Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas

dc.contributor.advisorVarón Durán, Margarita
dc.contributor.advisorTriana Infante, Cristian Andrés
dc.contributor.authorOspina Mendivelso, Nicolas
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)spa
dc.date.accessioned2023-07-31T21:39:13Z
dc.date.available2023-07-31T21:39:13Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEn este documento se presentan los resultados de la caracterización de la temperatura en esferoides de cáncer de mama expuestos a tratamientos de hipertermia (HT). La hipertermia es una alternativa a los tratamientos convencionales para el cáncer, como lo son la cirugía, la radioterapia (RT) y la quimioterapia (QT), que tienen potenciales repercusiones funcionales, estéticas, emocionales y psicológicas que impactan significativamente en la calidad de vida de los pacientes. Para conseguir las temperaturas requeridas en los tratamientos de hipertermia se hizo uso de dos sistemas de radiación por microondas. Un esquema de alta potencia basado en el uso de un magnetrón extraído de un horno microondas y otro de potencia moderada basado en el uso de amplificadores de estado sólido. El sujeto de prueba fueron esferoides de la línea celular MCF-7. Para la medición de la temperatura fue diseñada una placa de cultivo prototipo con sensores FBGs embebidos en sus pozos. Esta placa se construyó haciendo uso de modelado por deposición fundida y se caracterizó bajo condiciones controladas de laboratorio. Como resultado de las pruebas se obtuvieron curvas de caracterización de temperatura ante distintos esquemas de radiación. El desempeño de los sensores no se vio alterado al estar expuestos a un ambiente de fuerte interferencia electromagnética lo que permitió poder llevar a cabo mediciones en tiempo real. Basados en los resultados obtenidos con este sistema de caracterización, se proponen modificaciones para el mejoramiento de su desempeño. (Texto tomado de la fuente)spa
dc.description.abstractThe following document presents the results of temperature characterizations in breast cancer cell spheroids exposed to hyperthermia (HT) treatments. Hyperthermia is an alternative to conventional treatments of breast cancer; treatments such as surgery, radiotherapy (RT) and chemotherapy (QT), which have potential functional, esthetic, emotional and psychological repercussions that significantly impact the quality of life of patients. To achieve an increase in temperature for HT treatments, two microwave radiation systems were used. A high power setup based on the use of a magnetron extracted from a microwave oven and another of moderate power based on the use of solid state amplifiers. The test subject were spheroids from the MCF-7 cell line. For the temperature measurement, a prototype culture plate was designed with FBGs sensors embedded in its wells. This plate was constructed using fused deposition modeling and characterized under controlled laboratory conditions. As a result of the tests, temperature characterization curves were obtained under different radiation schemes. The performance of the sensors was not affected by being exposed to an environment of strong electromagnetic interference, which allowed measurements in realtime. Based on the results obtained with this characterization system, modifications are proposed to improve its performance.eng
dc.description.degreelevelMaestríaspa
dc.description.notesThe following document presents the results of temperature characterizations in breast cancer cell spheroids exposed to hyperthermia (HT) treatments. Hyperthermia is an alternative to conventional treatments of breast cancer; treatments such as surgery, radiotherapy (RT) and chemotherapy (QT), which have potential functional, esthetic, emotional and psychological repercussions that significantly impact the quality of life of patients. To achieve an increase in temperature for HT treatments, two microwave radiation systems were used. A high power setup based on the use of a magnetron extracted from a microwave oven and another of moderate power based on the use of solid state amplifiers. The test subject were spheroids from the MCF-7 cell line. For the temperature measurement, a prototype culture plate was designed with FBGs sensors embedded in its wells. This plate was constructed using fused deposition modeling and characterized under controlled laboratory conditions. As a result of the tests, temperature characterization curves were obtained under different radiation schemes. The performance of the sensors was not affected by being exposed to an environment of strong electromagnetic interference, which allowed measurements in real-time. Based on the results obtained with this characterization system, modifications are proposed to improve its performance.eng
dc.description.researchareaTecnologíıas Fotónicasspa
dc.format.extentxv, 66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84385
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesLam F Ferlay J, Ervik M. Global cancer observatory: Cancer today. lyon, france: International agency for research on cancer, 2020.spa
dc.relation.referencesNIH. Quimioterapia para tratar el cáncer, 2015. Instituto Nacional del Cáncer (NIH).spa
dc.relation.referencesNIH. Cirugía para tratar el cáncer, 2015. Instituto Nacional del Cáncer (NIH).spa
dc.relation.referencesNIH. Radioterapia para tratar el cáncer, 2019. Instituto Nacional del Cáncer (NIH).spa
dc.relation.referencesINC. Plan nacional para el control del cáncer en colombia 2012-2020, 2012. Instituto Nacional de Cancerología - ESE (INC).spa
dc.relation.referencesHelen HW Chen and Macus Tien Kuo. Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget, 8(37):62742, 2017.spa
dc.relation.referencesCatherine M Clavel, Patrycja Nowak-Sliwinska, Emilia P˘aunescu, and Paul J Dyson. Thermoresponsive fluorinated small-molecule drugs: a new concept for efficient localized chemotherapy. MedChemComm, 6(12):2054–2062, 2015.spa
dc.relation.referencesS.K. Sharma, Navadeep Shrivastava, Francesco Rossi, Le Duc Tung, and Nguyen Thi Kim Thanh. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today, 29:100795, 2019.spa
dc.relation.referencesCM Van Leeuwen, AL Oei, R Ten Cate, NAP Franken, A Bel, LJA Stalpers, J Crezee, and HP Kok. Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation. International Journal of Hyperthermia, 34(1):30–38, 2018.spa
dc.relation.referencesSarah C Brüningk, Peter Ziegenhein, Ian Rivens, Uwe Oelfke, and Gail Ter Haar. A cellular automaton model for spheroid response to radiation and hyperthermia treatments. Scientific reports, 9(1):1–12, 2019.spa
dc.relation.referencesJE Chong, L Leija, CP Pennisi, and WH Fonseca. Optical fiber based thermometry system for a hyperthermia laboratory. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 3, pages 3036–3039. IEEE, 2001.spa
dc.relation.referencesTomohiro Matta, Hideki Fukano, and Shuji Taue. Simultaneous operation of laser ablation and temperature monitor using single optical fiber for hyperthermia. In 2017 Conference on Lasers and Electro-Optics Pacific Rim, page s1661. Optica Publishing Group, 2017.spa
dc.relation.referencesNicolas Ospina Mendivelso, C. Camilo Cano, Juan Coronel-Rico, Hector Fabian Guarnizo, and Margarita Varón Duran. Fbg sensors for temperature measurements in microwave irradiated breast phantoms. In Optical Fiber Sensors Conference 2020 Special Edition, page Th4.50. Optical Society of America, 2020.spa
dc.relation.referencesSarah Catharina Br¨uningk, Jannat Ijaz, Ian Rivens, Simeon Nill, Gail Ter Haar, and Uwe Oelfke. A comprehensive model for heat-induced radio-sensitisation. International Journal of Hyperthermia, 34(4):392–402, 2018.spa
dc.relation.referencesH Petra Kok, Johannes Crezee, Nicolaas AP Franken, Lukas JA Stalpers, Gerrit W Barendsen, and Arjan Bel. Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. International Journal of Radiation Oncology* Biology* Physics, 88(3):739–745, 2014.spa
dc.relation.referencesNeil T Wright. Comparison of models of post-hyperthermia cell survival. Journal of Biomechanical Engineering, 135(5), 2013.spa
dc.relation.referencesYusheng Feng, J Tinsley Oden, and Marissa Nichole Rylander. A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments. 2008.spa
dc.relation.referencesMichael A Mackey and Joseph L Roti Roti. A model of heat-induced clonogenic cell death. Journal of theoretical biology, 156(2):133–146, 1992.spa
dc.relation.referencesR Gassino, A Vallan, G Perrone, M Konstantaki, and S Pissadakis. Characterization of fiber optic distributed temperature sensors for tissue laser ablation. In 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pages 1–5. IEEE, 2017.spa
dc.relation.referencesPablo Pérez, Juan Alfonso Serrano, and Alberto Olmo. 3d-printed sensors and actuators in cell culture and tissue engineering: framework and research challenges. Sensors, 20(19):5617, 2020.spa
dc.relation.referencesLuca Schenato, Qiangzhou Rong, Zhihua Shao, Xueguang Quiao, Alessandro Pasuto, Andrea Galtarossa, and Luca Palmieri. Highly sensitive fbg pressure sensor based on a 3d-printed transducer. J. Lightwave Technol., 37(18):4784–4790, Sep 2019.spa
dc.relation.referencesMatthew Mallory, Emile Gogineni, Guy C Jones, Lester Greer, and Charles B Simone II. Therapeutic hyperthermia: The old, the new, and the upcoming. Critical reviews in oncology/hematology, 97:56–64, 2016.spa
dc.relation.referencesHernan I Vargas, William C Dooley, Robert A Gardner, Katherine D Gonzalez, Rose Venegas, Sylvia H Heywang-Kobrunner, and Alan J Fenn. Focused microwave phased array thermotherapy for ablation of early-stage breast cancer results of thermal dose escalation. Annals of surgical oncology, 11(2):139–146, 2004.spa
dc.relation.referencesZhaleh Behrouzkia, Zahra Joveini, Behnaz Keshavarzi, Nazila Eyvazzadeh, and Reza Zohdi Aghdam. Hyperthermia: how can it be used? Oman medical journal, 31(2):89, 2016.spa
dc.relation.referencesEduardo Moros. Physics of thermal therapy : fundamentals and clinical applications. Imaging in medical diagnosis and therapy. CRC/Taylor and Francis, 2013.spa
dc.relation.referencesPhong Thanh Nguyen, Amin Abbosh, and Stuart Crozier. Microwave hyperthermia for breast cancer treatment using electromagnetic and thermal focusing tested on realistic breast models and antenna arrays. IEEE Transactions on antennas and propagation, 63(10):4426–4434, 2015.spa
dc.relation.referencesJohn Stang, Mark Haynes, Paul Carson, and Mahta Moghaddam. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Transactions on Biomedical Engineering, 59(9):2431–2438, 2012.spa
dc.relation.referencesLifan Xu and Xiong Wang. Comparison of two optimization algorithms for focused microwave breast cancer hyperthermia. In 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES), pages 1–2. IEEE, 2018.spa
dc.relation.referencesRafael Zamorano Ulloa, Ma Guadalupe Hernandez Santiago, and Veronica L Villegas Rueda. The interaction of microwaves with materials of different properties. In Electromagnetic Fields and Waves. InTech, 2019.spa
dc.relation.referencesByoungho Lee. Review of the present status of optical fiber sensors. Optical fiber technology, 9(2):57–79, 2003.spa
dc.relation.referencesYang Du, Qingbo Yang, and Jie Huang. Soft prosthetic forefinger tactile sensing via a string of intact single mode optical fiber. IEEE Sensors Journal, 17(22):7455–7459, 2017.spa
dc.relation.referencesVineet Kumar Rai. Temperature sensors and optical sensors. Applied Physics B, 88(2):297–303, 2007.spa
dc.relation.referencesDavide Polito, Michele Arturo Caponero, Andrea Polimadei, Paola Saccomandi, Carlo Massaroni, Sergio Silvestri, and Emiliano Schena. A needlelike probe for temperature monitoring during laser ablation based on fiber bragg grating: Manufacturing and characterization. Journal of Medical Devices, 9(4), 2015.spa
dc.relation.referencesD. Tosi, E.G. Macchi, G. Braschi, M. Gallati, A. Cigada, S. Poeggel, G. Leen, and E. Lewis. Monitoring of radiofrequency thermal ablation in liver tissue through fibre bragg grating sensors array. Electronics Letters, 50(14):981–983, 2014.spa
dc.relation.referencesGiovanna Palumbo, Agostino Iadicicco, Daniele Tosi, Paolo Verze, Nicola Carlomagno, Vincenzo Tammaro, Juliet Ippolito, and Stefania Campopiano. Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber bragg gratings. Journal of Biomedical Optics, 21:117003, 11 2016.spa
dc.relation.referencesEigil Samset, Tom Mala, Reinold Ellingsen, I Gladhaug, O Soreide, and Erik Fosse. Temperature measurement in soft tissue using a distributed fibre bragg-grating sensor system. Minimally Invasive Therapy & Allied Technologies, 10:89–93, 03 2001.spa
dc.relation.referencesIndu Fiesler Saxena, Kaleo Hui, and Melvin Astrahan. Polymer coated fiber bragg grating thermometry for microwave hyperthermia. Medical physics, 37(9):4615–4619, 2010.spa
dc.relation.referencesNicolas Ospina Mendivelso, C. Camilo Cano, Juan Coronel-Rico, Hector Fabian Guarnizo, and Margarita Varón Duran. Optical fiber bragg grating sensors for temperature measurements in the hyperthermia treatment. In Proceedings, Latin American Workshop on Optical Fiber Sensors, 2019.spa
dc.relation.referencesMariya Lazebnik, Ernest L Madsen, Gary R Frank, and Susan C Hagness. Tissuemimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine & Biology, 50(18):4245, 2005.spa
dc.relation.referencesAlexis I Farrer, Henrik Od´een, Joshua de Bever, Brittany Coats, Dennis L Parker, Allison Payne, and Douglas A Christensen. Characterization and evaluation of tissuemimicking gelatin phantoms for use with mrgfus. Journal of therapeutic ultrasound, 3(1):9, 2015.spa
dc.relation.referencesJill Van der Zee. Heating the patient: a promising approach? Annals of oncology, 13(8):1173–1184, 2002.spa
dc.relation.referencesEmma MN Polman, Gert-Jan M Gruter, John R Parsons, and Albert Tietema. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of the Total Environment, 753:141953, 2021.spa
dc.relation.referencesEvangelia Balla, Vasileios Daniilidis, Georgia Karlioti, Theocharis Kalamas, Myrika Stefanidou, Nikolaos D Bikiaris, Antonios Vlachopoulos, Ioanna Koumentakou, and Dimitrios N Bikiaris. Poly (lactic acid): A versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to pla applications. Polymers, 13(11):1822, 2021.spa
dc.relation.referencesSithira H Ratnayaka, Taylor E Hillburn, Omid Forouzan, Sergey S Shevkoplyas, and Damir B Khismatullin. Pdms well platform for culturing millimeter-size tumor spheroids. Biotechnology progress, 29(5):1265–1269, 2013.spa
dc.relation.referencesJohn G Lock, Bernhard Wehrle-Haller, and Staffan Str¨omblad. Cell–matrix adhesion complexes: master control machinery of cell migration. In Seminars in cancer biology, volume 18, pages 65–76. Elsevier, 2008.spa
dc.relation.referencesS. Iannace, L. Sorrentino, and E. Di Maio. 6 - biodegradable biomedical foam scaffolds. In Paolo A. Netti, editor, Biomedical Foams for Tissue Engineering Applications, pages 163–187. Woodhead Publishing, 2014.spa
dc.relation.referencesYun-Jiang Rao. In-fibre bragg grating sensors. Measurement science and technology, 8(4):355, 1997.spa
dc.relation.referencesDavid A Krohn, Trevor MacDougall, and Alexis Mendez. In-fiber grating optic sensors. In Fiber optic sensors: fundamentals and applications, chapter 4, pages 110–154. Spie Press Bellingham, WA, 2014.spa
dc.relation.referencesShizhuo Yin and TS Francis. Wavelength-modulated sensors. In Fiber optic sensors, chapter 5, pages 63–77. CRC press, 2002.spa
dc.relation.referencesGünther Wehrle, Percy Nohama, Hypolito Jos´e Kalinowski, Pedro Ignácio Torres, and Luiz Carlos Guedes Valente. A fibre optic bragg grating strain sensor for monitoring ventilatory movements. Measurement Science and Technology, 12(7):805, 2001.spa
dc.relation.referencesGerman Alvarez-Botero, Fabian E. Baron, C. Camilo Cano, Oscar Sosa, and Margarita Varon. Optical sensing using fiber bragg gratings: Fundamentals and applications. IEEE Instrumentation & Measurement Magazine, 20(2):33–38, 2017.spa
dc.relation.referencesTechnica. FBGs array, 9 2021.spa
dc.relation.referencesRamon Pallas-Areny and John G Webster. Introduction to sensor-based measurement systems. In Sensors and signal conditioning, chapter 1, pages 1–73. John Wiley & Sons, 2 edition, 2012.spa
dc.relation.referencesJ Jacob. Radio frequency solid state amplifiers. arXiv preprint arXiv:1607.01570, 2016.spa
dc.relation.referencesJ Carlton Gallawa. The Complete Microwave Oven Service Handbook: Operation, Maintenance, Troubleshooting, and Repair. Prentice Hall, 1989.spa
dc.relation.referencesG. Mourier (Eds.). Crossed-field Microwave Device. Principal Elements of Crossed-Field Devices. Crossed-field microwave devices, v. 1. Academic Press, 1961.spa
dc.relation.referencesSally P Wheatley and Denys N Wheatley. Transporting cells over several days without dry-ice. Journal of Cell Science, 132(21):jcs238139, 2019.spa
dc.relation.referencesLynne S Garcia. Clinical microbiology procedures handbook, volume 1. American Society for Microbiology Press, 2010.spa
dc.relation.referencesClaudia Campos Liste et al. Aplicación de la técnica de citometría de flujo al control de un cultivo iniciador de lactobacillus casei en la industria láctea. 2012.spa
dc.relation.referencesJenna Bleloch. Cell culture basics: Equipment, fundamentals and protocols. Cell Science from Technology Networks, May 2021.spa
dc.relation.referencesMaria del Carmen Rodríguez-Salazar, Moises Armides Franco-Molina, Edgar Mendoza- Gamboa, Ana Carolina Martínez-Torres, Pablo Zapata-Benavides, Jose Sullivan López- González, Erika Evangelina Coronado-Cerda, Juan Manuel Alcocer-Gonz´alez, Reyes Silvestre Tamez-Guerra, and Cristina Rodríguez-Padilla. The novel immunomodulator immunepotent crp combined with chemotherapy agent increased the rate of immunogenic cell death and prevented melanoma growth. Oncology letters, 14(1):844–852, 2017.spa
dc.relation.referencesLili Ma. 3D computer modeling of magnetrons. PhD thesis, 2005.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembTemperatura corporalspa
dc.subject.lembCancer-treatmenteng
dc.subject.lembCáncer-tratamientospa
dc.subject.lembBody temperatureeng
dc.subject.proposalHipertermiaspa
dc.subject.proposalHyperthermiaeng
dc.subject.proposalSensores FBGspa
dc.subject.proposalFBG sensorseng
dc.subject.proposalCáncerspa
dc.subject.proposalCancereng
dc.subject.proposalTemperaturaspa
dc.subject.proposalTemperatureeng
dc.subject.proposalMicroondasspa
dc.subject.proposalMicrowaveseng
dc.subject.proposalCultivos celularesspa
dc.subject.proposalCell cultureseng
dc.subject.proposalEsferoides celularesspa
dc.subject.proposalCellular spheroidseng
dc.titleMedición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondasspa
dc.title.translatedTemperature Measurement via FBG Sensors in 3D Breast Cancer Spheroids Exposed to Microwave Radiationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015454847.2023.pdf
Tamaño:
11.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: