.subject.proposalExpansion and topology planningeng
dc.subject.proposalPlaneamientospa
dc.subject.proposalServicios auxiliaresspa
dc.subject.proposalAllocation of distributed energy resourceseng
dc.subject.proposalAncillary serviceseng
dc.subject.proposalMetaheuristicas basadas en poblacionesspa
dc.subject.proposalPopulation-based metaheuristiceng
dc.subject.proposalincertidumbres de alto nivelspa
dc.subject.proposalHigh-level uncertaintieseng
dc.subject.proposalModelo probabilistico de incertidumbresspa
dc.subject.proposalProbabilistic uncertainty modelingeng
dc.subject.proposalPartición de grafos multinivelspa
dc.subject.proposalMultilevel graph partitioningeng
dc.subject.proposalToma de decisión multicriteriospa
dc.subject.proposalRecursos de energíaspa
dc.subject.proposalMulti-criteria decision makingeng
dc.titleMulti-objective optimal power resources planning of microgrids with high penetration of intermittent nature generation and modern storage systemsspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Contreras_1030547460_ThesisPhD_Dissertation.pdf
Tamaño:
30.44 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: