Building regularized and dimensionally-reduced representations for automatically quantifying conceptual similarities between images: an application to cancer description

dc.contributor.advisorRomero Castro, Eduardospa
dc.contributor.authorTarquino Gonzalez, Jonathan Stevespa
dc.contributor.researchgroupCim@Labspa
dc.date.accessioned2025-02-17T17:13:51Z
dc.date.available2025-02-17T17:13:51Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLos espacios de representación alternativos (ARS por sus siglas en ingles) se han convertido en un tema crucial en la inteligencia artificial (IA), ya que los avances recientes en el análisis de características mediante aprendizaje profundo han demostrado que pequeños cambios dentro de dichos espacios de características afectan en gran medida los resultados del modelo. Estos ARS se basan comúnmente en características extraídas de muestras, principalmente para reducir la dimensión del espacio muestral original y mejorar la discriminabilidad de patrones. Sin embargo, la mayor parte de la investigación actual de IA se centra en el rendimiento del modelo, pero hay muy poco progreso en la interpretabilidad del modelo. Particularmente en el campo del análisis de imágenes, la dimensionalidad de la muestra se ha vuelto más importante que la interpretabilidad, debido al tamaño de estas fuentes de información y las limitaciones del poder computacional. A pesar de esto, la transparencia. La interpretabilidad del modelo se vuelve importante en las aplicaciones médicas, donde los médicos no solo buscan predicciones precisas, sino que también esperan explicaciones sobre cómo un modelo calcula dichos resultados. En la práctica clínica, se requieren explicaciones de los resultados para crear esquemas de gestión personalizados de pacientes. Por lo tanto, la opacidad del modelo aparece como uno de los problemas que limita el uso de la IA en la práctica clínica. Además, las técnicas de interpretabilidad de IA se han dedicado al uso de mapas de calor espaciales, que se basan en mapas de activación de capas de red profundas y explicaciones post-hoc basadas en características de ingeniería asociadas supervisadas, que no son suficientes para proporcionar predicciones precisas y ARS comprensibles. Las principales limitaciones de estos proveedores de interpretabilidad radican en la dificultad de ajustar abstracciones de alto nivel que utilizan los especialistas para explicar los resultados de los pacientes en términos de semántica especializada. Estas abstracciones semánticas se denominan comúnmente conceptos y tienen como objetivo mejorar la interpretabilidad o al menos mejorar la comprensión basada en imágenes. Estos conceptos pueden variar desde características de imagen simples basadas en la heterogeneidad de intensidad en imágenes de ultrasonido, hasta dispositivos celulares tipo empalizada en imágenes de histopatología, que requieren enormes niveles de abstracción, interpretación y conciencia semántica, que son características que los modelos de IA actuales no pueden proporcionar. La tesis presentada en este artículo aborda la construcción de ARS y la interpretabilidad basada en conceptos, en diferentes aplicaciones de imágenes de cáncer que van desde imágenes a escala celular hasta espacios de integración de radiología/citología. Este trabajo explora diferentes métodos de construcción de ARS y explota los límites de cada enfoque para determinar sus ventajas y desventajas y evaluar cómo se adaptan a desafíos particulares de la obtención de imágenes de cáncer. En particular, esta disertación demuestra avances en tres temas principales: la construcción de espacios de características diseñados para determinar la relación entre conceptos en diferentes escalas biológicas mientras se logra un rendimiento de clasificación de vanguardia, la construcción de incrustaciones de características profundas que capturan relaciones conceptuales en ARS de baja dimensión y la combinación de características profundas y diseñadas a mano para mejorar el rendimiento y la interpretabilidad del modelo (Texto tomado de la fuente).spa
dc.description.abstractAlternative representation spaces (ARS) have become a crucial topic in Artificial intelligence (AI), since recent advances on deep feature characterization have evidenced that small changes within such embeddings largely affect model outcomes. These ARS are commonly build upon features extracted from samples, mainly to reduce original sample space dimension, and to enhance pattern discriminability. However, most of the current AI research is focused on model performance, but very few advances on model interpretability. Particularly, in image analysis, sample dimensionality have become more important than interpretability, due to the size of these information sources and the limitations of computational power. However, within this image domain, model transparency becomes crucial in medical applications, where physicians not only look for accurate predictions but also expect to obtain explanations on how a model is computing such outcomes. In clinical practice, explanations of the results are required in order to create personalized patient management schemes. Therefore, model opacity appears as one of the problems that limits the translation of AI to clinical practice. In addition, AI interpretability approaches have been devoted to spatial heatmaps, build upon layer activation maps of Deep networks, and pos-hoc explanations based on supervisely associated engineered features, which are not enough to provide both accurate predictions and understandable ARS. Main limitations of these interpretability providers relies in the difficulty to fit high-level abstractions that specialists use to explain patient outcomes in terms of specialized semantics. Such semantic abstractions are commonly known as concepts, and aim to improve interpretability or at least to enhance image-based understanding. These concepts may go from simple image characteristics based on intensity heterogeneity for ultrasound images, to palisade-like cell arrangements in histopathology images, all requiring huge levels of abstraction, interpretation and semantic awareness, which are not provided by nowadays AI models. Herein presented dissertation addresses ARS construction and concept-based interpretability, throughout different cancer image applications that range from cell scale images, to radiology/cytology integration spaces. This work explores different ARS construction methods, and exploits the limits of each approach to determine their advantages and disadvantages, and to evaluate how they fit particular cancer image challenges. Particularly, this work demonstrates advances on three main topics, building engineered feature spaces to determine relation between concepts at different biological scales while achieving state-of-the-art classification performance, constructing deep feature embeddings that capture conceptual relations in dimensionaly reduced ARS, and mixing handcrafted and deep features to improve model performance an interpretabilityeng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaApplied computingspa
dc.format.extent107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87504
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesMohamadreza Abbasi, Saeed Kermani, Ardeshir Tajebib, Morteza Moradi Amin, and Manije Abbasi. Automatic detection of acute lymphoblastic leukaemia based on extending the multifractal features. IET Image Processing, 14(1):132–137, 2019.spa
dc.relation.referencesEnas Abdulhay, Mazin Mohammed, Dheyaa Ibrahim, N. Arunkumar, and V. Venkatraman. Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. Journal of Medical Systems, 42(4), 2018.spa
dc.relation.referencesAndrea Acevedo, Santiago Alferez, Anna Merino, Laura Puigvı, and Jose Rodellar. Recognition of peripheral blood cell images using convolutional neural networks. Computer methods and programs in biomedicine, 180:105020, 2019.spa
dc.relation.referencesRiaz Ahmad, Muhammad Awais, Nabeela Kausar, and Tallha Akram. White blood cells classification using entropy-controlled deep features optimization. Diagnostics, 13(3):352, 2023.spa
dc.relation.referencesKhamael Abbas Khudhair Al-Dulaimi, Jasmine Banks, Vinod Chandran, Inmaculada TomeoReyes, and Kien Nguyen Thanh. Classification of white blood cell types from microscope images: Techniques and challenges. Microscopy science: Last approaches on educational programs and applied research (Microscopy Book Series, 8), pages 17–25, 2018spa
dc.relation.referencesSantiago Alferez, Anna Merino, Laura Bigorra, et al. Automatic recognition of atypical lymphoid cells from peripheral blood by digital image analysis. American journal of clinical pathology, 143(2):168–176, 2015.spa
dc.relation.referencesAli Alqudah, Ola Al-Ta’ani, and Alaa Al-Badarneh. Automatic segmentation and classification of white blood cells in peripheral blood samples. Journal of Engineering Science and Technology Review, 11(6):7–13, 2018.spa
dc.relation.referencesCharlems Alvarez-Jimenez, Jacob T Antunes, Nitya Talasila, Kaustav Bera, Justin T Brady, Jayakrishna Gollamudi, Eric Marderstein, Matthew F Kalady, Andrei Purysko, Joseph E Willis, et al. Radiomic texture and shape descriptors of the rectal environment on postchemoradiation t2-weighted mri are associated with pathologic tumor stage regression in rectal cancers: a retrospective, multi-institution study. Cancers, 12(8):2027, 2020.spa
dc.relation.referencesLaith Alzubaidi, Mohammed Fadhel, Omran Al-shamma, Jinglan Zhang, and Ye Duan. Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis. Electronics (Switzerland), 9(3), 2020.spa
dc.relation.referencesShir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features as dense visual descriptors. arXiv preprint arXiv:2112.05814, 2021.spa
dc.relation.referencesJinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruction probability. Special lecture on IE, 2(1):1–18, 2015.spa
dc.relation.referencesBalasundaram Ananthakrishnan, Ayesha Shaik, Shivam Akhouri, Paras Garg, Vaibhav Gadag, and Muthu Subash Kavitha. Automated bone marrow cell classification for haematological disease diagnosis using siamese neural network. Diagnostics, 13(1):112, 2022.spa
dc.relation.referencesV Ananthi and P Balasubramaniam. A new thresholding technique based on fuzzy set as an application to leukocyte nucleus segmentation. Computer Methods and Programs in Biomedicine, 134:165–177, 2016.spa
dc.relation.referencesPlamen P Angelov, Eduardo A Soares, Richard Jiang, Nicholas I Arnold, and Peter M Atkinson. Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(5):e1424, 2021.spa
dc.relation.referencesGopinathan Anil, Amogh Hegde, and FH Vincent Chong. Thyroid nodules: risk stratification for malignancy with ultrasound and guided biopsy. Cancer Imaging, 11(1):209, 2011.spa
dc.relation.referencesKK Anilkumar, VJ Manoj, and TM Sagi. A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of leukemia. Biocybernetics and Biomedical Engineering, 40(4):1406–1420, 2020.spa
dc.relation.referencesDaniel A Arber, Attilio Orazi, Robert Hasserjian, J¨urgen Thiele, Michael J Borowitz, Michelle M Le Beau, Clara D Bloomfield, Mario Cazzola, and James W Vardiman. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood, The Journal of the American Society of Hematology, 127(20):2391–2405, 2016.spa
dc.relation.referencesBoris Babic, Sara Gerke, Theodoros Evgeniou, and I Glenn Cohen. Beware explanations from ai in health care. Science, 373(6552):284–286, 2021.spa
dc.relation.referencesArnab Bagchi, Payel Pramanik, and Ram Sarkar. A multi-stage approach to breast cancer classification using histopathology images. Diagnostics, 13(1):126, 2022.spa
dc.relation.referencesRaheel Baig, Abdur Rehman, Abdullah Almuhaimeed, Abdulkareem Alzahrani, and Hafiz Rauf. Detecting malignant leukemia cells using microscopic blood smear images: a Deep Learning approach. Applied Sciences (Switzerland), 12(13), 2022.spa
dc.relation.referencesBarbara J Bain. Leukaemia diagnosis. John Wiley & Sons, 2017.spa
dc.relation.referencesJohn M Bennett, Daniel Catovsky, Marie T Daniel, George Flandrin, David AG Galton, Harvey R Gralnick, and Claude Sultan. Proposed revised criteria for the classification of acute myeloid leukemia: a report of the french-american-british cooperative group. Annals of internal medicine, 103(4):620–625, 1985.spa
dc.relation.referencesJohn M Bennett, Daniel Catovsky, Marie-Theregse Daniel, George Flandrin, David AG Galton, Harvey R Gralnick, and Claude Sultan. Proposals for the classification of the acute leukaemias french-american-british (fab) co-operative group. British journal of haematology, 33(4):451–458, 1976.spa
dc.relation.referencesMohammed Benomar, Amine Chikh, Xavier Descombes, and Mourtada Benazzouz. Multi features based approach for white blood cells segmentation and classification in peripheral blood and bone marrow images. International Journal of Biomedical Engineering and Technology, 2019.spa
dc.relation.referencesVisar Berisha, Chelsea Krantsevich, P Richard Hahn, Shira Hahn, Gautam Dasarathy, Pavan Turaga, and Julie Liss. Digital medicine and the curse of dimensionality. NPJ digital medicine, 4(1):153, 2021.spa
dc.relation.referencesBryan L Betz and Jay L Hess. Acute myeloid leukemia diagnosis in the 21st century. Archives of pathology & laboratory medicine, 134(10):1427–1433, 2010.spa
dc.relation.referencesWenya Linda Bi, Ahmed Hosny, Matthew B Schabath, Maryellen L Giger, Nicolai J Birkbak, Alireza Mehrtash, Tavis Allison, Omar Arnaout, Christopher Abbosh, Ian F Dunn, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA: a cancer journal for clinicians, 69(2):127–157, 2019.spa
dc.relation.referencesCarlo Biffi, Juan J Cerrolaza, Giacomo Tarroni, Wenjia Bai, Antonio De Marvao, Ozan Oktay, Christian Ledig, Loic Le Folgoc, Konstantinos Kamnitsas, Georgia Doumou, et al. Explainable anatomical shape analysis through deep hierarchical generative models. IEEE transactions on medical imaging, 39(6):2088–2099, 2020.spa
dc.relation.referencesLisa M Blackburn, Sarah Bender, and Shelly Brown. Acute leukemia: Diagnosis and treatment. In Seminars in oncology nursing, volume 35, page 150950. Elsevier, 2019.spa
dc.relation.referencesClara D Bloomfield and Richard D Brunning. Fab m7: acute megakaryoblastic leukemia -beyond morphology, 1985.spa
dc.relation.referencesLaura Boldu, Anna Merino, Andrea Acevedo, et al. A deep learning model (alnet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Computer Methods and Programs in Biomedicine, 202:105999, 2021.spa
dc.relation.referencesMatthew Botvinick, David GT Barrett, Peter Battaglia, Nando de Freitas, Darshan Kumaran, Joel Z Leibo, Timothy Lillicrap, Joseph Modayil, Mohamed Shakir, Neil C Rabinowitz, et al. Building machines that learn and think for themselves. Behavioral and Brain Sciences, 40, 2017.spa
dc.relation.referencesLaura Bold´u, Anna Merino, et al. Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis. Journal of Clinical Pathology, 72(11):755–761, 2019.spa
dc.relation.referencesG Bueno, R Gonzalez, Oscar Deniz, Marcial Garcıa-Rojo, J Gonzalez-Garcia, MM FernandezCarrobles, Noelia Vallez, and Jesus Salido. A parallel solution for high resolution histological image analysis. Computer methods and programs in biomedicine, 108(1):388–401, 2012.spa
dc.relation.referencesNikolay Burlutskiy, Feng Gu, Lena Kajland Wilen, Max Backman, and Patrick Micke. A deep learning framework for automatic diagnosis in lung cancer. arXiv preprint arXiv:1807.10466, 2018.spa
dc.relation.referencesArrigo Capitanio, RE Dina, and Darren Treanor. Digital cytology: A short review of technical and methodological approaches and applications. Cytopathology, 29(4):317–325, 2018.spa
dc.relation.referencesGiovanni Carulli, Paola Sammuri, Cristiana Domenichini, Martina Rousseau, Virginia Ottaviano, Maria Immacolata Ferreri, Antonio Azzar`a, Francesco Caracciolo, and Mario Petrini. Morphologic and immunophenotypic features of a case of acute monoblastic leukemia with unusual positivity for glycophorin-a. Hematology reports, 10(4), 2018.spa
dc.relation.referencesRaghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Anomaly detection using one-class neural networks. arXiv preprint arXiv:1802.06360, 2018.spa
dc.relation.referencesWangyang Chen, Jixi Wang, Bintao Ye, et al. The population characteristics of the main leukocyte subsets and their association with chronic diseases in a community-dwelling population: a cross-sectional study. Primary Health Care Research & Development, 22, 2021.spa
dc.relation.referencesZhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition. Nature Machine Intelligence, 2(12):772–782, 2020.spa
dc.relation.referencesJianning Chi, Ekta Walia, Paul Babyn, Jimmy Wang, Gary Groot, and Mark Eramian. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. Journal of digital imaging, 30:477–486, 2017.spa
dc.relation.referencesSeon Hyeong Choi, Kyung Hwa Han, Jung Hyun Yoon, Hee Jung Moon, Eun Ju Son, Ji Hyun Youk, Eun-Kyung Kim, and Jin Young Kwak. Factors affecting inadequate sampling of ultrasound-guided fine-needle aspiration biopsy of thyroid nodules. Clinical endocrinology, 74(6):776–782, 2011.spa
dc.relation.referencesChannabasava Chola, Abdullah Y. Muaad, Md Belal Bin Heyat, J. V.Bibal Benifa, Wadeea R. Naji, K. Hemachandran, Noha F. Mahmoud, Nagwan Abdel Samee, Mugahed A. Al-Antari, Yasser M. Kadah, and Tae Seong Kim. BCNet: A Deep Learning Computer-Aided Diagnosis Framework for Human Peripheral Blood Cell Identification. Diagnostics, 12(11), 2022.spa
dc.relation.referencesFrancois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258, 2017.spa
dc.relation.referencesEoin F Cleere, Matthew G Davey, Shane O'Neill, Mel Corbett, John P O'Donnell, Sean Hacking, Ivan J Keogh, Aoife J Lowery, and Michael J Kerin. Radiomic detection of malignancy within thyroid nodules using ultrasonography- A systematic review and metaanalysis. Diagnostics, 12(4):794, 2022.spa
dc.relation.referencesAhmet Cnar and Seda Tuncer. Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid Alexnet-GoogleNet-SVM. SN Applied Sciences, 3(4), 2021.spa
dc.relation.referencesKai Cui, Atanas Boev, Elena Alshina, and Eckehard Steinbach. Color image restoration exploiting inter-channel correlation with a 3-stage cnn. IEEE Journal of Selected Topics in Signal Processing, 15(2):174–189, 2020.spa
dc.relation.referencesYinglong Dai, Guojun Wang, and Kuan-Ching Li. Conceptual alignment deep neural networks. Journal of Intelligent and Fuzzy Systems, 34(3):1631–1642, 2018.spa
dc.relation.referencesZihang Dai, Hanxiao Liu, et al. Coatnet: Marrying convolution and attention for all data sizes. Advances in Neural Information Processing Systems, 34:3965–3977, 2021.spa
dc.relation.referencesTulasi Gayatri Devi, Nagamma Patil, Sharada Rai, and Cheryl Philipose Sarah. Segmentation and classification of white blood cancer cells from bone marrow microscopic images using duplet-convolutional neural network design. Multimedia Tools and Applications, pages 1–23, 2023.spa
dc.relation.referencesSarah Diefenbach and Daniel Ullrich. An experience perspective on intuitive interaction: Central components and the special effect of domain transfer distance. Interacting with Computers, 27(3):210–234, 2015.spa
dc.relation.referencesM Dincic, T B Popovic, M Kojadinovic, A M Trbovich, and A Z Ilic. Morphological, fractal, and textural features for the blood cell classification: the case of acute myeloid leukemia. European Biophysics Journal, 50(8):1111–1127, 2021.spa
dc.relation.referencesMinh Doan, Marian Case, Dino Masic, Holger Hennig, Claire McQuin, Juan Caicedo, Shantanu Singh, Allen Goodman, Olaf Wolkenhauer, Huw D Summers, et al. Label-free leukemia monitoring by computer vision. Cytometry Part A, 97(4):407–414, 2020.spa
dc.relation.referencesN Dong, Meng-Die Zhai, Jianfang Chang, and Chun-Ho Wu. A self-adaptive approach for white blood cell classification towards point-of-care testing. Appl. Soft Comput., 111:107709, 2021.spa
dc.relation.referencesDavid Dov, Shahar Z Kovalsky, Jonathan Cohen, Danielle Elliott Range, Ricardo Henao, and Lawrence Carin. Thyroid cancer malignancy prediction from whole slide cytopathology images. In Machine Learning for Healthcare Conference, pages 553–570. PMLR, 2019.spa
dc.relation.referencesGlenn Easley, Demetrio Labate, and Wang-Q Lim. Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis, 25(1):25-46, Jul 2008.spa
dc.relation.referencesGlenn R Easley, Demetrio Labate, and Flavia Colonna. Shearlet-based total variation diffusion for denoising. IEEE Transactions on Image processing, 18(2):260–268, 2008.spa
dc.relation.referencesHeidi Eilertsen, Per Christian Sæther, Carola E Henriksson, Anne-Sofie Petersen, and TorArne Hagve. Evaluation of the detection of blasts by sysmex hematology instruments, cellavision dm96, and manual microscopy using flow cytometry as the confirmatory method. International journal of laboratory hematology, 41(3):338–344, 2019.spa
dc.relation.referencesTusneem Elhassan, Mohd Rahim, Tan Swee, Siti Hashim, and Mahmoud Aljurf. Feature extraction of white blood cells using CMYK-moment localization and Deep Learning in acute myeloid leukemia blood smear microscopic images. IEEE Access, 10:16577–16591, 2022.spa
dc.relation.referencesReem Magdy Elrefaie, Mohamed A Mohamed, Elsaid A Marzouk, and Mohamed Maher Ata. A robust classification of acute lymphocytic leukemia-based microscopic images with supervised hilbert-huang transform. Microscopy Research and Technique, 87(2):191–204, 2024.spa
dc.relation.referencesHaoyi Fan, Fengbin Zhang, Liang Xi, Zuoyong Li, Guanghai Liu, and Yong Xu. LeukocyteMask: an automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. Journal of Biophotonics, 12(7):1–17, 2019.spa
dc.relation.referencesHaoyi Fan, Fengbin Zhang, Liang Xi, Zuoyong Li, Guanghai Liu, and Yong Xu. LeukocyteMask: an automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. Journal of Biophotonics, 12(7):1–17, 2019.spa
dc.relation.referencesCelestia Fang, Sridhar Rao, John D Crispino, and Panagiotis Ntziachristos. Determinants and role of chromatin organization in acute leukemia. Leukemia, pages 1–15, 2020.spa
dc.relation.referencesPatricia Font, Javier Loscertales, Carlos Soto, Pilar Ricard, Carolina Munoz Novas, Estela MartAn-Clavero, Montserrat Lopez-Rubio, Luis Garcia-Alonso, Marta Callejas, Alfredo Bermejo, and et al. Interobserver variance in myelodysplastic syndromes with less than 5 % bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2 % blasts. Annals of Hematology, 94(4):565-573, Nov 2014.spa
dc.relation.referencesNikolaus Fortelny and Christoph Bock. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome biology, 21:1–36, 2020.spa
dc.relation.referencesXavier Fuentes-Arderiu and Dolors Dot-Bach. Measurement uncertainty in manual differential leukocyte counting. Clinical chemistry and laboratory medicine, 47(1):112–115, 2009.spa
dc.relation.referencesSujun Gao, Yehui Tan, Xiaoliang Liu, Long Su, Ping Yu, Wei Han, Jiuwei Cui, and Wei Li. The percentage of peripheral blood blasts on day 7 of induction chemotherapy predicts response to therapy and survival in patients with acute myeloid leukemia. Chinese Medical Journal, 127(2):290–293, 2014.spa
dc.relation.referencesJames Genone and Tania Lombrozo. Concept possession, experimental semantics, and hybrid theories of reference. Philosophical Psychology, 25(5):717–742, 2012.spa
dc.relation.referencesNarjes Ghane, Alireza Vard, Ardeshir Talebi, and Pardis Nematollahy. Classification of chronic myeloid leukemia cell subtypes based on microscopic image analysis. EXCLI journal, 18:382, 2019.spa
dc.relation.referencesHossein Gharib, Enrico Papini, Jeffrey R Garber, Daniel S Duick, R Mack Harrell, Laszlo Hegedus, Ralf Paschke, Roberto Valcavi, and Paolo Vitti. American association of clinical endocrinologists, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules2016 update appendix. Endocrine practice, 22:1–60, 2016.spa
dc.relation.referencesMarzyeh Ghassemi, Luke Oakden-Rayner, and Andrew L Beam. The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health, 3(11):e745–e750, 2021.spa
dc.relation.referencesAmirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic conceptbased explanations. Advances in neural information processing systems, 32, 2019.spa
dc.relation.referencesGiacomo Gianfaldoni, Francesco Mannelli, Michela Baccini, Elisabetta Antonioli, Franco Leoni, and Alberto Bosi. Clearance of leukaemic blasts from peripheral blood during standard induction treatment predicts the bone marrow response in acute myeloid leukaemia: a pilot study. British journal of haematology, 134(1):54–57, 2006.spa
dc.relation.referencesStefan Gluge, Stefan Balabanov, Viktor Hendrik Koelzer, and Thomas Ott. Evaluation of deep learning training strategies for the classification of bone marrow cell images. Computer Methods and Programs in Biomedicine, 243:107924, 2024.spa
dc.relation.referencesIan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets advances in neural information processing systems. arXiv preprint arXiv:1406.2661, 2014.spa
dc.relation.referencesMara Graziani, Vincent Andrearczyk, Stephane Marchand-Maillet, and Henning Muller. Concept attribution: Explaining cnn decisions to physicians. Computers in biology and medicine, 123:103865, 2020.spa
dc.relation.referencesQing Guan, Yunjun Wang, Bo Ping, Duanshu Li, Jiajun Du, Yu Qin, Hongtao Lu, Xiaochun Wan, and Jun Xiang. Deep convolutional neural network vgg-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. Journal of Cancer, 10(20):4876, 2019.spa
dc.relation.referencesS Guth, U Theune, J Aberle, A Galach, and CM Bamberger. Very high prevalence of thyroid nodules detected by high frequency (13 mhz) ultrasound examination. European journal of clinical investigation, 39(8):699–706, 2009.spa
dc.relation.referencesG Gutierrez, A Merino, A Domingo, et al. Eqas for peripheral blood morphology in spain: a 6-year experience. International journal of laboratory hematology, 30(6):460–466, 2008.spa
dc.relation.referencesMehdi Habibzadeh, Mahboobeh Jannesari, Zahra Rezaei, Hossein Baharvand, and Mehdi Totonchi. Automatic white blood cell classification using pre-trained deep learning models: Resnet and inception. In Tenth international conference on machine vision (ICMV 2017), volume 10696, pages 274–281. SPIE, 2018.spa
dc.relation.referencesBenjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Khodakarami, Massive Analysis Quality Control (MAQC) Society Board of Directors Shraddha Thakkar 35 Kusko Rebecca 36 Sansone Susanna-Assunta 37 Tong Weida 35 Wolfinger Russ D. 38 Mason Christopher E. 39 Jones Wendell 40 Dopazo Joaquin 41 Furlanello Cesare 42, Levi Waldron, Bo Wang, Chris McIntosh, Anna Goldenberg, Anshul Kundaje, et al. Transparency and reproducibility in artificial intelligence. Nature, 586(7829):E14–E16, 2020.spa
dc.relation.referencesRobert M Haralick. Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5):786–804, 1979.spa
dc.relation.referencesRobert M. Haralick, K. Shanmugam, and Its'Hak Dinstein. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6):610–621, nov 1973.spa
dc.relation.referencesDebapriya Hazra, Yung Cheol Byun, and Woo Jin Kim. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network. Computer Methods and Programs in Biomedicine, 224:107019, 2022.spa
dc.relation.referencesKaiming He, Xiangyu Zhang, Shaoquing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.spa
dc.relation.referencesRoopa B. Hegde, Keerthana Prasad, Harishchandra Hebbar, and Brij Mohan Kumar Singh. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybernetics and Biomedical Engineering, 39(2):382–392, 2019.spa
dc.relation.referencesRoopa B. Hegde, Keerthana Prasad, Harishchandra Hebbar, and Brij Mohan Kumar Singh. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybernetics and Biomedical Engineering, 39(2):382–392, 2019.spa
dc.relation.referencesRoopa B Hegde, Keerthana Prasad, Harishchandra Hebbar, Brij Mohan Kumar Singh, and Ilanthodi Sandhya. Automated decision support system for detection of leukemia from peripheral blood smear images. Journal of digital imaging, pages 1–14, 2019.spa
dc.relation.referencesAaron Hodes, Katherine R Calvo, Alina Dulau, Irina Maric, Junfeng Sun, and Raul Braylan. The challenging task of enumerating blasts in the bone marrow. In Seminars in hematology, volume 56, pages 58–64. Elsevier, 2019.spa
dc.relation.referencesSeyed Abolfazl Hosseini, Abdolrahim Javaherian, Hossien Hassani, Siyavash Torabi, and Maryam Sadri. Shearlet transform in aliased ground roll attenuation and its comparison with fk filtering and curvelet transform. Journal of Geophysics and Engineering, 12(3):351–364, 2015.spa
dc.relation.referencesPreeti Jagadev and HG Virani. Detection of leukemia and its types using image processing and machine learning. In 2017 International Conference on Trends in Electronics and Informatics (ICEI), pages 522–526. IEEE, 2017.spa
dc.relation.referencesSina Jasim, Thomas J Baranski, Sharlene A Teefey, and William D Middleton. Investigating the effect of thyroid nodule location on the risk of thyroid cancer. Thyroid, 30(3):401–407, 2020.spa
dc.relation.referencesMalathy Jawahar, H Sharen, Amir H Gandomi, et al. Alnett: A cluster layer deep convolutional neural network for acute lymphoblastic leukemia classification. Computers in Biology and Medicine, 148:105894, 2022.spa
dc.relation.referencesKrishna Kumar Jha and Himadri Sekhar Dutta. Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Computer methods and programs in biomedicine, 179:104987, 2019.spa
dc.relation.referencesYuchen Jiang, Xiang Li, Hao Luo, Shen Yin, and Okyay Kaynak. Quo vadis artificial intelligence? Discover Artificial Intelligence, 2(1):4, 2022.spa
dc.relation.referencesSergio Jimenez, Fabio A Gonzalez, and Alexander Gelbukh. Mathematical properties of soft cardinality: Enhancing jaccard, dice and cosine similarity measures with element-wise distance. Information Sciences, 367:373–389, 2016.spa
dc.relation.referencesCheng Jin, Heng Yu, Jia Ke, Peirong Ding, Yongju Yi, Xiaofeng Jiang, Xin Duan, Jinghua Tang, Daniel T Chang, Xiaojian Wu, et al. Predicting treatment response from longitudinal images using multi-task deep learning. Nature communications, 12(1):1851, 2021.spa
dc.relation.referencesStephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.spa
dc.relation.referencesShahab Eddin Jozdani, Brian Alan Johnson, and Dongmei Chen. Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sensing, 11(14):1713, 2019.spa
dc.relation.referencesSara Kassani, Peyman Kassani, Michal Wesolowski, Kevin Schneider, and Ralph Deters. A Hybrid deep learning architecture for leukemic B-lymphoblast classification. ICTC 2019 - 10th International Conference on ICT Convergence: ICT Convergence Leading the Autonomous Future, pages 271–276, 2019.spa
dc.relation.referencesSertan Kaymak, Abdulkader Helwan, and Dilber Uzun. Breast cancer image classification using artificial neural networks. Procedia computer science, 120:126–131, 2017.spa
dc.relation.referencesXavier M Keutgen, Hui Li, Kelvin Memeh, Julian Conn Busch, Jelani Williams, Li Lan, David Sarne, Brendan Finnerty, Peter Angelos, Thomas J Fahey III, et al. A machinelearning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features. Journal of Medical Imaging, 9(3):034501–034501, 2022.spa
dc.relation.referencesHasam Khalid and Simon S Woo. Oc-fakedect: Classifying deepfakes using one-class variational autoencoder. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 656–657, 2020spa
dc.relation.referencesMA Khosrosereshki and MB Menhaj. A fuzzy based classifier for diagnosis of acute lymphoblastic leukemia using blood smear image processing. In 2017 5th Iranian joint congress on fuzzy and intelligent systems (CFIS), pages 13–18. IEEE, 2017.spa
dc.relation.referencesBeen Kim, Justin Gilmer, Martin Wattenberg, and Fernanda Viegas. Tcav: Relative concept importance testing with linear concept activation vectors. 2018.spa
dc.relation.referencesBeen Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). In International conference on machine learning, pages 2668–2677. PMLR, 2018.spa
dc.relation.referencesBoeun Kim, Kyung Hwan Ryu, Ji Hee Kim, and Seongmin Heo. Feature variance regularization method for autoencoder-based one-class classification. Computers & Chemical Engineering, 161:107776, 2022.spa
dc.relation.referencesSoo-Yeon Kim, Eun-Kyung Kim, Hee Jung Moon, Jung Hyun Yoon, and Jin Young Kwak. Application of texture analysis in the differential diagnosis of benign and malignant thyroid nodules: comparison with gray-scale ultrasound and elastography. American Journal of Roentgenology, 205(3):W343–W351, 2015.spa
dc.relation.referencesDiederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.spa
dc.relation.referencesPang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy Liang. Concept bottleneck models. In Hal DaumA˜© III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 5338–5348. PMLR, 13–18 Jul 2020.spa
dc.relation.referencesSebastian Krappe, Michaela Benz, Thomas Wittenberg, et al. Automated classification of bone marrow cells in microscopic images for diagnosis of leukemia: a comparison of two classification schemes with respect to the segmentation quality. In SPIE Proceedings. SPIE, March 2015.spa
dc.relation.referencesSebastian Krappe, Thomas Wittenberg, et al. Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis. In Medical Imaging 2016: Computer-Aided Diagnosis. SPIE, March 2016.spa
dc.relation.referencesRuggero Donida Labati, Vincenzo Piuri, and Fabio Scotti. All-idb: The acute lymphoblastic leukemia image database for image processing. In 2011 18th IEEE International Conference on Image Processing, pages 2045–2048. IEEE, 2011.spa
dc.relation.referencesF Lacombe, C Arnoulet, M Maynadie, E Lippert, I Luquet, A Pigneux, N Vey, O Casasnovas, F Witz, and MC Bene. Early clearance of peripheral blasts measured by flow cytometry during the first week of aml induction therapy as a new independent prognostic factor: a goelams study. Leukemia, 23(2):350–357, 2009spa
dc.relation.referencesW. Ladines-Castro, G. Barragan-Ibanez, M.A. Luna-Perez, A. Santoyo-Sanchez, J. CollazoJaloma, E. Mendoza-Garcıa, and C.O. Ramos-Penafiel. Morphology of leukaemias. Revista Medica del Hospital General de Mexico, 79(2):107–113, 2016.spa
dc.relation.referencesCecılia Lantos, Steven M Kornblau, and Amina A Qutub. Quantitative-morphological and cytological analyses in leukemia. Hematology: Latest Research and Clinical Advances, pages 95–113, 2018.spa
dc.relation.referencesJakkrich Laosai and Kosin Chamnongthai. Classification of acute leukemia using medicalknowledge-based morphology and cd marker. Biomedical Signal Processing and Control, 44:127–137, 2018.spa
dc.relation.referencesC. Lavelle and J.M. Victor. Nuclear Architecture and Dynamics. Translational Epigenetics. Elsevier Science, 2017.spa
dc.relation.referencesBing Leng, Chunqing Wang, Min Leng, Mingfeng Ge, and Wenfei Dong. Deep learning detection network for peripheral blood leukocytes based on improved detection transformer. Biomedical Signal Processing and Control, 82(July 2022):104518, 2023.spa
dc.relation.referencesJoshua E Lewis, Conrad W Shebelut, Bradley R Drumheller, Xuebao Zhang, Nithya Shanmugam, Michel Attieh, Michael C Horwath, Anurag Khanna, Geoffrey H Smith, David A Gutman, et al. An automated pipeline for differential cell counts on whole-slide bone marrow aspirate smears. Modern Pathology, 36(2):100003, 2023.spa
dc.relation.referencesYan Li, Rui Zhu, Lei Mi, Yihui Cao, and Di Yao. Segmentation of white blood cell from acute lymphoblastic leukemia images using dual-threshold method. Computational and mathematical methods in medicine, 2016, 2016spa
dc.relation.referencesZachary C Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3):31–57, 2018.spa
dc.relation.referencesHong Liu, Haichao Cao, and Enmin Song. Bone marrow cells detection: A technique for the microscopic image analysis. Journal of medical systems, 43(4):1–14, 2019.spa
dc.relation.referencesPeng Liu, Kim-Kwang Raymond Choo, Lizhe Wang, and Fang Huang. Svm or deep learning? a comparative study on remote sensing image classification. Soft Computing, 21(23):7053– 7065, 2017.spa
dc.relation.referencesYan Liu, Ying Fu, and Pu Chen. WBCaps: A Capsule Architecture-based Classification Model Designed for White Blood Cells Identification. In In 2019 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pages 7027– 7030, 2019.spa
dc.relation.referencesJ MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley Symp. Math. Statist. Probability, pages 281–297, 1967.spa
dc.relation.referencesHayan T. Madhloom, Sameem Abdul Kareem, and Hany Ariffin. A robust feature extraction and selection method for the recognition of lymphocytes versus acute lymphoblastic leukemia. In 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT). IEEE, November 2012.spa
dc.relation.referencesPetru Manescu, Priya Narayanan, Christopher Bendkowski, Muna Elmi, Remy Claveau, Vijay Pawar, Biobele J Brown, Mike Shaw, Anupama Rao, and Delmiro Fernandez-Reyes. Detection of acute promyelocytic leukemia in peripheral blood and bone marrow with annotation-free deep learning. Scientific Reports, 13(1):2562, 2023.spa
dc.relation.referencesC. Matek, S. Krappe, C. M¨unzenmayer, T. Haferlach, and C. Marr. An Expert-Annotated Dataset of Bone Marrow Cytology in Hematologic Malignancies [Data set]. The Cancer Imaging Archive, 2021.spa
dc.relation.referencesC Matek, S Krappe, C Munzenmayer, T Haferlach, and C Marr. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood, 138:1917–1927, 2021.spa
dc.relation.referencesC Matek, S Schwarz, C Marr, and K Spiekermann. A single-cell morphological dataset of leukocytes from aml patients and non-malignant controls (aml-cytomorphology lmu). The Cancer Imaging Archive (TCIA)[Internet].[cited 29 Oct 2019]. Available: https://wiki. cancerimagingarchive. net/pages/viewpage. action, 2019.spa
dc.relation.referencesChristian Matek, Sebastian Krappe, et al. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood, The Journal of the American Society of Hematology, 138(20):1917–1927, 2021.spa
dc.relation.referencesChristian Matek, Simone Schwarz, Karsten Spiekermann, and Carsten Marr. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nature Machine Intelligence, 1(11):538–544, 2019.spa
dc.relation.referencesAkira Matsuda, Hiroshi Kawabata, Kaoru Tohyama, Tomoya Maeda, Kayano Araseki, Tomoko Hata, Takahiro Suzuki, Hidekazu Kayano, Kei Shimbo, Kensuke Usuki, et al. Interobserver concordance of assessments of dysplasia and blast counts for the diagnosis of patients with cytopenia: from the japanese central review study. Leukemia Research, 74:137–143, 2018.spa
dc.relation.referencesRaisa Fairooz Meem and Khandaker Tabin Hasan. Bone marrow cytomorphology cell detection using inceptionresnetv2. arXiv preprint arXiv:2305.05430, 2023.spa
dc.relation.referencesWilliam D Middleton, Sharlene A Teefey, Carl C Reading, Jill E Langer, Michael D Beland, Margaret M Szabunio, and Terry S Desser. Multiinstitutional analysis of thyroid nodule risk stratification using the american college of radiology thyroid imaging reporting and data system. American Journal of Roentgenology, 208(6):1331–1341, 2017.spa
dc.relation.referencesR.N. Miranda, J.D. Khoury, and L.J. Medeiros. Atlas of Lymph Node Pathology. Atlas of Anatomic Pathology. Springer New York, 2013.spa
dc.relation.referencesE H Mohamed, Wessam H El-Behaidy, Ghada Khoriba, and Jie Li. Improved White Blood Cells Classification based on Pre-trained Deep Learning Models. Journal of communications software and systems, 16:37–45, 2020.spa
dc.relation.referencesS Mohapatra, D Patra, and S Satpathi. Image analysis of blood microscopic images for acute leukemia detection. In 2010 International Conference on Industrial Electronics, Control and Robotics. IEEE, December 2010.spa
dc.relation.referencesSubrajeet Mohapatra, Dipti Patra, and Sanghamitra Satpathy. Automated leukemia detection in blood microscopic images using statistical texture analysis. In Proceedings of the 2011 International Conference on Communication, Computing & Security - ICCCS '11. ACM Press, 2011.spa
dc.relation.referencesSubrajeet Mohapatra, Dipti Patra, and Sanghamitra Satpathy. An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Computing and Applications, 24(7-8):1887–1904, 2014.spa
dc.relation.referencesSyadia Mohd, Mohd Md, and Wan Wan. White blood cell (WBC) counting analysis in blood smear images using various color segmentation methods. Measurement: Journal of the International Measurement Confederation, 116:543–555, 2018.spa
dc.relation.referencesStefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine learning, 52(1):91–118, 2003.spa
dc.relation.referencesWon-Jin Moon, So Lyung Jung, Jeong Hyun Lee, Dong Gyu Na, Jung-Hwan Baek, Young Hen Lee, Jinna Kim, Hyun Sook Kim, Jun Soo Byun, and Dong Hoon Lee. Benign and malignant thyroid nodules: Us differentiationˆa€”multicenter retrospective study. Radiology, 247(3):762– 770, 2008.spa
dc.relation.referencesKunal Nagpal, Davis Foote, Yun Liu, Po-Hsuan Cameron Chen, Ellery Wulczyn, Fraser Tan, Niels Olson, Jenny L Smith, Arash Mohtashamian, James H Wren, et al. Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer. NPJ digital medicine, 2(1):48, 2019.spa
dc.relation.referencesKaung Naing, Veerayuth Kittichai, Teerawat Tongloy, and Santhad Chuwongin. The evaluation of acute myeloid lLeukaemia (AML) blood cell detection models using different YOLO. biorRxiv, 2021.spa
dc.relation.referencesRithin Nedumannil, Shirlene Sim, David Westerman, and Surender Juneja. Identification and quantitation of blasts in myeloid malignancies with marrow fibrosis or marrow hypoplasia and cd34 negativity. Pathology, 53(6):795–798, 2021.spa
dc.relation.referencesBirgitte Nielsen and Havard E Danielsen. Prognostic value of adaptive textural features–the effect of standardizing nuclear first-order gray level statistics and mixing information from nuclei having different area. Analytical Cellular Pathology, 28(3):85–95, 2006.spa
dc.relation.referencesMazin Z Othman, Thabit S Mohammed, and Alaa B Ali. Neural network classification of white blood cell using microscopic images. International Journal of Advanced Computer Science and Applications, 8(5), 2017.spa
dc.relation.referencesSJ Pawan and Jeny Rajan. Capsule networks for image classification: A review. Neurocomputing, 509:102–120, 2022.spa
dc.relation.referencesLina Pedraza, Carlos Vargas, Fabi´an Narv´aez, Oscar Dur´an, Emma Mu˜noz, and Eduardo Romero. An open access thyroid ultrasound image database. In 10th International symposium on medical information processing and analysis, volume 9287, pages 188–193. SPIE, 2015.spa
dc.relation.referencesHanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis and machine intelligence, 27(8):1226–1238, 2005.spa
dc.relation.referencesMary-Elizabeth Percival, Catherine Lai, Elihu Estey, and Christopher S Hourigan. Bone marrow evaluation for diagnosis and monitoring of acute myeloid leukemia. Blood reviews, 31(4):185–192, 2017.spa
dc.relation.referencesSergio Pereira, Raphael Meier, Richard McKinley, Roland Wiest, Victor Alves, Carlos A Silva, and Mauricio Reyes. Enhancing interpretability of automatically extracted machine learning features: application to a rbm-random forest system on brain lesion segmentation. Medical image analysis, 44:228–244, 2018.spa
dc.relation.referencesNatasa Petrovic, Gabriel Moya-Alcover, Antoni Jaume-i Capo, and Manuel Gonzalez-Hidalgo. Sickle-cell disease diagnosis support selecting the most appropriate machine learning method: Towards a general and interpretable approach for cell morphology analysis from microscopy images. Computers in Biology and Medicine, 126:104027, 2020.spa
dc.relation.referencesJonas Prellberg and Oliver Kramer. Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks. In ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging: Select Proceedings, pages 53–61. Springer, 2019.spa
dc.relation.referencesJaroonrut Prinyakupt and C Pluempitiwiriyawej. Segmentation of white blood cells and comparison of cell morphology by linear and na¨ıve Bayes classifiers. BioMedical Engineering OnLine, 14, 2015.spa
dc.relation.referencesYifan Qiao, Yi Zhang, Nian Liu, Pu Chen, and Yan Liu. An end-to-end pipeline for early diagnosis of acute promyelocytic leukemia based on a compact CNN model. Diagnostics, 11(7):1–15, 2021.spa
dc.relation.referencesPriyanka Rastogi, Kavita Khanna, and Vijendra Singh. LeuFeatx: Deep learning-based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear. Computers in Biology and Medicine, 142(November 2021):105236, 2022.spa
dc.relation.referencesS Ratheesh and A Ajisha Breethi. Deep learning based non-local k-best renyi entropy for classification of white blood cell subtypes. Biomedical Signal Processing and Control, 90:105812, 2024.spa
dc.relation.referencesAstha Ratley, Jasmine Minj, and Pooja Patre. Leukemia disease detection and classification using machine learning approaches: a review. In 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), pages 161–165. IEEE, 2020.spa
dc.relation.referencesJyoti Rawat, Annapurna Singh, Bhadauria HS, Jitendra Virmani, and Jagtar Devgun. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybernetics and Biomedical Engineering, 37(4):637–654, 2017.spa
dc.relation.referencesAmjad Rehman, Naveed Abbas, Tanzila Saba, Syed Ijaz ur Rahman, Zahid Mehmood, and Hoshang Kolivand. Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research and Technique, 81(11):1310–1317, 2018.spa
dc.relation.referencesLuciana Reck Remonti, Caroline Kaercher Kramer, Cristiane Bauermann Leitao, Lana Catani F Pinto, and Jorge Luiz Gross. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid, 25(5):538–550, 2015.spa
dc.relation.referencesCarolina Reta, Leopoldo Altamirano, Jesus A Gonzalez, Raquel Diaz-Hernandez, Hayde Peregrina, Ivan Olmos, Jose E Alonso, and Ruben Lobato. Segmentation and classification of bone marrow cells images using contextual information for medical diagnosis of acute leukemias. PloS one, 10(6):e0130805, 2015.spa
dc.relation.referencesSorayya Rezayi, Niloofar Mohammadzadeh, Hamid Bouraghi, Soheila Saeedi, and Ali Mohammadpour. Timely diagnosis of acute lymphoblastic leukemia using artificial intelligenceoriented deep learning methods. Computational Intelligence and Neuroscience, 2021, 2021.spa
dc.relation.referencesCynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.spa
dc.relation.referencesLukas Ruff, Robert Vandermeulen, Nico Goernitz, et al. Deep one-class classification. In International conference on machine learning, pages 4393–4402. PMLR, 2018.spa
dc.relation.referencesArnout C Ruifrok, Dennis A Johnston, et al. Quantification of histochemical staining by color deconvolution. Analytical and quantitative cytology and histology, 23(4):291–299, 2001.spa
dc.relation.referencesSara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances in neural information processing systems, 30, 2017.spa
dc.relation.referencesHaneen T Salah, Ibrahim N Muhsen, Mohamed E Salama, Tarek Owaidah, and Shahrukh K Hashmi. Machine learning applications in the diagnosis of leukemia: Current trends and future directions. International journal of laboratory hematology, 41(6):717–725, 2019.spa
dc.relation.referencesZohaib Salahuddin, Henry C Woodruff, Avishek Chatterjee, and Philippe Lambin. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Computers in biology and medicine, 140:105111, 2022.spa
dc.relation.referencesSaba Saleem, Javaria Amin, Muhammad Sharif, Ghulam Ali Mallah, Seifedine Kadry, and Amir H Gandomi. Leukemia segmentation and classification: A comprehensive survey. Computers in Biology and Medicine, page 106028, 2022.spa
dc.relation.referencesMax Schmitt, Roman Christoph Maron, Achim Hekler, Albrecht Stenzinger, Axel Hauschild, Michael Weichenthal, Markus Tiemann, Dieter Krahl, Heinz Kutzner, Jochen Sven Utikal, et al. Hidden variables in deep learning digital pathology and their potential to cause batch effects: Prediction model study. Journal of medical Internet research, 23(2):e23436, 2021.spa
dc.relation.referencesJens PE Schouten, Christian Matek, Luuk FP Jacobs, Mich`ele C Buck, Dragan Boˇsnaˇcki, and Carsten Marr. Tens of images can suffice to train neural networks for malignant leukocyte detection. Scientific Reports, 11(1):7995, 2021.spa
dc.relation.referencesRamprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision, 128(2):336–359, 2020.spa
dc.relation.referencesSarmad Shafique and Samabia Tehsin. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technology in cancer research & treatment, 17:1533033818802789, 2018.spa
dc.relation.referencesAfshan Shah, Syed Saud Naqvi, et al. Automated diagnosis of leukemia: a comprehensive review. IEEE Access, 9:132097–132124, 2021.spa
dc.relation.referencesYasaman Sharifi, Mohamad Amin Bakhshali, Toktam Dehghani, Morteza DanaiAshgzari, Mahdi Sargolzaei, and Saeid Eslami. Deep learning on ultrasound images of thyroid nodules. Biocybernetics and Biomedical Engineering, 41(2):636–655, 2021.spa
dc.relation.referencesYunlang She, Zhuochen Jin, Junqi Wu, Jiajun Deng, Lei Zhang, Hang Su, Gening Jiang, Haipeng Liu, Dong Xie, Nan Cao, et al. Development and validation of a deep learning model for non–small cell lung cancer survival. JAMA network open, 3(6):e205842–e205842, 2020.spa
dc.relation.referencesKaren Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.spa
dc.relation.referencesSharat Singh. Stratified medicine: maximizing clinical benefit by biomarker-driven health care. In Next-generation nutritional biomarkers to guide better health care, volume 84, pages 91–102. Karger Publishers, 2016.spa
dc.relation.referencesVanika Singhal and Preety Singh. Texture features for the detection of acute lymphoblastic leukemia. In Proceedings of International Conference on ICT for Sustainable Development, pages 535–543. Springer, 2016.spa
dc.relation.referencesAlex J Smola and Bernhard Scholkopf. A tutorial on support vector regression. Statistics and computing, 14:199–222, 2004.spa
dc.relation.referencesWorawut Srisukkham, Li Zhang, Siew Chin Neoh, Stephen Todryk, and Chee Peng Lim. Intelligent leukaemia diagnosis with bare-bones pso based feature optimization. Applied Soft Computing, 56:405–419, 2017.spa
dc.relation.referencesPierre Stock and Moustapha Cisse. Convnets and imagenet beyond accuracy: Explanations, bias detection, adversarial examples and model criticism. arXiv preprint arXiv:1711.11443, 2017.spa
dc.relation.referencesK Sudha and P Geetha. A novel approach for segmentation and counting of overlapped leukocytes in microscopic blood images. Biocybernetics and Biomedical Engineering, 40(2):639– 648, 2020.spa
dc.relation.referencesMukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In International conference on machine learning, pages 3319–3328. PMLR, 2017.spa
dc.relation.referencesHyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249, 2021.spa
dc.relation.referencesFatma M Talaat and Samah A Gamel. Machine learning in detection and classification of leukemia using c-nmc leukemia. Multimedia Tools and Applications, pages 1–14, 2023.spa
dc.relation.referencesS Tavakoli, A Ghaffari, Z M Kouzehkanan, and R Hosseini. New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Scientific Reports, 11(1), 2021.spa
dc.relation.referencesRohollah Moosavi Tayebi, Youqing Mu, Taher Dehkharghanian, Catherine Ross, Monalisa Sur, Ronan Foley, Hamid R Tizhoosh, and Clinton JV Campbell. Automated bone marrow cytology using deep learning to generate a histogram of cell types. Communications Medicine, 2(1):45, 2022.spa
dc.relation.referencesMerle Temme. Algorithms and transparency in view of the new general data protection regulation. Eur. Data Prot. L. Rev., 3:473, 2017.spa
dc.relation.referencesFranklin N Tessler, William D Middleton, Edward G Grant, Jenny K Hoang, Lincoln L Berland, Sharlene A Teefey, John J Cronan, Michael D Beland, Terry S Desser, Mary C Frates, et al. Acr thyroid imaging, reporting and data system (ti-rads): white paper of the acr ti-rads committee. Journal of the American college of radiology, 14(5):587–595, 2017.spa
dc.relation.referencesJecko Thachil and Imelda Bates. Approach to the diagnosis and classification of blood cell disorders. Elsevier Ltd., twelfth ed edition, 2017spa
dc.relation.referencesTTP Thanh, Caleb Vununu, Sukhrob Atoev, Suk-Hwan Lee, and Ki-Ryong Kwon. Leukemia blood cell image classification using convolutional neural network. International Journal of Computer Theory and Engineering, 10(2):54–58, 2018.spa
dc.relation.referencesNipon Theera-Umpon and Sompong Dhompongsa. Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification. IEEE Transactions on Information Technology in Biomedicine, 11(3):353–359, 2007.spa
dc.relation.referencesShilpa Thomas and S Vijaylakshmi. Image recognition, recusion cellular classification using different techniques and detecticting microscopic deformities. In 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pages 1053–1055. IEEE, 2022.spa
dc.relation.referencesManuel Tran, Amal Lahiani, Yashin Dicente Cid, Melanie Boxberg, Peter Lienemann, Christian Matek, Sophia J Wagner, Fabian J Theis, Eldad Klaiman, and Tingying Peng. B-cos aligned transformers learn human-interpretable features. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 514–524. Springer, 2023.spa
dc.relation.referencesPierpaolo Trimboli, Franco Fulciniti, Valentina Zilioli, Luca Ceriani, and Luca Giovanella. Accuracy of international ultrasound risk stratification systems in thyroid lesions cytologically classified as indeterminate. Diagnostic Cytopathology, 45(2):113–117, 2017.spa
dc.relation.referencesSatvik Tripathi, Alisha Augustin, Rithvik Sukumaran, Suhani Dheer, and Edward Kim. HematoNet. Experte level classification of bone marrow cytology morphology in hemaatological malignancy with deep learning. Artificial Intelligence in the Life Sicences, 2(100043), 2022.spa
dc.relation.referencesAlbert G Tsai, David R Glass, Marisa Juntilla, Felix J Hartmann, Jean S Oak, Sebastian Fernandez-Pol, Robert S Ohgami, and Sean C Bendall. Multiplexed single-cell morphometry for hematopathology diagnostics. Nature medicine, 26(3):408–417, 2020.spa
dc.relation.referencesEva Tuba, Ivana Strumberger, Nebojsa Bacanin, Dejan Zivkovic, and Milan Tuba. Acute lymphoblastic leukemia cell detection in microscopic digital images based on shape and texture features. In International Conference on Swarm Intelligence, pages 142–151. Springer, 2019.spa
dc.relation.referencesR Vanna, P Ronchi, Aufrid TM Lenferink, C Tresoldi, C Morasso, D Mehn, M Bedoni, S Picciolini, LWMM Terstappen, Fabio Ciceri, et al. Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by raman microspectroscopy. Analyst, 140(4):1054–1064, 2015.spa
dc.relation.referencesLuis HS Vogado, Rodrigo MS Veras, and Kelson RT Aires. ”leukneta model of convolutional neural network for the diagnosis of leukemia. In Anais Estendidos do XXXIII Conference on Graphics, Patterns and Images, pages 119–125. SBC, 2020.spa
dc.relation.referencesLuis HS Vogado, Rodrigo MS Veras, Flavio HD Araujo, Romuere RV Silva, and Kelson RT Aires. Leukemia diagnosis in blood slides using transfer learning in cnns and svm for classification. Engineering Applications of Artificial Intelligence, 72:415–422, 2018.spa
dc.relation.referencesJustin Wang, Anthony Li, Michelle Huang, Ali Ibrahim, Hanqui Zhuang, and Ali Ali. Classification of White Blood Cells with PatternNet-fused Ensemble of Convolutional Neural Networks (PECNN). 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pages 325–330, 2018.spa
dc.relation.referencesLulu Wang. Deep learning techniques to diagnose lung cancer. Cancers, 14(22):5569, 2022.spa
dc.relation.referencesWeining Wang, Meige Luo, Peirong Guo, Yan Wei, Yan Tan, and Hongxia Shi. Artificial intelligence-assisted diagnosis of hematologic diseases based on bone marrow smears using deep neural networks. Computer Methods and Programs in Biomedicine, 231:107343, 2023.spa
dc.relation.referencesQi Wei, Yinhao Ren, Rui Hou, et al. Anomaly detection for medical images based on a one-class classification. In Medical Imaging 2018: Computer-Aided Diagnosis, volume 10575, pages 375–380. SPIE, 2018.spa
dc.relation.referencesSaining Xie, Ross Girshick, Piotr Doll´ar, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1492–1500, 2017.spa
dc.relation.referencesRui Yan, Fei Ren, Zihao Wang, Lihua Wang, Tong Zhang, Yudong Liu, Xiaosong Rao, Chunhou Zheng, and Fa Zhang. Breast cancer histopathological image classification using a hybrid deep neural network. Methods, 173:52–60, 2020.spa
dc.relation.referencesMuhammed Yildirim and Ahmet C¸ inar. Classification of white blood cells by deep learning methods for diagnosing disease. Revue d’Intelligence Artificielle, 33(5):335–340, 2019.spa
dc.relation.referencesMuhammad Zakir Ullah, Yuanjie Zheng, Jingqi Song, Sehrish Aslam, Chenxi Xu, Gogo Dauda Kiazolu, and Liping Wang. An attention-based convolutional neural network for acute lymphoblastic leukemia classification. Applied Sciences, 11(22):10662, 2021.spa
dc.relation.referencesCongcong Zhang, Xiaoyan Xiao, Xiaomei Li, Ying-Jie Chen, Wu Zhen, Jun Chang, Chengyun Zheng, and Zhi Liu. White blood cell segmentation by color-space-based k-means clustering. Sensors, 14(9):16128–16147, 2014.spa
dc.relation.referencesQuan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey. Frontiers of Information Technology & Electronic Engineering, 19(1):27–39, 2018.spa
dc.relation.referencesZelin Zhang, Sara Arabyarmohammadi, Patrick Leo, Howard Meyerson, Leland Metheny, Jun Xu, and Anant Madabhushi. Automatic myeloblast segmentation in acute myeloid leukemia images based on adversarial feature learning. Computer Methods and Programs in Biomedicine, 243:107852, 2024spa
dc.relation.referencesJianwei Zhao, Minshu Zhang, Zhenghua Zhou, Jianjun Chu, and Feilong Cao. Automatic detection and classification of leukocytes using convolutional neural networks. Medical & Biological Engineering & Computing, 55:1287–1301, 2017.spa
dc.relation.referencesBolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2921–2929, 2016.spa
dc.relation.referencesHui Zhou, Yinhua Jin, Lei Dai, Meiwu Zhang, Yuqin Qiu, Jie Tian, Jianjun Zheng, et al. Differential diagnosis of benign and malignant thyroid nodules using deep learning radiomics of thyroid ultrasound images. European Journal of Radiology, 127:108992, 2020.spa
dc.relation.referencesGina Zini, Barbara Bain, Gianluigi Castoldi, and Others. European leukemianet (eln) project diagnostic platform (wp10): Final results of the first study of the european morphology consensus panel. Blood, 112(11):1645, 2008.spa
dc.relation.referencesMohammad Zolfaghari and Hedieh Sajedi. A survey on automated detection and classification of acute leukemia and wbcs in microscopic blood cells. Multimedia Tools and Applications, 81(5):6723–6753, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsDetección Precoz del Cáncerspa
dc.subject.decsEarly Detection of Cancereng
dc.subject.decsSistemas Especialistasspa
dc.subject.decsExpert Systemseng
dc.subject.decsInteligencia Artificialspa
dc.subject.decsArtificial Intelligenceeng
dc.subject.lembAPRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)spa
dc.subject.lembMachine learningeng
dc.subject.lembREDES NEURALES (COMPUTADORES)spa
dc.subject.lembNeural networks (Computer science)eng
dc.subject.lembRAZONAMIENTO CUALITATIVOspa
dc.subject.lembQualitative reasoningeng
dc.subject.proposalInterpretabilityeng
dc.subject.proposalArtificial Intelligenceeng
dc.subject.proposalMedical imagingeng
dc.subject.proposalRadiomicseng
dc.subject.proposalPathomicseng
dc.subject.proposalUltracytomicseng
dc.subject.proposalAlternative representation spaceseng
dc.subject.proposalDiagnosiseng
dc.subject.proposalInterpretabilidadspa
dc.subject.proposalEspacios alternativos de representaciónspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalImágenes médicasspa
dc.subject.proposalRadiómicaspa
dc.subject.proposalPatómicaspa
dc.subject.proposalDiagnósticospa
dc.subject.proposalUltracitómicosspa
dc.titleBuilding regularized and dimensionally-reduced representations for automatically quantifying conceptual similarities between images: an application to cancer descriptioneng
dc.title.translatedConstrucción de representaciones regularizadas y dimensionalmente reducidas para cuantificar automáticamente similitudes conceptuales entre imágenes: una aplicación a la descripción del cáncerspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018409799.2025.pdf
Tamaño:
18.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingenieria - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: