Multimodal explainability using class activation maps and canonical correlation analysis for EEG-based motor imagery classification enhancement
dc.contributor.advisor | Alvarez Meza, Andres Marino | |
dc.contributor.advisor | Castellanos Dominguez, Cesar German | |
dc.contributor.author | Loaiza Arias, Marcos | |
dc.contributor.cvlac | Loaiza Arias, Marcos [0001836881] | spa |
dc.contributor.googlescholar | Loaiza Arias, Marcos [7UcdYLQAAAAJ] | spa |
dc.contributor.orcid | Loaiza Arias, Marcos [0000000337575089] | spa |
dc.contributor.researchgroup | Grupo de Control y Procesamiento Digital de Señales | spa |
dc.date.accessioned | 2025-07-15T20:18:36Z | |
dc.date.available | 2025-07-15T20:18:36Z | |
dc.date.issued | 2025-01-10 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | Brain-Computer Interfaces (BCIs) are essential in advancing medical diagnosis and treatment by providing non-invasive tools to assess neurological states. Among these, Motor Imagery (MI), where patients mentally simulate motor tasks without physical movement, has proven to be an effective paradigm for diagnosing and monitoring neurological conditions. Electroencephalography (EEG) is widely used for MI data collection due to its high temporal resolution, cost-effectiveness, and portability. However, EEG signals can be noisy from several sources, including physiological artifacts and electromagnetic interference. They can also vary from person to person, which makes it harder to extract features and understand the signals. Additionally, this variability, influenced by genetic and cognitive factors, presents challenges for developing subject-independent solutions. To address these limitations, this work presents a Multimodal and Explainable Deep Learning (MEDL) approach for MI-EEG classification and physiological interpretability. Our approach involves: i) evaluating different deep learning (DL) models for subject-dependent MI-EEG discrimination; ii) employing Class Activation Mapping (CAM) to visualize relevant MI-EEG features; and iii) utilizing a Questionnaire-MI Performance Canonical Correlation Analysis (QMIP-CCA) to provide multidomain interpretability. On the GIGAScience MI dataset, experiments show that shallow neural networks are good at classifying MI-EEG data, while the CAM-based method finds spatio-frequency patterns. Moreover, the QMIP-CCA framework successfully correlates physiological data with MI-EEG performance, offering an enhanced, interpretable solution for BCIs (Texto tomado de la fuente). | eng |
dc.description.abstract | Las interfaces cerebro-computador(BCI) son esenciales para avanzar en el diagnóstico y el tratamiento médicos al proporcionar herramientas no invasivas para evaluar estados neurológicos. Entre ellas, la Imaginación Motora (IM), en la que los pacientes simulan mentalmente tareas motoras sin movimiento físico, ha demostrado ser un paradigma eficaz para diagnosticar y monitorizar afecciones neurológicas. La electroencefalografía (EEG) se utiliza ampliamente para la recopilación de datos de IM debido a su alta resolución temporal, rentabilidad y portabilidad. Sin embargo, las señales de EEG pueden ser ruidosas debido a varias fuentes, como los artefactos fisiológicos y las interferencias electromagnéticas. También pueden variar de una persona a otra, lo que dificulta la extracción de características y la comprensión de las señales. Además, esta variabilidad, influida por factores genéticos y cognitivos, plantea retos para el desarrollo de soluciones independientes del sujeto. Para abordar estas limitaciones, este trabajo presenta un enfoque de Aprendizaje Profundo Multimodal y Explicable (MEDL) para la clasificación MI-EEG y la interpretabilidad fisiológica. Nuestro enfoque implica: i) evaluar diferentes modelos de aprendizaje profundo (DL) para la discriminación MI-EEG dependiente del sujeto; ii) emplear el mapeo de activación de clase (CAM) para visualizar características MI-EEG relevantes; y iii) utilizar un análisis de correlación canónica de rendimiento de cuestionario-MI (QMIP-CCA) para proporcionar interpretabilidad multidominio. En el conjunto de datos MI de GIGAScience, los experimentos muestran que las redes neuronales poco profundas son buenas para clasificar los datos MI-EEG, mientras que el método basado en CAM encuentra patrones de espacio-frecuencia. Además, el marco QMIP-CCA correlaciona con éxito los datos fisiológicos con el rendimiento MI-EEG, ofreciendo una solución mejorada e interpretable para BCI. | spa |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.description.sponsorship | Minciencias | spa |
dc.format.extent | xi, 82 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88342 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | [Collazos-Huertas et al., 2022] Collazos-Huertas, D. F.; Álvarez-Meza, A. M. &Castellanos-Dominguez, G.: , 2022; Image-based learning using gradient classactivation maps for enhanced physiological interpretability of motor imagery skills;Applied Sciences; 12 (3): 1695. | spa |
dc.relation.references | [Croce et al., 2020] Croce, P.; Quercia, A.; Costa, S. & Zappasodi, F.: , 2020; Eegmicrostates associated with intra-and inter-subject alpha variability; Scientific reports;10 (1): 2469. | spa |
dc.relation.references | [Daeglau et al., 2021] Daeglau, M.; Zich, C. & Kranczioch, C.: , 2021; The impactof context on eeg motor imagery neurofeedback and related motor domains; CurrentBehavioral Neuroscience Reports; 8 (3): 90–101. | spa |
dc.relation.references | [Damseh et al., 2024] Damseh, R.; Hireche, A.; Sirpal, P. & Belkacem, A. N.: , 2024;Multimodal eeg-fnirs seizure pattern decoding using vision transformer; IEEE OpenJournal of the Computer Society. | spa |
dc.relation.references | [Demir et al., 2021] Demir, F.; Sobahi, N.; Siuly, S. & Sengur, A.: , 2021; Exploringdeep learning features for automatic classification of human emotion using eeg rhythms;IEEE Sensors Journal ; 21 (13): 14923–14930. | spa |
dc.relation.references | [Doshi-Velez & Kim, 2017] Doshi-Velez, F. & Kim, B.: , 2017; Towards a rigorous scienceof interpretable machine learning; arXiv preprint arXiv:1702.08608. | spa |
dc.relation.references | [Fukumizu et al., 2007] Fukumizu, K.; Bach, F. R. & Gretton, A.: , 2007; Statisticalconsistency of kernel canonical correlation analysis.; Journal of Machine LearningResearch; 8 (2). | spa |
dc.relation.references | [Gandhi et al., 2023] Gandhi, A.; Adhvaryu, K.; Poria, S.; Cambria, E. & Hussain,A.: , 2023; Multimodal sentiment analysis: A systematic review of history, datasets,multimodal fusion methods, applications, challenges and future directions; InformationFusion; 91: 424–444. | spa |
dc.relation.references | [Gao et al., 2021] Gao, Z.; Sun, X.; Liu, M.; Dang, W.; Ma, C. & Chen, G.: , 2021;Attention-based parallel multiscale convolutional neural network for visual evokedpotentials eeg classification; IEEE Journal of Biomedical and Health Informatics;25 (8): 2887–2894. | spa |
dc.relation.references | [García-Murillo et al., 2023] García-Murillo, D. G.; Álvarez Meza, A. M. &Castellanos-Dominguez, C. G.: , 2023; Kcs-fcnet: Kernel cross-spectral functionalconnectivity network for eeg-based motor imagery classification; Diagnostics; 13 (6); doi:10.3390/diagnostics13061122; URL https://www.mdpi.com/2075-4418/13/6/1122. | spa |
dc.relation.references | [Geng et al., 2022] Geng, X.; Li, D.; Chen, H.; Yu, P.; Yan, H. & Yue, M.: , 2022;An improved feature extraction algorithms of eeg signals based on motor imagerybrain-computer interface; Alexandria Engineering Journal ; 61 (6): 4807–4820. | spa |
dc.relation.references | [Ghorbani et al., 2019] Ghorbani, A.; Wexler, J.; Zou, J. Y. & Kim, B.: , 2019; To-wards automatic concept-based explanations; Advances in neural information processingsystems; 32. | spa |
dc.relation.references | [Hain et al., 2023] Hain, D. S.; Jurowetzki, R.; Squicciarini, M.; Xu, L. et al.: , 2023;Unveiling the neurotechnology landscape: Scientific advancements innovations andmajor trends. | spa |
dc.relation.references | [He et al., 2020] He, Z.; Li, Z.; Yang, F.; Wang, L.; Li, J.; Zhou, C. & Pan, J.: ,2020; Advances in multimodal emotion recognition based on brain–computer interfaces;Brain sciences; 10 (10): 687. | spa |
dc.relation.references | [Hewamalage et al., 2021] Hewamalage, H.; Bergmeir, C. & Bandara, K.: , 2021;Recurrent neural networks for time series forecasting: Current status and futuredirections; International Journal of Forecasting; 37 (1): 388–427. | spa |
dc.relation.references | [Hong et al., 2021] Hong, Q.; Wang, Y.; Li, H.; Zhao, Y.; Guo, W. & Wang, X.: ,2021; Probing filters to interpret cnn semantic configurations by occlusion; en DataScience: 7th International Conference of Pioneering Computer Scientists, Engineersand Educators, ICPCSEE 2021, Taiyuan, China, September 17–20, 2021, Proceedings,Part II 7 ; Springer; págs. 103–115. | spa |
dc.relation.references | [Hopulele-Petri & Manea, 2017] Hopulele-Petri, A. & Manea, M.: , 2017; Visual andmotor functions in schizophrenia; European Psychiatry; 41 (S1): S198–S199. | spa |
dc.relation.references | [Hwaidi & Chen, 2022] Hwaidi, J. F. & Chen, T. M.: , 2022; Classification of motorimagery eeg signals based on deep autoencoder and convolutional neural networkapproach; IEEE access; 10: 48071–48081. | spa |
dc.relation.references | [Jiang et al., 2021] Jiang, P.-T.; Zhang, C.-B.; Hou, Q.; Cheng, M.-M. & Wei, Y.: ,2021; Layercam: Exploring hierarchical class activation maps for localization; IEEETransactions on Image Processing; 30: 5875–5888. | spa |
dc.relation.references | [Jin et al., 2021] Jin, J.; Xiao, R.; Daly, I.; Miao, Y.; Wang, X. & Cichocki, A.: , 2021;Internal feature selection method of csp based on l1-norm and dempster–shafer theory;IEEE Transactions on Neural Networks and Learning Systems; 32 (11): 4814–4825;doi:10.1109/TNNLS.2020.3015505. | spa |
dc.relation.references | [Jung & Oh, 2021] Jung, H. & Oh, Y.: , 2021; Towards better explanations of classactivation mapping; en Proceedings of the IEEE/CVF international conference oncomputer vision; págs. 1336–1344. | spa |
dc.relation.references | [Kanamori et al., 2020] Kanamori, K.; Takagi, T.; Kobayashi, K. & Arimura, H.:, 2020; Dace: Distribution-aware counterfactual explanation by mixed-integer linearoptimization.; en IJCAI ; págs. 2855–2862. | spa |
dc.relation.references | [Kim et al., 2022] Kim, S.-J.; Lee, D.-H. & Lee, S.-W.: , 2022; Rethinking cnn architec-ture for enhancing decoding performance of motor imagery-based eeg signals; IEEEAccess. | spa |
dc.relation.references | [Kirk et al., 2021] Kirk, I. J.; Spriggs, M. J. & Sumner, R. L.: , 2021; Human eeg andthe mechanisms of memory: investigating long-term potentiation (ltp) in sensory-evokedpotentials; Journal of the Royal Society of New Zealand ; 51 (1): 24–40. | spa |
dc.relation.references | [Koh & Liang, 2017] Koh, P. W. & Liang, P.: , 2017; Understanding black-box predictionsvia influence functions; en International conference on machine learning; PMLR; págs.1885–1894. | spa |
dc.relation.references | [Kramer, 1991] Kramer, M. A.: , 1991; Nonlinear principal component analysis usingautoassociative neural networks; AIChE journal ; 37 (2): 233–243. | spa |
dc.relation.references | [Lawhern et al., 2018] Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon,S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutionalneural network for eeg-based brain–computer interfaces; Journal of Neural Engineering;15 (5): 056013; doi:10.1088/1741-2552/aace8c; URL https://dx.doi.org/10.1088/1741-2552/aace8c. | spa |
dc.relation.references | [Li et al., 2020] Li, F.; He, F.; Wang, F.; Zhang, D.; Xia, Y. & Li, X.: , 2020; A novelsimplified convolutional neural network classification algorithm of motor imagery eegsignals based on deep learning; Applied Sciences; 10 (5): 1605. | spa |
dc.relation.references | [Li et al., 2022a] Li, W.; Wu, C.; Hu, X.; Chen, J.; Fu, S.; Wang, F. & Zhang,D.: , 2022a; Quantitative personality predictions from a brief eeg recording; IEEETransactions on Affective Computing; 13 (3): 1514–1527; doi:10.1109/TAFFC.2020.3008775. | spa |
dc.relation.references | [Li et al., 2022b] Li, X.; Xiong, H.; Li, X.; Wu, X.; Zhang, X.; Liu, J.; Bian, J.& Dou, D.: , 2022b; Interpretable deep learning: Interpretation, interpretability,trustworthiness, and beyond; Knowledge and Information Systems; 64 (12): 3197–3234. | spa |
dc.relation.references | [Lin et al., 2019] Lin, C.-T.; Chiu, C.-Y.; Singh, A. K.; King, J.-T.; Ko, L.-W.; Lu,Y.-C. & Wang, Y.-K.: , 2019; A wireless multifunctional ssvep-based brain–computerinterface assistive system; IEEE Transactions on Cognitive and Developmental Systems;11 (3): 375–383; doi:10.1109/TCDS.2018.2820153. | spa |
dc.relation.references | [Liu et al., 2024] Liu, H.; Lou, T.; Zhang, Y.; Wu, Y.; Xiao, Y.; Jensen, C. S. &Zhang, D.: , 2024; Eeg-based multimodal emotion recognition: a machine learningperspective; IEEE Transactions on Instrumentation and Measurement. | spa |
dc.relation.references | [Liu et al., 2020] Liu, J.; Wu, G.; Luo, Y.; Qiu, S.; Yang, S.; Li, W. & Bi, Y.: , 2020;Eeg-based emotion classification using a deep neural network and sparse autoencoder;Frontiers in Systems Neuroscience; 14: 43. | spa |
dc.relation.references | [Lopes et al., 2023] Lopes, M.; Cassani, R. & Falk, T. H.: , 2023; Using cnn saliencymaps and eeg modulation spectra for improved and more interpretable machine learning-based alzheimer’s disease diagnosis; Computational Intelligence and Neuroscience;2023 (1): 3198066. | spa |
dc.relation.references | [Lu et al., 2016] Lu, N.; Li, T.; Ren, X. & Miao, H.: , 2016; A deep learning scheme formotor imagery classification based on restricted boltzmann machines; IEEE transactionson neural systems and rehabilitation engineering; 25 (6): 566–576. | spa |
dc.relation.references | [Luo et al., 2020] Luo, J.; Gao, X.; Zhu, X.; Wang, B.; Lu, N. & Wang, J.: , 2020;Motor imagery eeg classification based on ensemble support vector learning; Computermethods and programs in biomedicine; 193: 105464. | spa |
dc.relation.references | [Luo et al., 2023] Luo, J.; Wang, Y.; Xia, S.; Lu, N.; Ren, X.; Shi, Z. & Hei, X.:, 2023; A shallow mirror transformer for subject-independent motor imagery bci;Computers in Biology and Medicine; 164: 107254. | spa |
dc.relation.references | [Ma et al., 2022] Ma, Y.; Song, Y. & Gao, F.: , 2022; A novel hybrid cnn-transformermodel for eeg motor imagery classification; en 2022 International Joint Conference onNeural Networks (IJCNN); IEEE; págs. 1–8. | spa |
dc.relation.references | [Maswanganyi et al., 2022] Maswanganyi, R. C.; Tu, C.; Owolawi, P. A. & Du, S.:, 2022; Statistical evaluation of factors influencing inter-session and inter-subjectvariability in eeg-based brain computer interface; IEEE Access; 10: 96821–96839. | spa |
dc.relation.references | [Mayo Clinic Editorial Staff, 2024] Mayo Clinic Editorial Staff: , 2024; Eeg (elec-troencephalogram); https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875. | spa |
dc.relation.references | [McFarland et al., 2017] McFarland, D. J.; Daly, J.; Boulay, C. & Parvaz, M. A.: ,2017; Therapeutic applications of bci technologies; Brain-Computer Interfaces; 4 (1-2):37–52. | spa |
dc.relation.references | [Miao et al., 2021] Miao, Y.; Jin, J.; Daly, I.; Zuo, C.; Wang, X.; Cichocki, A.& Jung, T.-P.: , 2021; Learning common time-frequency-spatial patterns for mo-tor imagery classification; IEEE Transactions on Neural Systems and RehabilitationEngineering; 29: 699–707. | spa |
dc.relation.references | [Mirzaei & Ghasemi, 2021] Mirzaei, S. & Ghasemi, P.: , 2021; Eeg motor imageryclassification using dynamic connectivity patterns and convolutional autoencoder;Biomedical Signal Processing and Control ; 68: 102584. | spa |
dc.relation.references | [Mortaga et al., 2021] Mortaga, M.; Brenner, A. & Kutafina, E.: , 2021; Towardsinterpretable machine learning in eeg analysis; en German Medical Data Sciences 2021:Digital Medicine: Recognize–Understand–Heal ; IOS Press; págs. 32–38. | spa |
dc.relation.references | [Murden et al., 2022] Murden, R. J.; Zhang, Z.; Guo, Y. & Risk, B. B.: , 2022;Interpretive jive: Connections with cca and an application to brain connectivity;Frontiers in Neuroscience; 16: 969510. | spa |
dc.relation.references | [Murphy, 2022] Murphy, K.: , 2022; Probabilistic Machine Learning: An Introduction;Adaptive Computation and Machine Learning series; MIT Press; ISBN 9780262046824;URL https://books.google.com.co/books?id=HLlyzgEACAAJ. | spa |
dc.relation.references | [Musallam et al., 2021] Musallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin,S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri,M.: , 2021; Electroencephalography-based motor imagery classification using temporalconvolutional network fusion; Biomedical Signal Processing and Control ; 69: 102826;doi:https://doi.org/10.1016/j.bspc.2021.102826; URL https://www.sciencedirect.com/science/article/pii/S1746809421004237. | spa |
dc.relation.references | [Nair-Bedouelle, 2021] Nair-Bedouelle, S.: , 2021; Engineering for sustainable develop-ment: Delivering on the Sustainable Development Goals; United Nations Educational,Scientific, and Cultural Organization. | spa |
dc.relation.references | [Nguyen et al., 2018] Nguyen, M.; Sun, N.; Alexander, D. C.; Feng, J. & Yeo, B. T.:, 2018; Modeling alzheimer’s disease progression using deep recurrent neural networks;en 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI);IEEE; págs. 1–4. | spa |
dc.relation.references | [Nguyen et al., 2020] Nguyen, M.; He, T.; An, L.; Alexander, D. C.; Feng, J.; Yeo,B. T.; Initiative, A. D. N. et al.: , 2020; Predicting alzheimer’s disease progressionusing deep recurrent neural networks; NeuroImage; 222: 117203. | spa |
dc.relation.references | [Onishi et al., 2024a] Onishi, S.; Nishimura, M.; Fujimura, R. & Hayashi, Y.: , 2024a;Why do tree ensemble approximators not outperform the recursive-rule extractionalgorithm?; Machine Learning and Knowledge Extraction; 6 (1): 658–678; doi:10.3390/make6010031; URL https://www.mdpi.com/2504-4990/6/1/31. | spa |
dc.relation.references | [Onishi et al., 2024b] Onishi, S.; Nishimura, M.; Fujimura, R. & Hayashi, Y.: , 2024b;Why do tree ensemble approximators not outperform the recursive-rule extractionalgorithm?; Machine Learning and Knowledge Extraction; 6 (1): 658–678. | spa |
dc.relation.references | [Park & Chung, 2020] Park, Y. & Chung, W.: , 2020; Optimal channel selection usingcorrelation coefficient for csp based eeg classification; IEEE Access; 8: 111514–111521. | spa |
dc.relation.references | [Pérez-Suay et al., 2020] Pérez-Suay, A.; Adsuara, J. E.; Piles, M.; Martínez-Ferrer,L.; Díaz, E.; Moreno-Martínez, A. & Camps-Valls, G.: , 2020; Interpretability ofrecurrent neural networks in remote sensing; en IGARSS 2020-2020 IEEE InternationalGeoscience and Remote Sensing Symposium; IEEE; págs. 3991–3994. | spa |
dc.relation.references | [Picard et al., 2001] Picard, R. W.; Vyzas, E. & Healey, J.: , 2001; Toward machineemotional intelligence: Analysis of affective physiological state; IEEE transactions onpattern analysis and machine intelligence; 23 (10): 1175–1191. | spa |
dc.relation.references | [Plumb et al., 2020] Plumb, G.; Al-Shedivat, M.; Cabrera, Á. A.; Perer, A.; Xing, E.& Talwalkar, A.: , 2020; Regularizing black-box models for improved interpretability;Advances in Neural Information Processing Systems; 33: 10526–10536. | spa |
dc.relation.references | [Rahman et al., 2022] Rahman, A. U.; Tubaishat, A.; Al-Obeidat, F.; Halim, Z.;Tahir, M. & Qayum, F.: , 2022; Extended ica and m-csp with bilstm towardsimproved classification of eeg signals; Soft Computing; 26 (20): 10687–10698. | spa |
dc.relation.references | [Rakhmatulin et al., 2024] Rakhmatulin, I.; Dao, M.-S.; Nassibi, A. & Mandic, D.: ,2024; Exploring convolutional neural network architectures for eeg feature extraction;Sensors; 24 (3); doi:10.3390/s24030877; URL https://www.mdpi.com/1424-8220/24/3/877. | spa |
dc.relation.references | [Ramadan & Altamimi, 2024] Ramadan, R. A. & Altamimi, A. B.: , 2024; Unravel-ing the potential of brain-computer interface technology in medical diagnostics andrehabilitation: A comprehensive literature review; Health and Technology; 14 (2):263–276. | spa |
dc.relation.references | [Ribeiro et al., 2018] Ribeiro, M. T.; Singh, S. & Guestrin, C.: , 2018; Anchors: High-precision model-agnostic explanations; en Proceedings of the AAAI conference onartificial intelligence, tomo 32. | spa |
dc.relation.references | [Saba-Sadiya et al., 2021] Saba-Sadiya, S.; Chantland, E.; Alhanai, T.; Liu, T. &Ghassemi, M. M.: , 2021; Unsupervised eeg artifact detection and correction;Frontiers in digital health; 2: 608920. | spa |
dc.relation.references | [Saha & Baumert, 2020] Saha, S. & Baumert, M.: , 2020; Intra-and inter-subject vari-ability in eeg-based sensorimotor brain computer interface: a review; Frontiers incomputational neuroscience; 13: 87. | spa |
dc.relation.references | [Saha et al., 2017] Saha, S.; Ahmed, K. I. U.; Mostafa, R.; Hadjileontiadis, L. &Khandoker, A.: , 2017; Evidence of variabilities in eeg dynamics during motorimagery-based multiclass brain–computer interface; IEEE Transactions on NeuralSystems and Rehabilitation Engineering; 26 (2): 371–382. | spa |
dc.relation.references | [Saini et al., 2020] Saini, M.; Satija, U. & Upadhayay, M. D.: , 2020; Wavelet basedwaveform distortion measures for assessment of denoised eeg quality with reference tonoise-free eeg signal; IEEE Signal Processing Letters; 27: 1260–1264. | spa |
dc.relation.references | [Schirrmeister et al., 2017] Schirrmeister, R. T.; Springenberg, J. T.; Fiederer, L.D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.;Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networksfor eeg decoding and visualization; Human Brain Mapping; 38 (11): 5391–5420; doi:https://doi.org/10.1002/hbm.23730; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730. | spa |
dc.relation.references | [Selvaraju et al., 2019] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;Parikh, D. & Batra, D.: , 2019; Grad-cam: Visual explanations from deep net-works via gradient-based localization; International Journal of Computer Vision;128 (2): 336–359; doi:10.1007/s11263-019-01228-7; URL http://dx.doi.org/10.1007/s11263-019-01228-7. | spa |
dc.relation.references | [Setiono & Liu, 1995] Setiono, R. & Liu, H.: , 1995; Understanding neural networks viarule extraction; en IJCAI, tomo 1; Citeseer; págs. 480–485. | spa |
dc.relation.references | [Silva et al., 2020] Silva, S.; Borges, L.; Santiago, L.; Lucena, L.; Lindquist, A. &Ribeiro, T.: , 2020; Motor imagery for gait rehabilitation after stroke; CochraneDatabase of Systematic Reviews; (9); doi:10.1002/14651858.CD013019.pub2; URLhttps://doi.org//10.1002/14651858.CD013019.pub2. | spa |
dc.relation.references | [Tian et al., 2021] Tian, Z.; Li, D.; Song, Y.; Gao, Q.; Kang, Q. & Yang, Y.: , 2021;Eeg-based emotion recognition of deaf subjects by integrated genetic firefly algorithm;IEEE Transactions on Instrumentation and Measurement; 70: 1–11. | spa |
dc.relation.references | [Tibrewal et al., 2022] Tibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Classifica-tion of motor imagery eeg using deep learning increases performance in inefficient bciusers; Plos one; 17 (7): e0268880. | spa |
dc.relation.references | [Tobón-Henao et al., 2023] Tobón-Henao, M.; Álvarez Meza, A. M. & Castellanos-Dominguez, C. G.: , 2023; Kernel-based regularized eegnet using centered alignmentand gaussian connectivity for motor imagery discrimination; Computers; 12 (7); doi:10.3390/computers12070145; URL https://www.mdpi.com/2073-431X/12/7/145. | spa |
dc.relation.references | [Tsuchimoto et al., 2021] Tsuchimoto, S.; Shibusawa, S.; Iwama, S.; Hayashi, M.;Okuyama, K.; Mizuguchi, N.; Kato, K. & Ushiba, J.: , 2021; Use of commonaverage reference and large-laplacian spatial-filters enhances eeg signal-to-noise ratiosin intrinsic sensorimotor activity; Journal of neuroscience methods; 353: 109089. | spa |
dc.relation.references | [Ulm University, 2014] Ulm University: , 2014; Normed spaces; URL https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/sauter/ws14/normed-spaces.2014-11-12.pdf. | spa |
dc.relation.references | [Vempati & Sharma, 2023] Vempati, R. & Sharma, L. D.: , 2023; Eeg rhythm basedemotion recognition using multivariate decomposition and ensemble machine learningclassifier; Journal of Neuroscience Methods; 393: 109879. | spa |
dc.relation.references | [Wang et al., 2020a] Wang, B.; Wong, C. M.; Kang, Z.; Liu, F.; Shui, C.; Wan, F.& Chen, C. P.: , 2020a; Common spatial pattern reformulated for regularizations inbrain–computer interfaces; IEEE transactions on cybernetics; 51 (10): 5008–5020. | spa |
dc.relation.references | [Wang et al., 2012] Wang, H.; Tang, Q. & Zheng, W.: , 2012; L1-norm-based commonspatial patterns; IEEE Transactions on Biomedical Engineering; 59 (3): 653–662;doi:10.1109/TBME.2011.2177523. | spa |
dc.relation.references | [Wang et al., 2020b] Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.;Mardziel, P. & Hu, X.: , 2020b; Score-cam: Score-weighted visual explanationsfor convolutional neural networks; en Proceedings of the IEEE/CVF Conference onComputer Vision and Pattern Recognition (CVPR) Workshops. | spa |
dc.relation.references | [Wang et al., 2021] Wang, L.; Kong, W. & Wang, S.: , 2021; Detecting genetic associa-tions with brain imaging phenotypes in alzheimer’s disease via a novel structured kccaapproach; Journal of bioinformatics and computational biology; 19 (04): 2150012. | spa |
dc.relation.references | [Wang et al., 2022] Wang, Q.; Wang, M.; Yang, Y. & Zhang, X.: , 2022; Multi-modalemotion recognition using eeg and speech signals; Computers in Biology and Medicine;149: 105907. | spa |
dc.relation.references | [Wei et al., 2021] Wei, C.-S.; Keller, C. J.; Li, J.; Lin, Y.-P.; Nakanishi, M.; Wagner,J.; Wu, W.; Zhang, Y. & Jung, T.-P.: , 2021; Inter-and intra-subject variability inbrain imaging and decoding. | spa |
dc.relation.references | [Weisstein, 2000a] Weisstein, E. W.: , 2000a; Metric space; URL https://mathworld.wolfram.com/MetricSpace.html. | spa |
dc.relation.references | [Weisstein, 2000b] Weisstein, E. W.: , 2000b; Normed space; URL https://mathworld.wolfram.com/NormedSpace.html. | spa |
dc.relation.references | [Weisstein, 2005a] Weisstein, E. W.: , 2005a; Banach space; URL https://mathworld.wolfram.com/BanachSpace.html. | spa |
dc.relation.references | [Weisstein, 2005b] Weisstein, E. W.: , 2005b; Hilbert space; URL https://mathworld.wolfram.com/HilbertSpace.html. | spa |
dc.relation.references | [Weisstein, 2009] Weisstein, E. W.: , 2009; Vector space; URL https://mathworld.wolfram.com/VectorSpace.html. | spa |
dc.relation.references | [Weisstein, 2014] Weisstein, E. W.: , 2014; Inner product space; URL https://mathworld.wolfram.com/InnerProductSpace.html. | spa |
dc.relation.references | [Wojtas & Chen, 2020] Wojtas, M. & Chen, K.: , 2020; Feature importance ranking fordeep learning; Advances in neural information processing systems; 33: 5105–5114. | spa |
dc.relation.references | [Wu et al., 2020a] Wu, D.; Zhang, J. & Zhao, Q.: , 2020a; Multimodal fused emotionrecognition about expression-eeg interaction and collaboration using deep learning;IEEE Access; 8: 133180–133189; doi:10.1109/ACCESS.2020.3010311. | spa |
dc.relation.references | [Wu et al., 2018] Wu, M.; Hughes, M.; Parbhoo, S.; Zazzi, M.; Roth, V. & Doshi-Velez, F.: , 2018; Beyond sparsity: Tree regularization of deep models for inter-pretability; en Proceedings of the AAAI conference on artificial intelligence, tomo 32. | spa |
dc.relation.references | [Wu et al., 2020b] Wu, M.; Parbhoo, S.; Hughes, M.; Kindle, R.; Celi, L.; Zazzi, M.;Roth, V. & Doshi-Velez, F.: , 2020b; Regional tree regularization for interpretabilityin deep neural networks; en Proceedings of the AAAI conference on artificial intelligence,tomo 34; págs. 6413–6421. | spa |
dc.relation.references | [Zhang et al., 2021a] Zhang, H.; Zhao, M.; Wei, C.; Mantini, D.; Li, Z. & Liu, Q.: ,2021a; Eegdenoisenet: a benchmark dataset for deep learning solutions of eeg denoising;Journal of Neural Engineering; 18 (5): 056057. | spa |
dc.relation.references | [Zhang et al., 2018] Zhang, Q.; Wu, Y. N. & Zhu, S.-C.: , 2018; Interpretable convolu-tional neural networks; en Proceedings of the IEEE conference on computer vision andpattern recognition; págs. 8827–8836. | spa |
dc.relation.references | [Zhang et al., 2021b] Zhang, X.; She, Q.; Chen, Y.; Kong, W. & Mei, C.: , 2021b; Sub-band target alignment common spatial pattern in brain-computer interface; ComputerMethods and Programs in Biomedicine; 207: 106150. | spa |
dc.relation.references | [Zhang et al., 2015] Zhang, Y.; Zhou, G.; Jin, J.; Wang, X. & Cichocki, A.: , 2015;Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface; Journal of neuroscience methods; 255: 85–91. | spa |
dc.relation.references | [Zhang et al., 2021c] Zhang, Y.; Sidibé, D.; Morel, O. & Mériaudeau, F.: , 2021c;Deep multimodal fusion for semantic image segmentation: A survey; Image and VisionComputing; 105: 104042. | spa |
dc.relation.references | [Zhang et al., 2021d] Zhang, Y.; Tiňo, P.; Leonardis, A. & Tang, K.: , 2021d; Asurvey on neural network interpretability; IEEE Transactions on Emerging Topics inComputational Intelligence; 5 (5): 726–742. | spa |
dc.relation.references | [Zhou et al., 2016] Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A. & Torralba,A.: , 2016; Learning deep features for discriminative localization; en 2016 IEEEConference on Computer Vision and Pattern Recognition (CVPR); págs. 2921–2929;doi:10.1109/CVPR.2016.319. | spa |
dc.relation.references | [Ziafati & Maleki, 2022] Ziafati, A. & Maleki, A.: , 2022; Boosting the evoked responseof brain to enhance the reference signals of cca method; IEEE Transactions on NeuralSystems and Rehabilitation Engineering; 30: 2107–2115. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.proposal | Multimodal | eng |
dc.subject.proposal | Electroencephalography | eng |
dc.subject.proposal | Class Activation Maps | eng |
dc.subject.proposal | Interpretability | eng |
dc.subject.proposal | Canonical Correlation Analysis | eng |
dc.subject.proposal | Kernel Methods | eng |
dc.subject.proposal | Deep Learning | eng |
dc.subject.proposal | Convolutional Neural Networks | eng |
dc.subject.proposal | Topomaps | eng |
dc.subject.proposal | Frequency Analysis | eng |
dc.subject.proposal | Multimodal | spa |
dc.subject.proposal | Electroencefalografía | spa |
dc.subject.proposal | Mapas de Activación de Clase | spa |
dc.subject.proposal | Interpretabilidad | spa |
dc.subject.proposal | Corelación Canónica | spa |
dc.subject.proposal | Metodos Kernel | spa |
dc.subject.proposal | Aprendizaje Profundo | spa |
dc.subject.proposal | Redes Convolucionales | spa |
dc.subject.proposal | Topomapas | spa |
dc.subject.proposal | Análisis de Frecuencia | spa |
dc.subject.unesco | Interacción hombre-máquina | |
dc.subject.unesco | Human machine interaction | |
dc.subject.unesco | Neurobiology | |
dc.subject.unesco | Neurobiología | |
dc.title | Multimodal explainability using class activation maps and canonical correlation analysis for EEG-based motor imagery classification enhancement | eng |
dc.title.translated | Explicabilidad multimodal mediante mapas de activación de clases y análisis de correlación canónica para la mejora de la clasificación de imágenes motoras basada en EEG | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Sistema de monitoreo automático para la evaluación clínica de infantes con alteraciones neurológicas motoras mediante el análisis de volumetría cerebral y patrón de marcha"(Codigo 111089784907) | spa |
oaire.fundername | Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis_Marcos.pdf
- Tamaño:
- 6.39 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: