Building regularized and dimensionally-reduced representations for automatically quantifying conceptual similarities between images: an application to cancer description
dc.contributor.advisor | Romero Castro, Eduardo | spa |
dc.contributor.author | Tarquino Gonzalez, Jonathan Steve | spa |
dc.contributor.researchgroup | Cim@Lab | spa |
dc.date.accessioned | 2025-02-17T17:13:51Z | |
dc.date.available | 2025-02-17T17:13:51Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | Los espacios de representación alternativos (ARS por sus siglas en ingles) se han convertido en un tema crucial en la inteligencia artificial (IA), ya que los avances recientes en el análisis de características mediante aprendizaje profundo han demostrado que pequeños cambios dentro de dichos espacios de características afectan en gran medida los resultados del modelo. Estos ARS se basan comúnmente en características extraídas de muestras, principalmente para reducir la dimensión del espacio muestral original y mejorar la discriminabilidad de patrones. Sin embargo, la mayor parte de la investigación actual de IA se centra en el rendimiento del modelo, pero hay muy poco progreso en la interpretabilidad del modelo. Particularmente en el campo del análisis de imágenes, la dimensionalidad de la muestra se ha vuelto más importante que la interpretabilidad, debido al tamaño de estas fuentes de información y las limitaciones del poder computacional. A pesar de esto, la transparencia. La interpretabilidad del modelo se vuelve importante en las aplicaciones médicas, donde los médicos no solo buscan predicciones precisas, sino que también esperan explicaciones sobre cómo un modelo calcula dichos resultados. En la práctica clínica, se requieren explicaciones de los resultados para crear esquemas de gestión personalizados de pacientes. Por lo tanto, la opacidad del modelo aparece como uno de los problemas que limita el uso de la IA en la práctica clínica. Además, las técnicas de interpretabilidad de IA se han dedicado al uso de mapas de calor espaciales, que se basan en mapas de activación de capas de red profundas y explicaciones post-hoc basadas en características de ingeniería asociadas supervisadas, que no son suficientes para proporcionar predicciones precisas y ARS comprensibles. Las principales limitaciones de estos proveedores de interpretabilidad radican en la dificultad de ajustar abstracciones de alto nivel que utilizan los especialistas para explicar los resultados de los pacientes en términos de semántica especializada. Estas abstracciones semánticas se denominan comúnmente conceptos y tienen como objetivo mejorar la interpretabilidad o al menos mejorar la comprensión basada en imágenes. Estos conceptos pueden variar desde características de imagen simples basadas en la heterogeneidad de intensidad en imágenes de ultrasonido, hasta dispositivos celulares tipo empalizada en imágenes de histopatología, que requieren enormes niveles de abstracción, interpretación y conciencia semántica, que son características que los modelos de IA actuales no pueden proporcionar. La tesis presentada en este artículo aborda la construcción de ARS y la interpretabilidad basada en conceptos, en diferentes aplicaciones de imágenes de cáncer que van desde imágenes a escala celular hasta espacios de integración de radiología/citología. Este trabajo explora diferentes métodos de construcción de ARS y explota los límites de cada enfoque para determinar sus ventajas y desventajas y evaluar cómo se adaptan a desafíos particulares de la obtención de imágenes de cáncer. En particular, esta disertación demuestra avances en tres temas principales: la construcción de espacios de características diseñados para determinar la relación entre conceptos en diferentes escalas biológicas mientras se logra un rendimiento de clasificación de vanguardia, la construcción de incrustaciones de características profundas que capturan relaciones conceptuales en ARS de baja dimensión y la combinación de características profundas y diseñadas a mano para mejorar el rendimiento y la interpretabilidad del modelo (Texto tomado de la fuente). | spa |
dc.description.abstract | Alternative representation spaces (ARS) have become a crucial topic in Artificial intelligence (AI), since recent advances on deep feature characterization have evidenced that small changes within such embeddings largely affect model outcomes. These ARS are commonly build upon features extracted from samples, mainly to reduce original sample space dimension, and to enhance pattern discriminability. However, most of the current AI research is focused on model performance, but very few advances on model interpretability. Particularly, in image analysis, sample dimensionality have become more important than interpretability, due to the size of these information sources and the limitations of computational power. However, within this image domain, model transparency becomes crucial in medical applications, where physicians not only look for accurate predictions but also expect to obtain explanations on how a model is computing such outcomes. In clinical practice, explanations of the results are required in order to create personalized patient management schemes. Therefore, model opacity appears as one of the problems that limits the translation of AI to clinical practice. In addition, AI interpretability approaches have been devoted to spatial heatmaps, build upon layer activation maps of Deep networks, and pos-hoc explanations based on supervisely associated engineered features, which are not enough to provide both accurate predictions and understandable ARS. Main limitations of these interpretability providers relies in the difficulty to fit high-level abstractions that specialists use to explain patient outcomes in terms of specialized semantics. Such semantic abstractions are commonly known as concepts, and aim to improve interpretability or at least to enhance image-based understanding. These concepts may go from simple image characteristics based on intensity heterogeneity for ultrasound images, to palisade-like cell arrangements in histopathology images, all requiring huge levels of abstraction, interpretation and semantic awareness, which are not provided by nowadays AI models. Herein presented dissertation addresses ARS construction and concept-based interpretability, throughout different cancer image applications that range from cell scale images, to radiology/cytology integration spaces. This work explores different ARS construction methods, and exploits the limits of each approach to determine their advantages and disadvantages, and to evaluate how they fit particular cancer image challenges. Particularly, this work demonstrates advances on three main topics, building engineered feature spaces to determine relation between concepts at different biological scales while achieving state-of-the-art classification performance, constructing deep feature embeddings that capture conceptual relations in dimensionaly reduced ARS, and mixing handcrafted and deep features to improve model performance an interpretability | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctorado en Ingeniería - Ingeniería Eléctrica | spa |
dc.description.researcharea | Applied computing | spa |
dc.format.extent | 107 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87504 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | Mohamadreza Abbasi, Saeed Kermani, Ardeshir Tajebib, Morteza Moradi Amin, and Manije Abbasi. Automatic detection of acute lymphoblastic leukaemia based on extending the multifractal features. IET Image Processing, 14(1):132–137, 2019. | spa |
dc.relation.references | Enas Abdulhay, Mazin Mohammed, Dheyaa Ibrahim, N. Arunkumar, and V. Venkatraman. Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. Journal of Medical Systems, 42(4), 2018. | spa |
dc.relation.references | Andrea Acevedo, Santiago Alferez, Anna Merino, Laura Puigvı, and Jose Rodellar. Recognition of peripheral blood cell images using convolutional neural networks. Computer methods and programs in biomedicine, 180:105020, 2019. | spa |
dc.relation.references | Riaz Ahmad, Muhammad Awais, Nabeela Kausar, and Tallha Akram. White blood cells classification using entropy-controlled deep features optimization. Diagnostics, 13(3):352, 2023. | spa |
dc.relation.references | Khamael Abbas Khudhair Al-Dulaimi, Jasmine Banks, Vinod Chandran, Inmaculada TomeoReyes, and Kien Nguyen Thanh. Classification of white blood cell types from microscope images: Techniques and challenges. Microscopy science: Last approaches on educational programs and applied research (Microscopy Book Series, 8), pages 17–25, 2018 | spa |
dc.relation.references | Santiago Alferez, Anna Merino, Laura Bigorra, et al. Automatic recognition of atypical lymphoid cells from peripheral blood by digital image analysis. American journal of clinical pathology, 143(2):168–176, 2015. | spa |
dc.relation.references | Ali Alqudah, Ola Al-Ta’ani, and Alaa Al-Badarneh. Automatic segmentation and classification of white blood cells in peripheral blood samples. Journal of Engineering Science and Technology Review, 11(6):7–13, 2018. | spa |
dc.relation.references | Charlems Alvarez-Jimenez, Jacob T Antunes, Nitya Talasila, Kaustav Bera, Justin T Brady, Jayakrishna Gollamudi, Eric Marderstein, Matthew F Kalady, Andrei Purysko, Joseph E Willis, et al. Radiomic texture and shape descriptors of the rectal environment on postchemoradiation t2-weighted mri are associated with pathologic tumor stage regression in rectal cancers: a retrospective, multi-institution study. Cancers, 12(8):2027, 2020. | spa |
dc.relation.references | Laith Alzubaidi, Mohammed Fadhel, Omran Al-shamma, Jinglan Zhang, and Ye Duan. Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis. Electronics (Switzerland), 9(3), 2020. | spa |
dc.relation.references | Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features as dense visual descriptors. arXiv preprint arXiv:2112.05814, 2021. | spa |
dc.relation.references | Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruction probability. Special lecture on IE, 2(1):1–18, 2015. | spa |
dc.relation.references | Balasundaram Ananthakrishnan, Ayesha Shaik, Shivam Akhouri, Paras Garg, Vaibhav Gadag, and Muthu Subash Kavitha. Automated bone marrow cell classification for haematological disease diagnosis using siamese neural network. Diagnostics, 13(1):112, 2022. | spa |
dc.relation.references | V Ananthi and P Balasubramaniam. A new thresholding technique based on fuzzy set as an application to leukocyte nucleus segmentation. Computer Methods and Programs in Biomedicine, 134:165–177, 2016. | spa |
dc.relation.references | Plamen P Angelov, Eduardo A Soares, Richard Jiang, Nicholas I Arnold, and Peter M Atkinson. Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(5):e1424, 2021. | spa |
dc.relation.references | Gopinathan Anil, Amogh Hegde, and FH Vincent Chong. Thyroid nodules: risk stratification for malignancy with ultrasound and guided biopsy. Cancer Imaging, 11(1):209, 2011. | spa |
dc.relation.references | KK Anilkumar, VJ Manoj, and TM Sagi. A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of leukemia. Biocybernetics and Biomedical Engineering, 40(4):1406–1420, 2020. | spa |
dc.relation.references | Daniel A Arber, Attilio Orazi, Robert Hasserjian, J¨urgen Thiele, Michael J Borowitz, Michelle M Le Beau, Clara D Bloomfield, Mario Cazzola, and James W Vardiman. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood, The Journal of the American Society of Hematology, 127(20):2391–2405, 2016. | spa |
dc.relation.references | Boris Babic, Sara Gerke, Theodoros Evgeniou, and I Glenn Cohen. Beware explanations from ai in health care. Science, 373(6552):284–286, 2021. | spa |
dc.relation.references | Arnab Bagchi, Payel Pramanik, and Ram Sarkar. A multi-stage approach to breast cancer classification using histopathology images. Diagnostics, 13(1):126, 2022. | spa |
dc.relation.references | Raheel Baig, Abdur Rehman, Abdullah Almuhaimeed, Abdulkareem Alzahrani, and Hafiz Rauf. Detecting malignant leukemia cells using microscopic blood smear images: a Deep Learning approach. Applied Sciences (Switzerland), 12(13), 2022. | spa |
dc.relation.references | Barbara J Bain. Leukaemia diagnosis. John Wiley & Sons, 2017. | spa |
dc.relation.references | John M Bennett, Daniel Catovsky, Marie T Daniel, George Flandrin, David AG Galton, Harvey R Gralnick, and Claude Sultan. Proposed revised criteria for the classification of acute myeloid leukemia: a report of the french-american-british cooperative group. Annals of internal medicine, 103(4):620–625, 1985. | spa |
dc.relation.references | John M Bennett, Daniel Catovsky, Marie-Theregse Daniel, George Flandrin, David AG Galton, Harvey R Gralnick, and Claude Sultan. Proposals for the classification of the acute leukaemias french-american-british (fab) co-operative group. British journal of haematology, 33(4):451–458, 1976. | spa |
dc.relation.references | Mohammed Benomar, Amine Chikh, Xavier Descombes, and Mourtada Benazzouz. Multi features based approach for white blood cells segmentation and classification in peripheral blood and bone marrow images. International Journal of Biomedical Engineering and Technology, 2019. | spa |
dc.relation.references | Visar Berisha, Chelsea Krantsevich, P Richard Hahn, Shira Hahn, Gautam Dasarathy, Pavan Turaga, and Julie Liss. Digital medicine and the curse of dimensionality. NPJ digital medicine, 4(1):153, 2021. | spa |
dc.relation.references | Bryan L Betz and Jay L Hess. Acute myeloid leukemia diagnosis in the 21st century. Archives of pathology & laboratory medicine, 134(10):1427–1433, 2010. | spa |
dc.relation.references | Wenya Linda Bi, Ahmed Hosny, Matthew B Schabath, Maryellen L Giger, Nicolai J Birkbak, Alireza Mehrtash, Tavis Allison, Omar Arnaout, Christopher Abbosh, Ian F Dunn, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA: a cancer journal for clinicians, 69(2):127–157, 2019. | spa |
dc.relation.references | Carlo Biffi, Juan J Cerrolaza, Giacomo Tarroni, Wenjia Bai, Antonio De Marvao, Ozan Oktay, Christian Ledig, Loic Le Folgoc, Konstantinos Kamnitsas, Georgia Doumou, et al. Explainable anatomical shape analysis through deep hierarchical generative models. IEEE transactions on medical imaging, 39(6):2088–2099, 2020. | spa |
dc.relation.references | Lisa M Blackburn, Sarah Bender, and Shelly Brown. Acute leukemia: Diagnosis and treatment. In Seminars in oncology nursing, volume 35, page 150950. Elsevier, 2019. | spa |
dc.relation.references | Clara D Bloomfield and Richard D Brunning. Fab m7: acute megakaryoblastic leukemia -beyond morphology, 1985. | spa |
dc.relation.references | Laura Boldu, Anna Merino, Andrea Acevedo, et al. A deep learning model (alnet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Computer Methods and Programs in Biomedicine, 202:105999, 2021. | spa |
dc.relation.references | Matthew Botvinick, David GT Barrett, Peter Battaglia, Nando de Freitas, Darshan Kumaran, Joel Z Leibo, Timothy Lillicrap, Joseph Modayil, Mohamed Shakir, Neil C Rabinowitz, et al. Building machines that learn and think for themselves. Behavioral and Brain Sciences, 40, 2017. | spa |
dc.relation.references | Laura Bold´u, Anna Merino, et al. Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis. Journal of Clinical Pathology, 72(11):755–761, 2019. | spa |
dc.relation.references | G Bueno, R Gonzalez, Oscar Deniz, Marcial Garcıa-Rojo, J Gonzalez-Garcia, MM FernandezCarrobles, Noelia Vallez, and Jesus Salido. A parallel solution for high resolution histological image analysis. Computer methods and programs in biomedicine, 108(1):388–401, 2012. | spa |
dc.relation.references | Nikolay Burlutskiy, Feng Gu, Lena Kajland Wilen, Max Backman, and Patrick Micke. A deep learning framework for automatic diagnosis in lung cancer. arXiv preprint arXiv:1807.10466, 2018. | spa |
dc.relation.references | Arrigo Capitanio, RE Dina, and Darren Treanor. Digital cytology: A short review of technical and methodological approaches and applications. Cytopathology, 29(4):317–325, 2018. | spa |
dc.relation.references | Giovanni Carulli, Paola Sammuri, Cristiana Domenichini, Martina Rousseau, Virginia Ottaviano, Maria Immacolata Ferreri, Antonio Azzar`a, Francesco Caracciolo, and Mario Petrini. Morphologic and immunophenotypic features of a case of acute monoblastic leukemia with unusual positivity for glycophorin-a. Hematology reports, 10(4), 2018. | spa |
dc.relation.references | Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Anomaly detection using one-class neural networks. arXiv preprint arXiv:1802.06360, 2018. | spa |
dc.relation.references | Wangyang Chen, Jixi Wang, Bintao Ye, et al. The population characteristics of the main leukocyte subsets and their association with chronic diseases in a community-dwelling population: a cross-sectional study. Primary Health Care Research & Development, 22, 2021. | spa |
dc.relation.references | Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition. Nature Machine Intelligence, 2(12):772–782, 2020. | spa |
dc.relation.references | Jianning Chi, Ekta Walia, Paul Babyn, Jimmy Wang, Gary Groot, and Mark Eramian. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. Journal of digital imaging, 30:477–486, 2017. | spa |
dc.relation.references | Seon Hyeong Choi, Kyung Hwa Han, Jung Hyun Yoon, Hee Jung Moon, Eun Ju Son, Ji Hyun Youk, Eun-Kyung Kim, and Jin Young Kwak. Factors affecting inadequate sampling of ultrasound-guided fine-needle aspiration biopsy of thyroid nodules. Clinical endocrinology, 74(6):776–782, 2011. | spa |
dc.relation.references | Channabasava Chola, Abdullah Y. Muaad, Md Belal Bin Heyat, J. V.Bibal Benifa, Wadeea R. Naji, K. Hemachandran, Noha F. Mahmoud, Nagwan Abdel Samee, Mugahed A. Al-Antari, Yasser M. Kadah, and Tae Seong Kim. BCNet: A Deep Learning Computer-Aided Diagnosis Framework for Human Peripheral Blood Cell Identification. Diagnostics, 12(11), 2022. | spa |
dc.relation.references | Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258, 2017. | spa |
dc.relation.references | Eoin F Cleere, Matthew G Davey, Shane O'Neill, Mel Corbett, John P O'Donnell, Sean Hacking, Ivan J Keogh, Aoife J Lowery, and Michael J Kerin. Radiomic detection of malignancy within thyroid nodules using ultrasonography- A systematic review and metaanalysis. Diagnostics, 12(4):794, 2022. | spa |
dc.relation.references | Ahmet Cnar and Seda Tuncer. Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid Alexnet-GoogleNet-SVM. SN Applied Sciences, 3(4), 2021. | spa |
dc.relation.references | Kai Cui, Atanas Boev, Elena Alshina, and Eckehard Steinbach. Color image restoration exploiting inter-channel correlation with a 3-stage cnn. IEEE Journal of Selected Topics in Signal Processing, 15(2):174–189, 2020. | spa |
dc.relation.references | Yinglong Dai, Guojun Wang, and Kuan-Ching Li. Conceptual alignment deep neural networks. Journal of Intelligent and Fuzzy Systems, 34(3):1631–1642, 2018. | spa |
dc.relation.references | Zihang Dai, Hanxiao Liu, et al. Coatnet: Marrying convolution and attention for all data sizes. Advances in Neural Information Processing Systems, 34:3965–3977, 2021. | spa |
dc.relation.references | Tulasi Gayatri Devi, Nagamma Patil, Sharada Rai, and Cheryl Philipose Sarah. Segmentation and classification of white blood cancer cells from bone marrow microscopic images using duplet-convolutional neural network design. Multimedia Tools and Applications, pages 1–23, 2023. | spa |
dc.relation.references | Sarah Diefenbach and Daniel Ullrich. An experience perspective on intuitive interaction: Central components and the special effect of domain transfer distance. Interacting with Computers, 27(3):210–234, 2015. | spa |
dc.relation.references | M Dincic, T B Popovic, M Kojadinovic, A M Trbovich, and A Z Ilic. Morphological, fractal, and textural features for the blood cell classification: the case of acute myeloid leukemia. European Biophysics Journal, 50(8):1111–1127, 2021. | spa |
dc.relation.references | Minh Doan, Marian Case, Dino Masic, Holger Hennig, Claire McQuin, Juan Caicedo, Shantanu Singh, Allen Goodman, Olaf Wolkenhauer, Huw D Summers, et al. Label-free leukemia monitoring by computer vision. Cytometry Part A, 97(4):407–414, 2020. | spa |
dc.relation.references | N Dong, Meng-Die Zhai, Jianfang Chang, and Chun-Ho Wu. A self-adaptive approach for white blood cell classification towards point-of-care testing. Appl. Soft Comput., 111:107709, 2021. | spa |
dc.relation.references | David Dov, Shahar Z Kovalsky, Jonathan Cohen, Danielle Elliott Range, Ricardo Henao, and Lawrence Carin. Thyroid cancer malignancy prediction from whole slide cytopathology images. In Machine Learning for Healthcare Conference, pages 553–570. PMLR, 2019. | spa |
dc.relation.references | Glenn Easley, Demetrio Labate, and Wang-Q Lim. Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis, 25(1):25-46, Jul 2008. | spa |
dc.relation.references | Glenn R Easley, Demetrio Labate, and Flavia Colonna. Shearlet-based total variation diffusion for denoising. IEEE Transactions on Image processing, 18(2):260–268, 2008. | spa |
dc.relation.references | Heidi Eilertsen, Per Christian Sæther, Carola E Henriksson, Anne-Sofie Petersen, and TorArne Hagve. Evaluation of the detection of blasts by sysmex hematology instruments, cellavision dm96, and manual microscopy using flow cytometry as the confirmatory method. International journal of laboratory hematology, 41(3):338–344, 2019. | spa |
dc.relation.references | Tusneem Elhassan, Mohd Rahim, Tan Swee, Siti Hashim, and Mahmoud Aljurf. Feature extraction of white blood cells using CMYK-moment localization and Deep Learning in acute myeloid leukemia blood smear microscopic images. IEEE Access, 10:16577–16591, 2022. | spa |
dc.relation.references | Reem Magdy Elrefaie, Mohamed A Mohamed, Elsaid A Marzouk, and Mohamed Maher Ata. A robust classification of acute lymphocytic leukemia-based microscopic images with supervised hilbert-huang transform. Microscopy Research and Technique, 87(2):191–204, 2024. | spa |
dc.relation.references | Haoyi Fan, Fengbin Zhang, Liang Xi, Zuoyong Li, Guanghai Liu, and Yong Xu. LeukocyteMask: an automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. Journal of Biophotonics, 12(7):1–17, 2019. | spa |
dc.relation.references | Haoyi Fan, Fengbin Zhang, Liang Xi, Zuoyong Li, Guanghai Liu, and Yong Xu. LeukocyteMask: an automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. Journal of Biophotonics, 12(7):1–17, 2019. | spa |
dc.relation.references | Celestia Fang, Sridhar Rao, John D Crispino, and Panagiotis Ntziachristos. Determinants and role of chromatin organization in acute leukemia. Leukemia, pages 1–15, 2020. | spa |
dc.relation.references | Patricia Font, Javier Loscertales, Carlos Soto, Pilar Ricard, Carolina Munoz Novas, Estela MartAn-Clavero, Montserrat Lopez-Rubio, Luis Garcia-Alonso, Marta Callejas, Alfredo Bermejo, and et al. Interobserver variance in myelodysplastic syndromes with less than 5 % bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2 % blasts. Annals of Hematology, 94(4):565-573, Nov 2014. | spa |
dc.relation.references | Nikolaus Fortelny and Christoph Bock. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome biology, 21:1–36, 2020. | spa |
dc.relation.references | Xavier Fuentes-Arderiu and Dolors Dot-Bach. Measurement uncertainty in manual differential leukocyte counting. Clinical chemistry and laboratory medicine, 47(1):112–115, 2009. | spa |
dc.relation.references | Sujun Gao, Yehui Tan, Xiaoliang Liu, Long Su, Ping Yu, Wei Han, Jiuwei Cui, and Wei Li. The percentage of peripheral blood blasts on day 7 of induction chemotherapy predicts response to therapy and survival in patients with acute myeloid leukemia. Chinese Medical Journal, 127(2):290–293, 2014. | spa |
dc.relation.references | James Genone and Tania Lombrozo. Concept possession, experimental semantics, and hybrid theories of reference. Philosophical Psychology, 25(5):717–742, 2012. | spa |
dc.relation.references | Narjes Ghane, Alireza Vard, Ardeshir Talebi, and Pardis Nematollahy. Classification of chronic myeloid leukemia cell subtypes based on microscopic image analysis. EXCLI journal, 18:382, 2019. | spa |
dc.relation.references | Hossein Gharib, Enrico Papini, Jeffrey R Garber, Daniel S Duick, R Mack Harrell, Laszlo Hegedus, Ralf Paschke, Roberto Valcavi, and Paolo Vitti. American association of clinical endocrinologists, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules2016 update appendix. Endocrine practice, 22:1–60, 2016. | spa |
dc.relation.references | Marzyeh Ghassemi, Luke Oakden-Rayner, and Andrew L Beam. The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health, 3(11):e745–e750, 2021. | spa |
dc.relation.references | Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic conceptbased explanations. Advances in neural information processing systems, 32, 2019. | spa |
dc.relation.references | Giacomo Gianfaldoni, Francesco Mannelli, Michela Baccini, Elisabetta Antonioli, Franco Leoni, and Alberto Bosi. Clearance of leukaemic blasts from peripheral blood during standard induction treatment predicts the bone marrow response in acute myeloid leukaemia: a pilot study. British journal of haematology, 134(1):54–57, 2006. | spa |
dc.relation.references | Stefan Gluge, Stefan Balabanov, Viktor Hendrik Koelzer, and Thomas Ott. Evaluation of deep learning training strategies for the classification of bone marrow cell images. Computer Methods and Programs in Biomedicine, 243:107924, 2024. | spa |
dc.relation.references | Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets advances in neural information processing systems. arXiv preprint arXiv:1406.2661, 2014. | spa |
dc.relation.references | Mara Graziani, Vincent Andrearczyk, Stephane Marchand-Maillet, and Henning Muller. Concept attribution: Explaining cnn decisions to physicians. Computers in biology and medicine, 123:103865, 2020. | spa |
dc.relation.references | Qing Guan, Yunjun Wang, Bo Ping, Duanshu Li, Jiajun Du, Yu Qin, Hongtao Lu, Xiaochun Wan, and Jun Xiang. Deep convolutional neural network vgg-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. Journal of Cancer, 10(20):4876, 2019. | spa |
dc.relation.references | S Guth, U Theune, J Aberle, A Galach, and CM Bamberger. Very high prevalence of thyroid nodules detected by high frequency (13 mhz) ultrasound examination. European journal of clinical investigation, 39(8):699–706, 2009. | spa |
dc.relation.references | G Gutierrez, A Merino, A Domingo, et al. Eqas for peripheral blood morphology in spain: a 6-year experience. International journal of laboratory hematology, 30(6):460–466, 2008. | spa |
dc.relation.references | Mehdi Habibzadeh, Mahboobeh Jannesari, Zahra Rezaei, Hossein Baharvand, and Mehdi Totonchi. Automatic white blood cell classification using pre-trained deep learning models: Resnet and inception. In Tenth international conference on machine vision (ICMV 2017), volume 10696, pages 274–281. SPIE, 2018. | spa |
dc.relation.references | Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Khodakarami, Massive Analysis Quality Control (MAQC) Society Board of Directors Shraddha Thakkar 35 Kusko Rebecca 36 Sansone Susanna-Assunta 37 Tong Weida 35 Wolfinger Russ D. 38 Mason Christopher E. 39 Jones Wendell 40 Dopazo Joaquin 41 Furlanello Cesare 42, Levi Waldron, Bo Wang, Chris McIntosh, Anna Goldenberg, Anshul Kundaje, et al. Transparency and reproducibility in artificial intelligence. Nature, 586(7829):E14–E16, 2020. | spa |
dc.relation.references | Robert M Haralick. Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5):786–804, 1979. | spa |
dc.relation.references | Robert M. Haralick, K. Shanmugam, and Its'Hak Dinstein. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6):610–621, nov 1973. | spa |
dc.relation.references | Debapriya Hazra, Yung Cheol Byun, and Woo Jin Kim. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network. Computer Methods and Programs in Biomedicine, 224:107019, 2022. | spa |
dc.relation.references | Kaiming He, Xiangyu Zhang, Shaoquing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. | spa |
dc.relation.references | Roopa B. Hegde, Keerthana Prasad, Harishchandra Hebbar, and Brij Mohan Kumar Singh. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybernetics and Biomedical Engineering, 39(2):382–392, 2019. | spa |
dc.relation.references | Roopa B. Hegde, Keerthana Prasad, Harishchandra Hebbar, and Brij Mohan Kumar Singh. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybernetics and Biomedical Engineering, 39(2):382–392, 2019. | spa |
dc.relation.references | Roopa B Hegde, Keerthana Prasad, Harishchandra Hebbar, Brij Mohan Kumar Singh, and Ilanthodi Sandhya. Automated decision support system for detection of leukemia from peripheral blood smear images. Journal of digital imaging, pages 1–14, 2019. | spa |
dc.relation.references | Aaron Hodes, Katherine R Calvo, Alina Dulau, Irina Maric, Junfeng Sun, and Raul Braylan. The challenging task of enumerating blasts in the bone marrow. In Seminars in hematology, volume 56, pages 58–64. Elsevier, 2019. | spa |
dc.relation.references | Seyed Abolfazl Hosseini, Abdolrahim Javaherian, Hossien Hassani, Siyavash Torabi, and Maryam Sadri. Shearlet transform in aliased ground roll attenuation and its comparison with fk filtering and curvelet transform. Journal of Geophysics and Engineering, 12(3):351–364, 2015. | spa |
dc.relation.references | Preeti Jagadev and HG Virani. Detection of leukemia and its types using image processing and machine learning. In 2017 International Conference on Trends in Electronics and Informatics (ICEI), pages 522–526. IEEE, 2017. | spa |
dc.relation.references | Sina Jasim, Thomas J Baranski, Sharlene A Teefey, and William D Middleton. Investigating the effect of thyroid nodule location on the risk of thyroid cancer. Thyroid, 30(3):401–407, 2020. | spa |
dc.relation.references | Malathy Jawahar, H Sharen, Amir H Gandomi, et al. Alnett: A cluster layer deep convolutional neural network for acute lymphoblastic leukemia classification. Computers in Biology and Medicine, 148:105894, 2022. | spa |
dc.relation.references | Krishna Kumar Jha and Himadri Sekhar Dutta. Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Computer methods and programs in biomedicine, 179:104987, 2019. | spa |
dc.relation.references | Yuchen Jiang, Xiang Li, Hao Luo, Shen Yin, and Okyay Kaynak. Quo vadis artificial intelligence? Discover Artificial Intelligence, 2(1):4, 2022. | spa |
dc.relation.references | Sergio Jimenez, Fabio A Gonzalez, and Alexander Gelbukh. Mathematical properties of soft cardinality: Enhancing jaccard, dice and cosine similarity measures with element-wise distance. Information Sciences, 367:373–389, 2016. | spa |
dc.relation.references | Cheng Jin, Heng Yu, Jia Ke, Peirong Ding, Yongju Yi, Xiaofeng Jiang, Xin Duan, Jinghua Tang, Daniel T Chang, Xiaojian Wu, et al. Predicting treatment response from longitudinal images using multi-task deep learning. Nature communications, 12(1):1851, 2021. | spa |
dc.relation.references | Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967. | spa |
dc.relation.references | Shahab Eddin Jozdani, Brian Alan Johnson, and Dongmei Chen. Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sensing, 11(14):1713, 2019. | spa |
dc.relation.references | Sara Kassani, Peyman Kassani, Michal Wesolowski, Kevin Schneider, and Ralph Deters. A Hybrid deep learning architecture for leukemic B-lymphoblast classification. ICTC 2019 - 10th International Conference on ICT Convergence: ICT Convergence Leading the Autonomous Future, pages 271–276, 2019. | spa |
dc.relation.references | Sertan Kaymak, Abdulkader Helwan, and Dilber Uzun. Breast cancer image classification using artificial neural networks. Procedia computer science, 120:126–131, 2017. | spa |
dc.relation.references | Xavier M Keutgen, Hui Li, Kelvin Memeh, Julian Conn Busch, Jelani Williams, Li Lan, David Sarne, Brendan Finnerty, Peter Angelos, Thomas J Fahey III, et al. A machinelearning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features. Journal of Medical Imaging, 9(3):034501–034501, 2022. | spa |
dc.relation.references | Hasam Khalid and Simon S Woo. Oc-fakedect: Classifying deepfakes using one-class variational autoencoder. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 656–657, 2020 | spa |
dc.relation.references | MA Khosrosereshki and MB Menhaj. A fuzzy based classifier for diagnosis of acute lymphoblastic leukemia using blood smear image processing. In 2017 5th Iranian joint congress on fuzzy and intelligent systems (CFIS), pages 13–18. IEEE, 2017. | spa |
dc.relation.references | Been Kim, Justin Gilmer, Martin Wattenberg, and Fernanda Viegas. Tcav: Relative concept importance testing with linear concept activation vectors. 2018. | spa |
dc.relation.references | Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). In International conference on machine learning, pages 2668–2677. PMLR, 2018. | spa |
dc.relation.references | Boeun Kim, Kyung Hwan Ryu, Ji Hee Kim, and Seongmin Heo. Feature variance regularization method for autoencoder-based one-class classification. Computers & Chemical Engineering, 161:107776, 2022. | spa |
dc.relation.references | Soo-Yeon Kim, Eun-Kyung Kim, Hee Jung Moon, Jung Hyun Yoon, and Jin Young Kwak. Application of texture analysis in the differential diagnosis of benign and malignant thyroid nodules: comparison with gray-scale ultrasound and elastography. American Journal of Roentgenology, 205(3):W343–W351, 2015. | spa |
dc.relation.references | Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013. | spa |
dc.relation.references | Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy Liang. Concept bottleneck models. In Hal DaumA˜© III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 5338–5348. PMLR, 13–18 Jul 2020. | spa |
dc.relation.references | Sebastian Krappe, Michaela Benz, Thomas Wittenberg, et al. Automated classification of bone marrow cells in microscopic images for diagnosis of leukemia: a comparison of two classification schemes with respect to the segmentation quality. In SPIE Proceedings. SPIE, March 2015. | spa |
dc.relation.references | Sebastian Krappe, Thomas Wittenberg, et al. Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis. In Medical Imaging 2016: Computer-Aided Diagnosis. SPIE, March 2016. | spa |
dc.relation.references | Ruggero Donida Labati, Vincenzo Piuri, and Fabio Scotti. All-idb: The acute lymphoblastic leukemia image database for image processing. In 2011 18th IEEE International Conference on Image Processing, pages 2045–2048. IEEE, 2011. | spa |
dc.relation.references | F Lacombe, C Arnoulet, M Maynadie, E Lippert, I Luquet, A Pigneux, N Vey, O Casasnovas, F Witz, and MC Bene. Early clearance of peripheral blasts measured by flow cytometry during the first week of aml induction therapy as a new independent prognostic factor: a goelams study. Leukemia, 23(2):350–357, 2009 | spa |
dc.relation.references | W. Ladines-Castro, G. Barragan-Ibanez, M.A. Luna-Perez, A. Santoyo-Sanchez, J. CollazoJaloma, E. Mendoza-Garcıa, and C.O. Ramos-Penafiel. Morphology of leukaemias. Revista Medica del Hospital General de Mexico, 79(2):107–113, 2016. | spa |
dc.relation.references | Cecılia Lantos, Steven M Kornblau, and Amina A Qutub. Quantitative-morphological and cytological analyses in leukemia. Hematology: Latest Research and Clinical Advances, pages 95–113, 2018. | spa |
dc.relation.references | Jakkrich Laosai and Kosin Chamnongthai. Classification of acute leukemia using medicalknowledge-based morphology and cd marker. Biomedical Signal Processing and Control, 44:127–137, 2018. | spa |
dc.relation.references | C. Lavelle and J.M. Victor. Nuclear Architecture and Dynamics. Translational Epigenetics. Elsevier Science, 2017. | spa |
dc.relation.references | Bing Leng, Chunqing Wang, Min Leng, Mingfeng Ge, and Wenfei Dong. Deep learning detection network for peripheral blood leukocytes based on improved detection transformer. Biomedical Signal Processing and Control, 82(July 2022):104518, 2023. | spa |
dc.relation.references | Joshua E Lewis, Conrad W Shebelut, Bradley R Drumheller, Xuebao Zhang, Nithya Shanmugam, Michel Attieh, Michael C Horwath, Anurag Khanna, Geoffrey H Smith, David A Gutman, et al. An automated pipeline for differential cell counts on whole-slide bone marrow aspirate smears. Modern Pathology, 36(2):100003, 2023. | spa |
dc.relation.references | Yan Li, Rui Zhu, Lei Mi, Yihui Cao, and Di Yao. Segmentation of white blood cell from acute lymphoblastic leukemia images using dual-threshold method. Computational and mathematical methods in medicine, 2016, 2016 | spa |
dc.relation.references | Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3):31–57, 2018. | spa |
dc.relation.references | Hong Liu, Haichao Cao, and Enmin Song. Bone marrow cells detection: A technique for the microscopic image analysis. Journal of medical systems, 43(4):1–14, 2019. | spa |
dc.relation.references | Peng Liu, Kim-Kwang Raymond Choo, Lizhe Wang, and Fang Huang. Svm or deep learning? a comparative study on remote sensing image classification. Soft Computing, 21(23):7053– 7065, 2017. | spa |
dc.relation.references | Yan Liu, Ying Fu, and Pu Chen. WBCaps: A Capsule Architecture-based Classification Model Designed for White Blood Cells Identification. In In 2019 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pages 7027– 7030, 2019. | spa |
dc.relation.references | J MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley Symp. Math. Statist. Probability, pages 281–297, 1967. | spa |
dc.relation.references | Hayan T. Madhloom, Sameem Abdul Kareem, and Hany Ariffin. A robust feature extraction and selection method for the recognition of lymphocytes versus acute lymphoblastic leukemia. In 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT). IEEE, November 2012. | spa |
dc.relation.references | Petru Manescu, Priya Narayanan, Christopher Bendkowski, Muna Elmi, Remy Claveau, Vijay Pawar, Biobele J Brown, Mike Shaw, Anupama Rao, and Delmiro Fernandez-Reyes. Detection of acute promyelocytic leukemia in peripheral blood and bone marrow with annotation-free deep learning. Scientific Reports, 13(1):2562, 2023. | spa |
dc.relation.references | C. Matek, S. Krappe, C. M¨unzenmayer, T. Haferlach, and C. Marr. An Expert-Annotated Dataset of Bone Marrow Cytology in Hematologic Malignancies [Data set]. The Cancer Imaging Archive, 2021. | spa |
dc.relation.references | C Matek, S Krappe, C Munzenmayer, T Haferlach, and C Marr. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood, 138:1917–1927, 2021. | spa |
dc.relation.references | C Matek, S Schwarz, C Marr, and K Spiekermann. A single-cell morphological dataset of leukocytes from aml patients and non-malignant controls (aml-cytomorphology lmu). The Cancer Imaging Archive (TCIA)[Internet].[cited 29 Oct 2019]. Available: https://wiki. cancerimagingarchive. net/pages/viewpage. action, 2019. | spa |
dc.relation.references | Christian Matek, Sebastian Krappe, et al. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood, The Journal of the American Society of Hematology, 138(20):1917–1927, 2021. | spa |
dc.relation.references | Christian Matek, Simone Schwarz, Karsten Spiekermann, and Carsten Marr. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nature Machine Intelligence, 1(11):538–544, 2019. | spa |
dc.relation.references | Akira Matsuda, Hiroshi Kawabata, Kaoru Tohyama, Tomoya Maeda, Kayano Araseki, Tomoko Hata, Takahiro Suzuki, Hidekazu Kayano, Kei Shimbo, Kensuke Usuki, et al. Interobserver concordance of assessments of dysplasia and blast counts for the diagnosis of patients with cytopenia: from the japanese central review study. Leukemia Research, 74:137–143, 2018. | spa |
dc.relation.references | Raisa Fairooz Meem and Khandaker Tabin Hasan. Bone marrow cytomorphology cell detection using inceptionresnetv2. arXiv preprint arXiv:2305.05430, 2023. | spa |
dc.relation.references | William D Middleton, Sharlene A Teefey, Carl C Reading, Jill E Langer, Michael D Beland, Margaret M Szabunio, and Terry S Desser. Multiinstitutional analysis of thyroid nodule risk stratification using the american college of radiology thyroid imaging reporting and data system. American Journal of Roentgenology, 208(6):1331–1341, 2017. | spa |
dc.relation.references | R.N. Miranda, J.D. Khoury, and L.J. Medeiros. Atlas of Lymph Node Pathology. Atlas of Anatomic Pathology. Springer New York, 2013. | spa |
dc.relation.references | E H Mohamed, Wessam H El-Behaidy, Ghada Khoriba, and Jie Li. Improved White Blood Cells Classification based on Pre-trained Deep Learning Models. Journal of communications software and systems, 16:37–45, 2020. | spa |
dc.relation.references | S Mohapatra, D Patra, and S Satpathi. Image analysis of blood microscopic images for acute leukemia detection. In 2010 International Conference on Industrial Electronics, Control and Robotics. IEEE, December 2010. | spa |
dc.relation.references | Subrajeet Mohapatra, Dipti Patra, and Sanghamitra Satpathy. Automated leukemia detection in blood microscopic images using statistical texture analysis. In Proceedings of the 2011 International Conference on Communication, Computing & Security - ICCCS '11. ACM Press, 2011. | spa |
dc.relation.references | Subrajeet Mohapatra, Dipti Patra, and Sanghamitra Satpathy. An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Computing and Applications, 24(7-8):1887–1904, 2014. | spa |
dc.relation.references | Syadia Mohd, Mohd Md, and Wan Wan. White blood cell (WBC) counting analysis in blood smear images using various color segmentation methods. Measurement: Journal of the International Measurement Confederation, 116:543–555, 2018. | spa |
dc.relation.references | Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine learning, 52(1):91–118, 2003. | spa |
dc.relation.references | Won-Jin Moon, So Lyung Jung, Jeong Hyun Lee, Dong Gyu Na, Jung-Hwan Baek, Young Hen Lee, Jinna Kim, Hyun Sook Kim, Jun Soo Byun, and Dong Hoon Lee. Benign and malignant thyroid nodules: Us differentiationˆa€”multicenter retrospective study. Radiology, 247(3):762– 770, 2008. | spa |
dc.relation.references | Kunal Nagpal, Davis Foote, Yun Liu, Po-Hsuan Cameron Chen, Ellery Wulczyn, Fraser Tan, Niels Olson, Jenny L Smith, Arash Mohtashamian, James H Wren, et al. Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer. NPJ digital medicine, 2(1):48, 2019. | spa |
dc.relation.references | Kaung Naing, Veerayuth Kittichai, Teerawat Tongloy, and Santhad Chuwongin. The evaluation of acute myeloid lLeukaemia (AML) blood cell detection models using different YOLO. biorRxiv, 2021. | spa |
dc.relation.references | Rithin Nedumannil, Shirlene Sim, David Westerman, and Surender Juneja. Identification and quantitation of blasts in myeloid malignancies with marrow fibrosis or marrow hypoplasia and cd34 negativity. Pathology, 53(6):795–798, 2021. | spa |
dc.relation.references | Birgitte Nielsen and Havard E Danielsen. Prognostic value of adaptive textural features–the effect of standardizing nuclear first-order gray level statistics and mixing information from nuclei having different area. Analytical Cellular Pathology, 28(3):85–95, 2006. | spa |
dc.relation.references | Mazin Z Othman, Thabit S Mohammed, and Alaa B Ali. Neural network classification of white blood cell using microscopic images. International Journal of Advanced Computer Science and Applications, 8(5), 2017. | spa |
dc.relation.references | SJ Pawan and Jeny Rajan. Capsule networks for image classification: A review. Neurocomputing, 509:102–120, 2022. | spa |
dc.relation.references | Lina Pedraza, Carlos Vargas, Fabi´an Narv´aez, Oscar Dur´an, Emma Mu˜noz, and Eduardo Romero. An open access thyroid ultrasound image database. In 10th International symposium on medical information processing and analysis, volume 9287, pages 188–193. SPIE, 2015. | spa |
dc.relation.references | Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis and machine intelligence, 27(8):1226–1238, 2005. | spa |
dc.relation.references | Mary-Elizabeth Percival, Catherine Lai, Elihu Estey, and Christopher S Hourigan. Bone marrow evaluation for diagnosis and monitoring of acute myeloid leukemia. Blood reviews, 31(4):185–192, 2017. | spa |
dc.relation.references | Sergio Pereira, Raphael Meier, Richard McKinley, Roland Wiest, Victor Alves, Carlos A Silva, and Mauricio Reyes. Enhancing interpretability of automatically extracted machine learning features: application to a rbm-random forest system on brain lesion segmentation. Medical image analysis, 44:228–244, 2018. | spa |
dc.relation.references | Natasa Petrovic, Gabriel Moya-Alcover, Antoni Jaume-i Capo, and Manuel Gonzalez-Hidalgo. Sickle-cell disease diagnosis support selecting the most appropriate machine learning method: Towards a general and interpretable approach for cell morphology analysis from microscopy images. Computers in Biology and Medicine, 126:104027, 2020. | spa |
dc.relation.references | Jonas Prellberg and Oliver Kramer. Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks. In ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging: Select Proceedings, pages 53–61. Springer, 2019. | spa |
dc.relation.references | Jaroonrut Prinyakupt and C Pluempitiwiriyawej. Segmentation of white blood cells and comparison of cell morphology by linear and na¨ıve Bayes classifiers. BioMedical Engineering OnLine, 14, 2015. | spa |
dc.relation.references | Yifan Qiao, Yi Zhang, Nian Liu, Pu Chen, and Yan Liu. An end-to-end pipeline for early diagnosis of acute promyelocytic leukemia based on a compact CNN model. Diagnostics, 11(7):1–15, 2021. | spa |
dc.relation.references | Priyanka Rastogi, Kavita Khanna, and Vijendra Singh. LeuFeatx: Deep learning-based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear. Computers in Biology and Medicine, 142(November 2021):105236, 2022. | spa |
dc.relation.references | S Ratheesh and A Ajisha Breethi. Deep learning based non-local k-best renyi entropy for classification of white blood cell subtypes. Biomedical Signal Processing and Control, 90:105812, 2024. | spa |
dc.relation.references | Astha Ratley, Jasmine Minj, and Pooja Patre. Leukemia disease detection and classification using machine learning approaches: a review. In 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), pages 161–165. IEEE, 2020. | spa |
dc.relation.references | Jyoti Rawat, Annapurna Singh, Bhadauria HS, Jitendra Virmani, and Jagtar Devgun. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybernetics and Biomedical Engineering, 37(4):637–654, 2017. | spa |
dc.relation.references | Amjad Rehman, Naveed Abbas, Tanzila Saba, Syed Ijaz ur Rahman, Zahid Mehmood, and Hoshang Kolivand. Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research and Technique, 81(11):1310–1317, 2018. | spa |
dc.relation.references | Luciana Reck Remonti, Caroline Kaercher Kramer, Cristiane Bauermann Leitao, Lana Catani F Pinto, and Jorge Luiz Gross. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid, 25(5):538–550, 2015. | spa |
dc.relation.references | Carolina Reta, Leopoldo Altamirano, Jesus A Gonzalez, Raquel Diaz-Hernandez, Hayde Peregrina, Ivan Olmos, Jose E Alonso, and Ruben Lobato. Segmentation and classification of bone marrow cells images using contextual information for medical diagnosis of acute leukemias. PloS one, 10(6):e0130805, 2015. | spa |
dc.relation.references | Sorayya Rezayi, Niloofar Mohammadzadeh, Hamid Bouraghi, Soheila Saeedi, and Ali Mohammadpour. Timely diagnosis of acute lymphoblastic leukemia using artificial intelligenceoriented deep learning methods. Computational Intelligence and Neuroscience, 2021, 2021. | spa |
dc.relation.references | Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019. | spa |
dc.relation.references | Lukas Ruff, Robert Vandermeulen, Nico Goernitz, et al. Deep one-class classification. In International conference on machine learning, pages 4393–4402. PMLR, 2018. | spa |
dc.relation.references | Arnout C Ruifrok, Dennis A Johnston, et al. Quantification of histochemical staining by color deconvolution. Analytical and quantitative cytology and histology, 23(4):291–299, 2001. | spa |
dc.relation.references | Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances in neural information processing systems, 30, 2017. | spa |
dc.relation.references | Haneen T Salah, Ibrahim N Muhsen, Mohamed E Salama, Tarek Owaidah, and Shahrukh K Hashmi. Machine learning applications in the diagnosis of leukemia: Current trends and future directions. International journal of laboratory hematology, 41(6):717–725, 2019. | spa |
dc.relation.references | Zohaib Salahuddin, Henry C Woodruff, Avishek Chatterjee, and Philippe Lambin. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Computers in biology and medicine, 140:105111, 2022. | spa |
dc.relation.references | Saba Saleem, Javaria Amin, Muhammad Sharif, Ghulam Ali Mallah, Seifedine Kadry, and Amir H Gandomi. Leukemia segmentation and classification: A comprehensive survey. Computers in Biology and Medicine, page 106028, 2022. | spa |
dc.relation.references | Max Schmitt, Roman Christoph Maron, Achim Hekler, Albrecht Stenzinger, Axel Hauschild, Michael Weichenthal, Markus Tiemann, Dieter Krahl, Heinz Kutzner, Jochen Sven Utikal, et al. Hidden variables in deep learning digital pathology and their potential to cause batch effects: Prediction model study. Journal of medical Internet research, 23(2):e23436, 2021. | spa |
dc.relation.references | Jens PE Schouten, Christian Matek, Luuk FP Jacobs, Mich`ele C Buck, Dragan Boˇsnaˇcki, and Carsten Marr. Tens of images can suffice to train neural networks for malignant leukocyte detection. Scientific Reports, 11(1):7995, 2021. | spa |
dc.relation.references | Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision, 128(2):336–359, 2020. | spa |
dc.relation.references | Sarmad Shafique and Samabia Tehsin. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technology in cancer research & treatment, 17:1533033818802789, 2018. | spa |
dc.relation.references | Afshan Shah, Syed Saud Naqvi, et al. Automated diagnosis of leukemia: a comprehensive review. IEEE Access, 9:132097–132124, 2021. | spa |
dc.relation.references | Yasaman Sharifi, Mohamad Amin Bakhshali, Toktam Dehghani, Morteza DanaiAshgzari, Mahdi Sargolzaei, and Saeid Eslami. Deep learning on ultrasound images of thyroid nodules. Biocybernetics and Biomedical Engineering, 41(2):636–655, 2021. | spa |
dc.relation.references | Yunlang She, Zhuochen Jin, Junqi Wu, Jiajun Deng, Lei Zhang, Hang Su, Gening Jiang, Haipeng Liu, Dong Xie, Nan Cao, et al. Development and validation of a deep learning model for non–small cell lung cancer survival. JAMA network open, 3(6):e205842–e205842, 2020. | spa |
dc.relation.references | Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. | spa |
dc.relation.references | Sharat Singh. Stratified medicine: maximizing clinical benefit by biomarker-driven health care. In Next-generation nutritional biomarkers to guide better health care, volume 84, pages 91–102. Karger Publishers, 2016. | spa |
dc.relation.references | Vanika Singhal and Preety Singh. Texture features for the detection of acute lymphoblastic leukemia. In Proceedings of International Conference on ICT for Sustainable Development, pages 535–543. Springer, 2016. | spa |
dc.relation.references | Alex J Smola and Bernhard Scholkopf. A tutorial on support vector regression. Statistics and computing, 14:199–222, 2004. | spa |
dc.relation.references | Worawut Srisukkham, Li Zhang, Siew Chin Neoh, Stephen Todryk, and Chee Peng Lim. Intelligent leukaemia diagnosis with bare-bones pso based feature optimization. Applied Soft Computing, 56:405–419, 2017. | spa |
dc.relation.references | Pierre Stock and Moustapha Cisse. Convnets and imagenet beyond accuracy: Explanations, bias detection, adversarial examples and model criticism. arXiv preprint arXiv:1711.11443, 2017. | spa |
dc.relation.references | K Sudha and P Geetha. A novel approach for segmentation and counting of overlapped leukocytes in microscopic blood images. Biocybernetics and Biomedical Engineering, 40(2):639– 648, 2020. | spa |
dc.relation.references | Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In International conference on machine learning, pages 3319–3328. PMLR, 2017. | spa |
dc.relation.references | Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249, 2021. | spa |
dc.relation.references | Fatma M Talaat and Samah A Gamel. Machine learning in detection and classification of leukemia using c-nmc leukemia. Multimedia Tools and Applications, pages 1–14, 2023. | spa |
dc.relation.references | S Tavakoli, A Ghaffari, Z M Kouzehkanan, and R Hosseini. New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Scientific Reports, 11(1), 2021. | spa |
dc.relation.references | Rohollah Moosavi Tayebi, Youqing Mu, Taher Dehkharghanian, Catherine Ross, Monalisa Sur, Ronan Foley, Hamid R Tizhoosh, and Clinton JV Campbell. Automated bone marrow cytology using deep learning to generate a histogram of cell types. Communications Medicine, 2(1):45, 2022. | spa |
dc.relation.references | Merle Temme. Algorithms and transparency in view of the new general data protection regulation. Eur. Data Prot. L. Rev., 3:473, 2017. | spa |
dc.relation.references | Franklin N Tessler, William D Middleton, Edward G Grant, Jenny K Hoang, Lincoln L Berland, Sharlene A Teefey, John J Cronan, Michael D Beland, Terry S Desser, Mary C Frates, et al. Acr thyroid imaging, reporting and data system (ti-rads): white paper of the acr ti-rads committee. Journal of the American college of radiology, 14(5):587–595, 2017. | spa |
dc.relation.references | Jecko Thachil and Imelda Bates. Approach to the diagnosis and classification of blood cell disorders. Elsevier Ltd., twelfth ed edition, 2017 | spa |
dc.relation.references | TTP Thanh, Caleb Vununu, Sukhrob Atoev, Suk-Hwan Lee, and Ki-Ryong Kwon. Leukemia blood cell image classification using convolutional neural network. International Journal of Computer Theory and Engineering, 10(2):54–58, 2018. | spa |
dc.relation.references | Nipon Theera-Umpon and Sompong Dhompongsa. Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification. IEEE Transactions on Information Technology in Biomedicine, 11(3):353–359, 2007. | spa |
dc.relation.references | Shilpa Thomas and S Vijaylakshmi. Image recognition, recusion cellular classification using different techniques and detecticting microscopic deformities. In 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pages 1053–1055. IEEE, 2022. | spa |
dc.relation.references | Manuel Tran, Amal Lahiani, Yashin Dicente Cid, Melanie Boxberg, Peter Lienemann, Christian Matek, Sophia J Wagner, Fabian J Theis, Eldad Klaiman, and Tingying Peng. B-cos aligned transformers learn human-interpretable features. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 514–524. Springer, 2023. | spa |
dc.relation.references | Pierpaolo Trimboli, Franco Fulciniti, Valentina Zilioli, Luca Ceriani, and Luca Giovanella. Accuracy of international ultrasound risk stratification systems in thyroid lesions cytologically classified as indeterminate. Diagnostic Cytopathology, 45(2):113–117, 2017. | spa |
dc.relation.references | Satvik Tripathi, Alisha Augustin, Rithvik Sukumaran, Suhani Dheer, and Edward Kim. HematoNet. Experte level classification of bone marrow cytology morphology in hemaatological malignancy with deep learning. Artificial Intelligence in the Life Sicences, 2(100043), 2022. | spa |
dc.relation.references | Albert G Tsai, David R Glass, Marisa Juntilla, Felix J Hartmann, Jean S Oak, Sebastian Fernandez-Pol, Robert S Ohgami, and Sean C Bendall. Multiplexed single-cell morphometry for hematopathology diagnostics. Nature medicine, 26(3):408–417, 2020. | spa |
dc.relation.references | Eva Tuba, Ivana Strumberger, Nebojsa Bacanin, Dejan Zivkovic, and Milan Tuba. Acute lymphoblastic leukemia cell detection in microscopic digital images based on shape and texture features. In International Conference on Swarm Intelligence, pages 142–151. Springer, 2019. | spa |
dc.relation.references | R Vanna, P Ronchi, Aufrid TM Lenferink, C Tresoldi, C Morasso, D Mehn, M Bedoni, S Picciolini, LWMM Terstappen, Fabio Ciceri, et al. Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by raman microspectroscopy. Analyst, 140(4):1054–1064, 2015. | spa |
dc.relation.references | Luis HS Vogado, Rodrigo MS Veras, and Kelson RT Aires. ”leukneta model of convolutional neural network for the diagnosis of leukemia. In Anais Estendidos do XXXIII Conference on Graphics, Patterns and Images, pages 119–125. SBC, 2020. | spa |
dc.relation.references | Luis HS Vogado, Rodrigo MS Veras, Flavio HD Araujo, Romuere RV Silva, and Kelson RT Aires. Leukemia diagnosis in blood slides using transfer learning in cnns and svm for classification. Engineering Applications of Artificial Intelligence, 72:415–422, 2018. | spa |
dc.relation.references | Justin Wang, Anthony Li, Michelle Huang, Ali Ibrahim, Hanqui Zhuang, and Ali Ali. Classification of White Blood Cells with PatternNet-fused Ensemble of Convolutional Neural Networks (PECNN). 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pages 325–330, 2018. | spa |
dc.relation.references | Lulu Wang. Deep learning techniques to diagnose lung cancer. Cancers, 14(22):5569, 2022. | spa |
dc.relation.references | Weining Wang, Meige Luo, Peirong Guo, Yan Wei, Yan Tan, and Hongxia Shi. Artificial intelligence-assisted diagnosis of hematologic diseases based on bone marrow smears using deep neural networks. Computer Methods and Programs in Biomedicine, 231:107343, 2023. | spa |
dc.relation.references | Qi Wei, Yinhao Ren, Rui Hou, et al. Anomaly detection for medical images based on a one-class classification. In Medical Imaging 2018: Computer-Aided Diagnosis, volume 10575, pages 375–380. SPIE, 2018. | spa |
dc.relation.references | Saining Xie, Ross Girshick, Piotr Doll´ar, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1492–1500, 2017. | spa |
dc.relation.references | Rui Yan, Fei Ren, Zihao Wang, Lihua Wang, Tong Zhang, Yudong Liu, Xiaosong Rao, Chunhou Zheng, and Fa Zhang. Breast cancer histopathological image classification using a hybrid deep neural network. Methods, 173:52–60, 2020. | spa |
dc.relation.references | Muhammed Yildirim and Ahmet C¸ inar. Classification of white blood cells by deep learning methods for diagnosing disease. Revue d’Intelligence Artificielle, 33(5):335–340, 2019. | spa |
dc.relation.references | Muhammad Zakir Ullah, Yuanjie Zheng, Jingqi Song, Sehrish Aslam, Chenxi Xu, Gogo Dauda Kiazolu, and Liping Wang. An attention-based convolutional neural network for acute lymphoblastic leukemia classification. Applied Sciences, 11(22):10662, 2021. | spa |
dc.relation.references | Congcong Zhang, Xiaoyan Xiao, Xiaomei Li, Ying-Jie Chen, Wu Zhen, Jun Chang, Chengyun Zheng, and Zhi Liu. White blood cell segmentation by color-space-based k-means clustering. Sensors, 14(9):16128–16147, 2014. | spa |
dc.relation.references | Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey. Frontiers of Information Technology & Electronic Engineering, 19(1):27–39, 2018. | spa |
dc.relation.references | Zelin Zhang, Sara Arabyarmohammadi, Patrick Leo, Howard Meyerson, Leland Metheny, Jun Xu, and Anant Madabhushi. Automatic myeloblast segmentation in acute myeloid leukemia images based on adversarial feature learning. Computer Methods and Programs in Biomedicine, 243:107852, 2024 | spa |
dc.relation.references | Jianwei Zhao, Minshu Zhang, Zhenghua Zhou, Jianjun Chu, and Feilong Cao. Automatic detection and classification of leukocytes using convolutional neural networks. Medical & Biological Engineering & Computing, 55:1287–1301, 2017. | spa |
dc.relation.references | Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2921–2929, 2016. | spa |
dc.relation.references | Hui Zhou, Yinhua Jin, Lei Dai, Meiwu Zhang, Yuqin Qiu, Jie Tian, Jianjun Zheng, et al. Differential diagnosis of benign and malignant thyroid nodules using deep learning radiomics of thyroid ultrasound images. European Journal of Radiology, 127:108992, 2020. | spa |
dc.relation.references | Gina Zini, Barbara Bain, Gianluigi Castoldi, and Others. European leukemianet (eln) project diagnostic platform (wp10): Final results of the first study of the european morphology consensus panel. Blood, 112(11):1645, 2008. | spa |
dc.relation.references | Mohammad Zolfaghari and Hedieh Sajedi. A survey on automated detection and classification of acute leukemia and wbcs in microscopic blood cells. Multimedia Tools and Applications, 81(5):6723–6753, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Detección Precoz del Cáncer | spa |
dc.subject.decs | Early Detection of Cancer | eng |
dc.subject.decs | Sistemas Especialistas | spa |
dc.subject.decs | Expert Systems | eng |
dc.subject.decs | Inteligencia Artificial | spa |
dc.subject.decs | Artificial Intelligence | eng |
dc.subject.lemb | APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL) | spa |
dc.subject.lemb | Machine learning | eng |
dc.subject.lemb | REDES NEURALES (COMPUTADORES) | spa |
dc.subject.lemb | Neural networks (Computer science) | eng |
dc.subject.lemb | RAZONAMIENTO CUALITATIVO | spa |
dc.subject.lemb | Qualitative reasoning | eng |
dc.subject.proposal | Interpretability | eng |
dc.subject.proposal | Artificial Intelligence | eng |
dc.subject.proposal | Medical imaging | eng |
dc.subject.proposal | Radiomics | eng |
dc.subject.proposal | Pathomics | eng |
dc.subject.proposal | Ultracytomics | eng |
dc.subject.proposal | Alternative representation spaces | eng |
dc.subject.proposal | Diagnosis | eng |
dc.subject.proposal | Interpretabilidad | spa |
dc.subject.proposal | Espacios alternativos de representación | spa |
dc.subject.proposal | Inteligencia artificial | spa |
dc.subject.proposal | Imágenes médicas | spa |
dc.subject.proposal | Radiómica | spa |
dc.subject.proposal | Patómica | spa |
dc.subject.proposal | Diagnóstico | spa |
dc.subject.proposal | Ultracitómicos | spa |
dc.title | Building regularized and dimensionally-reduced representations for automatically quantifying conceptual similarities between images: an application to cancer description | eng |
dc.title.translated | Construcción de representaciones regularizadas y dimensionalmente reducidas para cuantificar automáticamente similitudes conceptuales entre imágenes: una aplicación a la descripción del cáncer | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1018409799.2025.pdf
- Tamaño:
- 18.14 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingenieria - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: