Modelo para la predicción de patrones de deforestación en el departamento de Antioquia empleando aprendizaje de máquinas
dc.contributor.advisor | Sánchez Torres, Germán | |
dc.contributor.advisor | Branch Bedoya, John Willian | |
dc.contributor.author | Gómez Ossa, Luisa Fernanda | |
dc.contributor.researchgate | Luisa-Gomez-Ossa | spa |
dc.contributor.scopus | Gómez-Ossa, Luisa Fernanda [0000-0001-9971-4908] | spa |
dc.coverage.region | Antioquia, Colombia | |
dc.date.accessioned | 2025-07-08T19:39:32Z | |
dc.date.available | 2025-07-08T19:39:32Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, gráficos, mapas | spa |
dc.description.abstract | Los cambios en coberturas y usos del suelo (CCUS) son especialmente importantes en áreas estratégicas para la provisión de servicios ecosistémicos de los cuales depende la población. Modelos espacialmente explícitos se han desarrollado para facilitar el monitoreo de patrones de deforestación, sin embargo, implementar estos modelos continúa siendo uno de los problemas más difíciles de abordar, esto se debe a que la deforestación es un proceso que se caracteriza por su alta complejidad, dinamismo y no linealidad. Dada esta dificultad y las diferentes aproximaciones metodológicas, el uso conjunto de técnicas de aprendizaje de máquinas (Machine Learning - ML) y sistemas de información geográfica (SIG) es uno de los enfoques más prometedores para modelar el problema específico de la evolución del uso del suelo. A nivel nacional y latinoamericano son pocos los estudios en los cuales se ha empleado ML para modelar CCUS a partir de imágenes satelitales de alta resolución espacial (<10m). Esta investigación con el uso de imágenes del programa NICFI (Norway’s International Climate & Forests Initiative) a una resolución de 4.7m desarrolló un modelo para la clasificación de coberturas y para la predicción de patrones de deforestación en el departamento de Antioquia, área que se caracteriza por su topografía montañosa y diversidad de ecosistemas. La metodología se llevó a cabo en tres etapas, la primera corresponde a un modelo de aprendizaje profundo (Deep Learning - DL) para la segmentación de coberturas, cuyos resultados se usaron como insumo en la segunda etapa de construcción de variables geográficas y explicativas del proceso de deforestación. Finalmente, la tercera etapa corresponde al modelo de predicción de deforestación. Para el modelo de segmentación de coberturas se usó un enfoque supervisado con la arquitectura U-Net y se exploraron 2 metodologías para el etiquetado de los datos, una a partir del uso de mapas globales existentes y otra con apoyo del algoritmo Kmeans y digitalización manual. Los conjuntos de datos se encuentran disponibles en formato TIF (Tagged Image File Format) con cuatro bandas R (rojo), G (verde), B (Azul), NIR (Infrarrojo cercano) y la etiqueta correspondiente a las coberturas: bosques denso, arbustales, pastos, áreas agrícolas heterogéneas, cuerpos de agua, áreas construidas y tierras desnudas y degradadas. Para la exploración y entrenamiento de los modelos tipo U-Net se construyeron 4 conjuntos de datos, para el primero se usó una estrategia de muestreo aleatorio, para el segundo y tercero una estrategia de muestreo balanceado, donde cada sección de imagen del conjunto de datos tiene una representación mínima por clase de 50% y 70% respectivamente y para el conjunto de datos 4 se usó un muestreo balanceado de 70% y se incluyeron datos multitemporales digitalizados de forma manual. Para la etapa 2, la selección y construcción de las variables explicativas se realizó con base en la metodología PRISMA, la disponibilidad de datos geográficos y las capas de coberturas generadas del modelo de segmentación. En total se construyeron 10 variables explicativas y la variable dependiente binaria (deforestado/no deforestado) para el periodo de análisis 2018-2019 y se usó el método de bosques aleatorios con el criterio de permutación para identificar la importancia relativa de las variables en el proceso de deforestación. En la etapa 3 se propone el desarrollo de un modelo covolucional con la arquitectura U-Net con atención para la predicción de la deforestación y al igual que en la etapa 1 de segmentación de coberturas, se entrenaron varios modelos empleando diferentes estrategias de muestreo para tratar el desbalance extremo de los datos. Finalmente se realizó una comparación de los resultados obtenidos para la métrica F1 macro entre las arquitecturas U-Net con atención, U-Net-estandar y U-Net residual con atención, encontrando mejores resultados en el rendimiento global del modelo con la arquitectura propuesta. La investigación representa en Colombia el primer intento a gran escala de utilizar un modelo DL para la predicción de la deforestación y el mapeo de coberturas a partir de imágenes satelitales de alta resolución espacial. Además de los modelos propuestos, el trabajo ofrece nuevos enfoques metodológicos para el manejo de datos espaciales que presentan desafíos distintos a otros tipos de datos y que tienen un potencial significativo para avanzar en el área de ML. (Tomado de la fuente) | spa |
dc.description.abstract | Land Cover and Land Use Changes (LCLUC) are particularly important in strategic areas for the provision of ecosystem services on which the population depends. Spatially explicit models have been developed to facilitate the monitoring of deforestation patterns. However, implementing these models remains one of the most challenging issues to address. This is due to the fact that deforestation is a process characterized by high complexity, dynamism, and non-linearity. Given this difficulty and the various methodological approaches, the combined use of Machine learning (ML) techniques and geographic information systems (GIS) is one of the most promising approaches for modeling the specific issue of land use change. At both the national and Latin American levels, there are few studies in which ML has been used to model LCLUC based on high spatial resolution satellite imagery (<10m). This research, using images from the NICFI (Norway’s International Climate Forests Initiative) program at a resolution of 4.7m, developed a model for land cover classification and deforestation pattern prediction in the department of Antioquia, a region characterized by its mountainous topography and diverse ecosystems. The methodology was carried out in three stages. The first stage involved a deep learning (DL) model for land cover segmentation, whose results were used as input for the second stage, which focused on constructing geographic and explanatory variables related to the deforestation process. Finally, the third stage focused on the development of the deforestation prediction model. For the land cover segmentation model, a supervised approach was used with the U-Net architecture, and two methodologies for data labeling were explored: one based on the use of existing global maps and another supported by the K-means algorithm and manual digitization. The datasets are available in TIF (Tagged Image File Format) with four bands—R (red), G (green), B (blue), and NIR (near infrared)—and include the corresponding labels for land covers: dense forests, shrublands, pastures, heterogeneous agricultural areas, water bodies, built-up areas, and bare and degraded lands. For the exploration and training of the U-Net models, four datasets were constructed. The first dataset used a random sampling strategy, while the second and third employed a balanced sampling strategy, in which each image section in the dataset contains a minimum class representation of 50% and 70%, respectively. For the fourth dataset, a 70% balanced sampling approach was used, and manually digitized multitemporal data were included. For Stage 2, the selection and construction of explanatory variables were carried out 16 Abstract based on the PRISMA methodology, the availability of geographic data, and the land cover layers generated by the segmentation model. A total of 10 explanatory variables were constructed, along with a binary dependent variable (deforested / not deforested) for the 2018–2019 analysis period. The random forest method with permutation importance was used to identify the relative importance of the variables in the deforestation process. In Stage 3, the development of a convolutional model using the U-Net architecture with attention is proposed for deforestation prediction. As in Stage 1 (land cover segmentation), several models were trained using different sampling strategies to address the extreme data imbalance. Finally, a comparison of the results was carried out using the macro F1 score metric across the U-Net with attention, standard U-Net, and residual U-Net with attention architectures. The proposed architecture showed better overall model performance. This research represents the first large-scale attempt in Colombia to use a deep learning (DL) model for deforestation prediction and land cover mapping based on high spatial resolution satellite imagery. In addition to the proposed models, the study offers new methodological approaches for handling spatial data, which present challenges distinct from other types of data and hold significant potential to advance the field of machine learning. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.format.extent | 116 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88310 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Sistemas | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend, “High-Resolution Global Maps of 21st-Century Forest Cover Change,” Science, vol. 342, no. 6160, pp. 850–853, 2013. | spa |
dc.relation.references | V. Zalles, M. C. Hansen, P. V. Potapov, D. Parker, S. V. Stehman, A. H. Pickens, L. L. Parente, L. G. Ferreira, X.-P. Song, A. Hernandez-Serna, and I. Kommareddy, “Rapid expansion of human impact on natural land in South America since 1985,” Science Advances, vol. 7, p. eabg1620, Apr. 2021. | spa |
dc.relation.references | C. Le Quéré, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P. A. Pickers, J. I. Korsbakken, G. P. Peters, J. G. Canadell, A. Arneth, V. K. Arora, L. Barbero, . Bastos, and B. Zheng, “Global Carbon Budget 2018,” Earth System Science Data, vol. 10, no. 4, pp. 2141–2194, 2018. | spa |
dc.relation.references | H. Mayfield, C. Smith, M. Gallagher, and M. Hockings, “Use of freely available datasets and machine learning methods in predicting deforestation,” Environmental Modelling & Software, vol. 87, pp. 17–28, Jan. 2017. | spa |
dc.relation.references | L. Gómez-Ossa and V. Botero-Fernández, “Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects,” DYNA, vol. 84, no. 201, pp. 68–73, 2017. | spa |
dc.relation.references | S. Singh, C. S. Reddy, S. V. Pasha, K. Dutta, K. R. L. Saranya, and K. V. Satish, “Modeling the spatial dynamics of deforestation and fragmentation using Multi-Layer Perceptron neural network and landscape fragmentation tool,” Ecological Engineering, vol. 99, pp. 543 – 551, 2017. | spa |
dc.relation.references | L. Parente, E. Taquary, A. P. Silva, C. Souza, and L. Ferreira, “Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data,” Remote Sensing, vol. 11, no. 23, 2019. | spa |
dc.relation.references | K. Anderson, B. Ryan, W. Sonntag, A. Kavvada, and L. Friedl, “Earth observation in service of the 2030 Agenda for Sustainable Development,” Geo-spatial Information Science, vol. 20, pp. 77–96, Apr. 2017. Publisher: Taylor & Francis. | spa |
dc.relation.references | J. Holloway and K. Mengersen, “Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review,” Remote Sensing, vol. 10, no. 9, 2018. | spa |
dc.relation.references | M. Schmitt, L. H. Hughes, C. Qiu, and X. X. Zhu, “SEN12MS – A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion,” arXiv preprint, vol. arXiv:1906.07789, 2019. | spa |
dc.relation.references | G. Sumbul, M. Charfuelan, B. Demir, and V. Markl, “Bigearthnet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding,” IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 5901–5904, 2019. | spa |
dc.relation.references | X. Qi, P. Zhu, Y. Wang, L. Zhang, J. Peng, M. Wu, J. Chen, X. Zhao, N. Zang, and P. Mathiopoulos, “MLRSNet: A Multi-label High Spatial Resolution Remote Sensing Dataset for Semantic Scene Understanding,” arXiv preprint, vol. arXiv:2010.00243, 2020. | spa |
dc.relation.references | L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep learning in remote sensing applications: A meta-analysis and review,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 152, pp. 166–177, June 2019. | spa |
dc.relation.references | F. H.Wagner, R. Dalagnol, C. H. L. Silva-Junior, G. Carter, A. L. Ritz, M. C. M. Hirye, J. P. H. B. Ometto, and S. Saatchi, “Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021,” Remote Sensing, vol. 15, no. 2, 2023. | spa |
dc.relation.references | M. Shimada, T. Itoh, T. Motooka, M.Watanabe, T. Shiraishi, R. Thapa, and R. Lucas, “New global forest/non-forest maps from ALOS PALSAR data (2007–2010),” Remote Sensing of Environment, vol. 155, pp. 13–31, 2014. | spa |
dc.relation.references | W. F. Laurance, A. K. M. Albernaz, G. Schroth, P. M. Fearnside, S. Bergen, E. M. Venticinque, and C. Da Costa, “Predictors of deforestation in the Brazilian Amazon,” Journal of Biogeography, vol. 29, no. 5-6, pp. 737–748, 2002. | spa |
dc.relation.references | H. Geist and E. Lambin, What drives tropical deforestation? A meta- analysis of proximate and underlying causes of deforestation based on subnational case study evidence. No. 4 in LUCC Report Series, Belgium: CIACO Louvain-la-Neuve, 2001. | spa |
dc.relation.references | P. Helber, B. Bischke, A. Dengel, and D. Borth, “EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, pp. 2217– 2226, July 2019. | spa |
dc.relation.references | I. Potsdam, “2D Semantic Labeling Contest - Potsdam,” 2019. | spa |
dc.relation.references | M. Martone, P. Rizzoli, C.Wecklich, C. González, J.-L. Bueso-Bello, P. Valdo, D. Schulze, M. Zink, G. Krieger, and A. Moreira, “The global forest/non-forest map from TanDEM-X interferometric SAR data,” Remote Sensing of Environment, vol. 205, pp. 352–373, 2018. | spa |
dc.relation.references | D. Armenteras, U. Murcia, T. M. González, O. J. Barón, and J. E. Arias, “Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness,” Global Ecology and Conservation, vol. 17, p. e00567, Jan. 2019. | spa |
dc.relation.references | E. Quintero-Vallejo, A. Benavides, N. Moreno, and S. Gonz´alez-Caro, Bosques Andinos, estado actual y retos para su conservaci´on en Antioquia. Medellín, Colombia.: Fundación Jardín Botánico de Medellín Joaquín Antonio Uribe- Programa Bosques Andinos (COSUDE), 1 ed., 2017. | spa |
dc.relation.references | E. Ibrahim, J. Jiang, L. Lema, P. Barnabé, G. Giuliani, P. Lacroix, and E. Pirard, “Cloud and Cloud-Shadow Detection for Applications in Mapping Small-Scale Mining in Colombia Using Sentinel-2 Imagery,” Remote Sensing, vol. 13, no. 4, 2021. | spa |
dc.relation.references | F. Y. Edgeworth, “On the Probable Errors of Frequency-Constants (Contd.),” Journal of the Royal Statistical Society, vol. 71, no. 3, pp. 499–512, 1908. Publisher: [Wiley, Royal Statistical Society]. | spa |
dc.relation.references | B. R. Shivakumar and S. V. Rajashekararadhya, “Investigation on Land Cover Mapping Capability of Maximum Likelihood Classifier: A Case Study on North Canara, India,” Procedia Computer Science, vol. 143, pp. 579–586, 2018. | spa |
dc.relation.references | B. Zhang, W. Li, and C. Zhang, “Analyzing land use and land cover change patterns and population dynamics of fast-growing US cities: Evidence from Collin County, Texas,” Remote Sensing Applications: Society and Environment, vol. 27, p. 100804, 2022. | spa |
dc.relation.references | T. Mollick, M. G. Azam, and S. Karim, “Geospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image,” Remote Sensing Applications: Society and Environment, vol. 29, p. 100859, 2023. | spa |
dc.relation.references | S. C. Sam and G. Balasubramanian, “Spatiotemporal detection of land use/land cover changes and land surface temperature using Landsat and MODIS data across the coastal Kanyakumari district, India,” Geodesy and Geodynamics, vol. 14, no. 2, pp. 172–181, 2023. | spa |
dc.relation.references | A. A. Darem, A. A. Alhashmi, A. M. Almadani, A. K. Alanazi, and G. A. Sutantra, “Development of a map for land use and land cover classification of the Northern Border Region using remote sensing and GIS,” The Egyptian Journal of Remote Sensing and Space Science, vol. 26, no. 2, pp. 341–350, 2023. | spa |
dc.relation.references | J. R. Otukei and T. Blaschke, “Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms,” International Journal of Applied Earth Observation and Geoinformation, vol. 12, pp. S27–S31, 2010. | spa |
dc.relation.references | L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001. Publisher: Springer. | spa |
dc.relation.references | T. M. D. Valle and P. Jiang, “Comparison of common classification strategies for large-scale vegetation mapping over the Google Earth Engine platform,” International Journal of Applied Earth Observation and Geoinformation, vol. 115, p. 103092, 2022. | spa |
dc.relation.references | F. d. L. L. d. Amorim, J. Rick, G. Lohmann, and K. H. Wiltshire, “Evaluation of Machine Learning Predictions of a Highly Resolved Time Series of Chlorophyll-a Concentration,” Applied Sciences, vol. 11, no. 16, 2021. | spa |
dc.relation.references | F. Zhang and X. Yang, “Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection,” Remote Sensing of Environment, vol. 251, p. 112105, 2020. | spa |
dc.relation.references | H. Wu, A. Lin, X. Xing, D. Song, and Y. Li, “Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method,” International Journal of Applied Earth Observation and Geoinformation, vol. 103, p. 102475, 2021. | spa |
dc.relation.references | C. Yang, F. Rottensteiner, and C. Heipke, “Classification of Land Cover and Land Use Based on Convolutional Neural Networks,” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-3, pp. 251–258, 2018. | spa |
dc.relation.references | D. Ienco, R. Gaetano, C. Dupaquier, and P. Maurel, “Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks,” IEEE Geoscience and Remote Sensing Letters, vol. 14, pp. 1685–1689, Oct. 2017. | spa |
dc.relation.references | R. Lan, Z. Li, Z. Liu, T. Gu, and X. Luo, “Hyperspectral image classification using ksparse denoising autoencoder and spectral–restricted spatial characteristics,” Applied Soft Computing, vol. 74, pp. 693–708, Jan. 2019. | spa |
dc.relation.references | X. Yuan, J. Shi, and L. Gu, “A review of deep learning methods for semantic segmentation of remote sensing imagery,” Expert Systems with Applications, vol. 169, p. 114417, May 2021. | spa |
dc.relation.references | Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015. | spa |
dc.relation.references | O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, eds.), (Cham), pp. 234–241, Springer International Publishing, 2015. | spa |
dc.relation.references | N. Flood, F. Watson, and L. Collett, “Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia,” International Journal of Applied Earth Observation and Geoinformation, vol. 82, p. 101897, 2019. | spa |
dc.relation.references | A. Mazza, F. Sica, P. Rizzoli, and G. Scarpa, “TanDEM-X Forest Mapping Using Convolutional Neural Networks,” Remote Sensing, vol. 11, no. 24, 2019. | spa |
dc.relation.references | L. Bragagnolo, R. V. d. Silva, and J. M. V. Grzybowski, “Towards the automatic monitoring of deforestation in Brazilian rainforest,” Ecological Informatics, vol. 66, p. 101454, 2021. | spa |
dc.relation.references | A. Stoian, V. Poulain, J. Inglada, V. Poughon, and D. Derksen, “Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems,” Remote Sensing, vol. 11, no. 17, 2019. | spa |
dc.relation.references | J. A. Caraballo-Vega, M. L. Carroll, C. S. R. Neigh, M. Wooten, B. Lee, A. Weis, M. Aronne, W. G. Alemu, and Z. Williams, “Optimizing WorldView-2, -3 cloud masking using machine learning approaches,” Remote Sensing of Environment, vol. 284, p. 113332, 2023. | spa |
dc.relation.references | X. Wang, S. Jing, H. Dai, and A. Shi, “High-resolution remote sensing images semantic segmentation using improved UNet and SegNet,” Computers and Electrical Engineering, vol. 108, p. 108734, 2023. | spa |
dc.relation.references | F. H. Wagner, R. Dalagnol, X. Tagle Casapia, A. S. Streher, O. L. Phillips, E. Gloor, and L. E. O. C. Arag˜ao, “Regional Mapping and Spatial Distribution Analysis of Canopy Palms in an Amazon Forest Using Deep Learning and VHR Images,” Remote Sensing, vol. 12, no. 14, 2020. | spa |
dc.relation.references | J. V. Solórzano, J. F. Mas, Y. Gao, and J. A. Gallardo-Cruz, “Land Use Land Cover Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery,” Remote Sensing, vol. 13, no. 18, 2021. | spa |
dc.relation.references | T. L. Giang, K. B. Dang, Q. Toan Le, V. G. Nguyen, S. S. Tong, and V.-M. Pham, “U-Net Convolutional Networks for Mining Land Cover Classification Based on High- Resolution UAV Imagery,” IEEE Access, vol. 8, pp. 186257–186273, 2020. | spa |
dc.relation.references | L. Du, G. W. McCarty, X. Zhang, M. W. Lang, M. K. Vanderhoof, X. Li, C. Huang, S. Lee, and Z. Zou, “Mapping ForestedWetland Inundation in the Delmarva Peninsula, USA Using Deep Convolutional Neural Networks,” Remote Sensing, vol. 12, no. 4, 2020. | spa |
dc.relation.references | N. Girard, A. Zhygallo, and Y. Tarabalka, “ClusterNet: Unsupervised Generic Feature Learning for Fast Interactive Satellite Image Segmentation,” in Image and Signal Processing for Remote Sensing (SPIE), (Strasbourg, France), Sept. 2019. | spa |
dc.relation.references | M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging Properties in Self-Supervised Vision Transformers,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9630–9640, Oct. 2021. ISSN: 2380-7504. | spa |
dc.relation.references | F. H. Wagner, R. Dalagnol, A. H. S´anchez, M. C. M. Hirye, S. Favrichon, J. H. Lee, S. Mauceri, Y. Yang, and S. Saatchi, “K-textures, a self-supervised hard clustering deep learning algorithm for satellite image segmentation,” Frontiers in Environmental Science, vol. 10, 2022. | spa |
dc.relation.references | I. Vaihingen, “2D Semantic Labeling - Vaihingen data,” 2019. | spa |
dc.relation.references | A. Van Etten, D. Hogan, J. M. Manso, J. Shermeyer, N. Weir, and R. Lewis, “The multi-temporal urban development spacenet dataset,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6398–6407, June 2021. | spa |
dc.relation.references | A. Toker, L. Kondmann, M. Weber, M. Eisenberger, A. Camero, J. Hu, A. P. Hoderlein, C. Senaras, T. Davis, D. Cremers, G. Marchisio, X. X. Zhu, and L. Leal-Taix´e, “Dynamicearthnet: Daily multi-spectral satellite dataset for semantic change segmentation,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21126–21135, June 2022. ISSN: 2575-7075. | spa |
dc.relation.references | C. F. Brown, S. P. Brumby, B. Guzder-Williams, T. Birch, S. B. Hyde, J. Mazzariello, W. Czerwinski, V. J. Pasquarella, R. Haertel, S. Ilyushchenko, K. Schwehr, M. Weisse, F. Stolle, C. Hanson, O. Guinan, R. Moore, and A. M. Tait, “Dynamic world, near real-time global 10m land use land cover mapping,” Scientific Data, vol. 9, p. 251, June 2022. | spa |
dc.relation.references | D. Zanaga, R. Van De Kerchove, W. De Keersmaecker, N. Souverijns, C. Brockmann, R. Quast, J.Wevers, A. Grosu, A. Paccini, S. Vergnaud, O. Cartus, M. Santoro, S. Fritz, I. Georgieva, M. Lesiv, S. Carter, M. Herold, L. Li, N.-E. Tsendbazar, F. Ramoino, and O. Arino, “ESA WorldCover 10 m 2020 v100,” Oct. 2021. Publisher: Zenodo Version Number: v100. | spa |
dc.relation.references | L. Bragagnolo, R. V. d. Silva, and J. M. V. Grzybowski, “Amazon and Atlantic Forest image datasets for semantic segmentation,” 2021. | spa |
dc.relation.references | G. M. d. S. Moreno, O. A. d. C. Júnior, O. L. F. d. Carvalho, and T. C. Andrade, “Deep semantic segmentation of mangroves in Brazil combining spatial, temporal, and polarization data from Sentinel-1 time series,” Ocean & Coastal Management, vol. 231, p. 106381, 2023. | spa |
dc.relation.references | A. Pascual, F. Tupinamb´a-Sim˜oes, J. Guerra-Hern´andez, and F. Bravo, “Highresolution planet satellite imagery and multi-temporal surveys to predict risk of tree mortality in tropical eucalypt forestry,” Journal of Environmental Management, vol. 310, p. 114804, 2022. | spa |
dc.relation.references | C. Aquino, E. T. A. Mitchard, I. M. McNicol, H. Carstairs, A. Burt, B. L. P. Vilca, S. Mayta, and M. Disney, “Detecting Tropical Forest Degradation Using Optical Satellite Data: An Experiment in Peru Show Texture at 3 M Gives Best Results,” Preprints, Feb. 2022. Publisher: Preprints. | spa |
dc.relation.references | R. Dalagnol, F. H. Wagner, L. S. Galv˜ao, D. Braga, F. Osborn, L. B. Sagang, P. d. C. Bispo, M. Payne, C. S. Junior, S. Favrichon, V. Silgueiro, L. O. Anderson, L. E. O. e. C. d. Arag˜ao, R. Fensholt, M. Brandt, P. Ciais, and S. Saatchi, “Mapping tropical forest degradation with deep learning and Planet NICFI data,” Remote Sensing of Environment, vol. 298, p. 113798, 2023. | spa |
dc.relation.references | F. Reiner, M. Brandt, X. Tong, D. Skole, A. Kariryaa, P. Ciais, A. Davies, P. Hiernaux, J. Chave, M. Mugabowindekwe, C. Igel, S. Oehmcke, F. Gieseke, S. Li, S. Liu, S. Saatchi, P. Boucher, J. Singh, S. Taugourdeau, M. Dendoncker, X.-P. Song, O. Mertz, C. J. Tucker, and R. Fensholt, “More than one quarter of Africa’s tree cover is found outside areas previously classified as forest,” Nature Communications, vol. 14, p. 2258, May 2023. | spa |
dc.relation.references | L. Song, A. B. Estes, and L. D. Estes, “A super-ensemble approach to map land cover types with high resolution over data-sparse African savanna landscapes,” International Journal of Applied Earth Observation and Geoinformation, vol. 116, p. 103152, 2023. | spa |
dc.relation.references | A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Doll´ar, and R. Girshick, “Segment Anything,” 2023. eprint: 2304.02643. | spa |
dc.relation.references | L. P. Osco, Q. Wu, E. L. d. Lemos, W. N. Gon¸calves, A. P. M. Ramos, J. Li, and J. M. Junior, “The Segment Anything Model (SAM) for Remote Sensing Applications: From Zero to One Shot,” 2023. eprint: 2306.16623. | spa |
dc.relation.references | F. Bastani, P. Wolters, R. Gupta, J. Ferdinando, and A. Kembhavi, “SatlasPretrain: A Large-Scale Dataset for Remote Sensing Image Understanding,” 2023. eprint: 2211.15660. | spa |
dc.relation.references | K. T. Awuah and P. Aplin, “Fusion of Sentinel-2 Data with High Resolution Open Access Planet Basemaps for Grazing Lawn Detection in Southern African Savannahs,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 1409–1412, July 2021. ISSN: 2153-7003. | spa |
dc.relation.references | M. Vizzari, “PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine,” Remote Sensing, vol. 14, no. 11, 2022. | spa |
dc.relation.references | P. Prasad, V. J. Loveson, P. Chandra, and M. Kotha, “Evaluation and comparison of the earth observing sensors in land cover/land use studies using machine learning algorithms,” Ecological Informatics, vol. 68, p. 101522, 2022. | spa |
dc.relation.references | K. Heckel, M. Urban, P. Schratz, M. D. Mahecha, and C. Schmullius, “Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source Sentinel-1 and -2 Data Fusion,” Remote Sensing, vol. 12, no. 2, 2020. | spa |
dc.relation.references | M. A. Brovelli, Y. Sun, and V. Yordanov, “Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and Machine Learning Classification on Google Earth Engine,” ISPRS International Journal of Geo-Information, vol. 9, no. 10, 2020. | spa |
dc.relation.references | Norway’s International Climate and Forests Initiative-NICFI., “NICFI Satellite Data Program User Guide.,” 2022. | spa |
dc.relation.references | PLANET, “Planet Imagery Product Specifications,” 2023. | spa |
dc.relation.references | H. Ren, Y. Liu, X. Chang, J. Yang, X. Xiao, and X. Huang, “Mapping High-Resolution Global Impervious Surface Area: Status and Trends,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 7288–7307, 2022. | spa |
dc.relation.references | K. Karra, C. Kontgis, Z. Statman-Weil, J. Mazzariello, M. Mark, S. Brumby, and U. S. Impact Observatory, “Global land use/land cover with Sentinel-2 and deep learning,” IEEE, 2021. | spa |
dc.relation.references | M. C. Hansen, P. V. Potapov, A. H. Pickens, A. Tyukavina, A. Hernandez-Serna, V. Zalles, S. Turubanova, I. Kommareddy, S. V. Stehman, X.-P. Song, and A. Kommareddy, “Global land use extent and dispersion within natural land cover using Landsat data,” Environmental Research Letters, vol. 17, p. 034050, Mar. 2022. Publisher: IOP Publishing. | spa |
dc.relation.references | R. F. Velasco, M. Lippe, F. Tamayo, T. Mfuni, R. Sales-Come, C. Mangabat, T. Schneider, and S. G¨unter, “Towards accurate mapping of forest in tropical landscapes: A comparison of datasets on how forest transition matters,” Remote Sensing of Environment, vol. 274, p. 112997, 2022. | spa |
dc.relation.references | W. Kim, A. Kanezaki, and M. Tanaka, “Unsupervised Learning of Image Segmentation Based on Differentiable Feature Clustering,” IEEE Transactions on Image Processing, vol. 29, pp. 8055–8068, 2020. | spa |
dc.relation.references | S. P. Mohanty, J. Czakon, K. A. Kaczmarek, A. Pyskir, P. Tarasiewicz, S. Kunwar, J. Rohrbach, D. Luo, M. Prasad, S. Fleer, J. P. G¨opfert, A. Tandon, G. Mollard, N. Rayaprolu, M. Salathe, and M. Schilling, “Deep Learning for Understanding Satellite Imagery: An Experimental Survey,” Frontiers in Artificial Intelligence, vol. 3, 2020. | spa |
dc.relation.references | E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “AutoAugment: Learning Augmentation Policies from Data,” arXiv preprint, vol. arXiv:1805.09501, 2019. | spa |
dc.relation.references | Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le, “Unsupervised Data Augmentation for Consistency Training,” arXiv, vol. arXiv:1904.12848, 2020. | spa |
dc.relation.references | F. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu, “ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 162, pp. 94–114, Apr. 2020. | spa |
dc.relation.references | K. P. Murphy, Machine Learning A Probabilistic Perspective. mit press ed., 2013. | spa |
dc.relation.references | Z. Yu, L. Di, R. Yang, J. Tang, L. Lin, C. Zhang, M. Rahman, H. Zhao, J. Gaigalas, E. Yu, and Z. Sun, “Selection of Landsat 8 OLI Band Combinations for Land Use and Land Cover Classification,” pp. 1–5, July 2019. | spa |
dc.relation.references | D. Bhattacharjee, “Optimun index factor (OIF) for landsat data: A case study on barasat town, west bengal, india,” Sept. 2020. | spa |
dc.relation.references | D. Singh and B. Singh, “Investigating the impact of data normalization on classification performance,” Applied Soft Computing, vol. 97, p. 105524, 2020. | spa |
dc.relation.references | Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, “A review of semantic segmentation using deep neural networks,” International Journal of Multimedia Information Retrieval, vol. 7, no. 2, pp. 87–93, 2018. | spa |
dc.relation.references | L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2017. | spa |
dc.relation.references | N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, Jan. 2014. Publisher: JMLR.org. | spa |
dc.relation.references | Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A nested UNet architecture for medical image segmentation,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 3–11, Springer, 2018. | spa |
dc.relation.references | D. John and C. Zhang, “An attention-based U-Net for detecting deforestation within satellite sensor imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 107, p. 102685, 2022. | spa |
dc.relation.references | J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, 2015. | spa |
dc.relation.references | F. Chollet, “Keras - Deep learning library,” 2015. | spa |
dc.relation.references | Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, . Ian Goodfellow, and Xiaoqiang Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” 2015. | spa |
dc.relation.references | B. Cao, Y. Du, D. Xu, H. Li, and Q. Liu, “An improved histogram matching algorithm for the removal of striping noise in optical remote sensing imagery,” Optik, vol. 126, no. 23, pp. 4723–4730, 2015. | spa |
dc.relation.references | KimMinho, JungMinyoung, and KimYongil, “Histogram Matching of Sentinel-2 Spectral Information to Enhance Planetscope Imagery for Effective Wildfire Damage Assessment,” Korean Journal of Remote Sensing, vol. 35, pp. 517–534, Aug. 2019. | spa |
dc.relation.references | A. G. Lalayan, “Data Compression-Aware Performance Analysis of Dask and Spark for Earth Observation Data Processing,” Mathematical Problems of Computer Science, vol. 59, pp. 35–44, May 2023. Section: Articles. | spa |
dc.relation.references | IDEAM, “Leyenda Nacional de Coberturas de la Tierra. Metodolog´ıa CORINE Land Cover adaptada para Colombia Escala 1:100.000. Instituto de Hidrolog´ıa, Meteorolog´ıa y Estudios Ambientales,” 2010. | spa |
dc.relation.references | R. Whitley, J. Beringer, L. B. Hutley, G. Abramowitz, M. G. De Kauwe, B. Evans, V. Haverd, L. Li, C. Moore, Y. Ryu, S. Scheiter, S. J. Schymanski, B. Smith, Y.- P. Wang, M. Williams, and Q. Yu, “Challenges and opportunities in land surface modelling of savanna ecosystems,” Biogeosciences, vol. 14, no. 20, pp. 4711–4732, 2017. | spa |
dc.relation.references | R. Li, S. Zheng, C. Duan, L. Wang, and C. Zhang, “Land cover classification from remote sensing images based on multi-scale fully convolutional network,” Geo-spatial Information Science, vol. 25, no. 2, pp. 278–294, 2022. Publisher: Taylor & Francis eprint: https://doi.org/10.1080/10095020.2021.2017237. | spa |
dc.relation.references | V. Lalitha and B. Latha, “A review on remote sensing imagery augmentation using deep learning,” Materials Today: Proceedings, vol. 62, pp. 4772–4778, 2022. | spa |
dc.relation.references | F. Mlika and W. Karoui, “Proposed Model to Intelligent Recommendation System based on Markov Chains and Grouping of Genres,” Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 24th International Conference KES2020, vol. 176, pp. 868–877, Jan. 2020. | spa |
dc.relation.references | Y. Yuan, L. Chen, H. Wu, and L. Li, “Advanced agricultural disease image recognition technologies: A review,” Information Processing in Agriculture, Jan. 2021. | spa |
dc.relation.references | U. Arbieu, K. Helsper, M. Dadvar, T. Mueller, and A. Niamir, “Natural Language Processing as a tool to evaluate emotions in conservation conflicts,” Biological Conservation, vol. 256, p. 109030, Apr. 2021. | spa |
dc.relation.references | K. Jaseena and B. C. Kovoor, “Deterministic weather forecasting models based on intelligent predictors: A survey,” Journal of King Saud University - Computer and Information Sciences, Sept. 2020. | spa |
dc.relation.references | C. Grinand, G. Vieilledent, T. Razafimbelo, J.-R. Rakotoarijaona, M. Nourtier, and M. Bernoux, “Landscape-scale spatial modelling of deforestation, land degradation, and regeneration using machine learning tools,” Land Degradation & Development, vol. 31, pp. 1699–1712, Aug. 2020. Publisher: John Wiley & Sons, Ltd. | spa |
dc.relation.references | B. Chen, Y. Lin, J. Deng, Z. Li, L. Dong, Y. Huang, and K. Wang, “Spatiotemporal dynamics and exposure analysis of daily PM2.5 using a remote sensing-based machine learning model and multi-time meteorological parameters,” Atmospheric Pollution Research, vol. 12, pp. 23–31, Feb. 2021. | spa |
dc.relation.references | T. Niu, Y. Chen, and Y. Yuan, “Measuring urban poverty using multi-source data and a random forest algorithm: A case study in Guangzhou,” Sustainable Cities and Society, vol. 54, p. 102014, Mar. 2020. | spa |
dc.relation.references | B. Du, Q. Zhou, J. Guo, S. Guo, and L.Wang, “Deep learning with long short-term memory neural networks combining wavelet transform and principal component analysis for daily urban water demand forecasting,” Expert Systems with Applications, vol. 171, p. 114571, June 2021. | spa |
dc.relation.references | O. A. Pérez-Escobar, A. Zizka, M. A. Berm´udez, A. S. Meseguer, F. L. Condamine, C. Hoorn, H. Hooghiemstra, Y. Pu, D. Bogarín, L. M. Boschman, R. T. Pennington, A. Antonelli, and G. Chomicki, “The Andes through time: evolution and distribution of Andean floras,” Trends in Plant Science, vol. 27, no. 4, pp. 364–378, 2022. | spa |
dc.relation.references | S. Orrego, Economic modeling of tropical deforestation in Antioquia (Colombia), 1980- 2000: an analysis at a semi-fine scale with spatially explicit data. Ph D Dissertation, Oregon State University, 2009. | spa |
dc.relation.references | D. Wheeler, D. Hammer, R. Kraft, S. Dasgupta, and B. Blankespoor, “Economic dynamics and forest clearing: A spatial econometric analysis for Indonesia,” New Climate Economics, vol. 85, pp. 85–96, Jan. 2013. | spa |
dc.relation.references | Y. Xie, E. Eftelioglu, R. Y. Ali, X. Tang, Y. Li, R. Doshi, and S. Shekhar, “Transdisciplinary Foundations of Geospatial Data Science,” ISPRS International Journal of Geo-Information, vol. 6, no. 12, 2017. | spa |
dc.relation.references | H. Meyer, C. Reudenbach, S. W¨ollauer, and T. Nauss, “Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction,” Ecological Modelling, vol. 411, p. 108815, 2019. | spa |
dc.relation.references | P. Ploton, F. Mortier, M. Réjou-Méchain, N. Barbier, N. Picard, V. Rossi, C. Dormann, G. Cornu, G. Viennois, N. Bayol, A. Lyapustin, S. Gourlet-Fleury, and R. Pélissier, “Spatial validation reveals poor predictive performance of large-scale ecological mapping models,” Nature Communications, vol. 11, p. 4540, Sept. 2020. | spa |
dc.relation.references | D. Armenteras, E. Cabrera, N. Rodríguez, and J. Retana, “National and regional determinants of tropical deforestation in Colombia,” Regional Environmental Change, vol. 13, pp. 1181–1193, Dec. 2013. | spa |
dc.relation.references | J. Yang, B. Tao, H. Shi, Y. Ouyang, S. Pan, W. Ren, and C. Lu, “Integration of remote sensing, county-level census, and machine learning for century-long regional cropland distribution data reconstruction,” International Journal of Applied Earth Observation and Geoinformation, vol. 91, p. 102151, 2020. | spa |
dc.relation.references | J. Groeneveld, B. Müller, C. Buchmann, G. Dressler, C. Guo, N. Hase, F. Hoffmann, F. John, C. Klassert, T. Lauf, V. Liebelt, H. Nolzen, N. Pannicke, J. Schulze, H. Weise, and N. Schwarz, “Theoretical foundations of human decision-making in agent-based land use models – A review,” Environmental Modelling & Software, vol. 87, pp. 39–48, Jan. 2017. | spa |
dc.relation.references | H. J. Mayfield, C. Smith, M. Gallagher, and M. Hockings, “Considerations for selecting a machine learning technique for predicting deforestation,” Environmental Modelling & Software, vol. 131, p. 104741, Sept. 2020. | spa |
dc.relation.references | A. Gharaibeh, A. Shaamala, R. Obeidat, and S. Al-Kofahi, “Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model,” Heliyon, vol. 6, p. e05092, Sept. 2020. | spa |
dc.relation.references | O. Okwuashi and C. E. Ndehedehe, “Integrating machine learning with Markov chain and cellular automata models for modelling urban land use change,” Remote Sensing Applications: Society and Environment, vol. 21, p. 100461, Jan. 2021. | spa |
dc.relation.references | M. Samardžić-Petrović, M. Kovačević, B. Bajat, and S Dragićević, “Machine Learning Techniques for Modelling Short Term Land-Use Change,” ISPRS International Journal of Geo-Information, vol. 6, no. 12, 2017. | spa |
dc.relation.references | C. K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal, J. Hickey, and N. Kalchbrenner, “MetNet: A Neural Weather Model for Precipitation Forecasting,” arXiv preprint, vol. arXiv:2003.12140, 2020. | spa |
dc.relation.references | V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein, “Implicit Neural Representations with Periodic Activation Functions,” arXiv preprint, vol. arXiv: 2006.09661, 2020. | spa |
dc.relation.references | L. Bragagnolo, R. V. d. Silva, and J. Grzybowski, “Amazon forest cover change mapping based on semantic segmentation by U-Nets,” Ecological Informatics, vol. 62, p. 101279, May 2021. | spa |
dc.relation.references | E. Rolf, K. Klemmer, C. Robinson, and H. Kerner, “Mission Critical - Satellite Data is a Distinct Modality in Machine Learning,” ArXiv, vol. abs/2402.01444, 2024. | spa |
dc.relation.references | S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, pp. 1735–1780, Nov. 1997. | spa |
dc.relation.references | L. Ye, L. Gao, R. Marcos-Martinez, D. Mallants, and B. A. Bryan, “Projecting Australia’s forest cover dynamics and exploring influential factors using deep learning,” Environmental Modelling & Software, vol. 119, pp. 407–417, Sept. 2019. | spa |
dc.relation.references | F. Bonassi, M. Farina, and R. Scattolini, “On the stability properties of Gated Recurrent Units neural networks,” Systems & Control Letters, vol. 157, p. 105049, Nov. 2021. | spa |
dc.relation.references | R. Marcos-Martinez, B. A. Bryan, K. A. Schwabe, J. D. Connor, and E. A. Law, “Forest transition in developed agricultural regions needs efficient regulatory policy,” Forest Policy and Economics, vol. 86, pp. 67–75, Jan. 2018. | spa |
dc.relation.references | P. Griffiths, B. Jakimow, and P. Hostert, “Reconstructing long term annual deforestation dynamics in Par´a and Mato Grosso using the Landsat archive,” Remote Sensing of Environment, vol. 216, pp. 497–513, Oct. 2018. | spa |
dc.relation.references | J. F. Mas, H. Puig, J. L. Palacio, and A. Sosa-L´opez, “Modelling deforestation using GIS and artificial neural networks,” Environmental Modelling & Software, vol. 19, no. 5, pp. 461 – 471, 2004. | spa |
dc.relation.references | D. Armenteras, N. Rodríguez, J. Retana, and M. Morales, “Understanding deforestation in montane and lowland forests of the Colombian Andes,” Regional Environmental Change, vol. 11, pp. 693–705, Sept. 2011. | spa |
dc.relation.references | M. Brasil, “Mapas anuales de cobertura y uso del suelo en Brasil.,” 2022. | spa |
dc.relation.references | L. Gómez-Ossa and V. Botero-Fernández, “Desempeño de Redes Neuronales Artificiales en la Modelación de la Deforestación en una Región Tropical de Colombia.,” in Análisis y modelación de patrones y procesos de cambio, pp. 49–74, Centro de Investigaciones en Geografía Ambiental (CIGA-UNAM), 1 ed., 2017. | spa |
dc.relation.references | L. F. Gómez-Ossa, G. Sánchez-Torres, and J. W. Branch-Bedoya, “Land Cover Classification in the Antioquia Region of the Tropical Andes Using NICFI Satellite Data Program Imagery and Semantic Segmentation Techniques,” Data, vol. 8, no. 12, 2023. | spa |
dc.relation.references | D. Armenteras, N. Rodríguez, J. Retana, and M. Morales, “Understanding deforestation in montane and lowland forests of the Colombian Andes,” Regional Environmental Change, vol. 11, pp. 693–705, Sept. 2011. | spa |
dc.relation.references | M. A. Chadid, L. M. Dávalos, J. Molina, and D. Armenteras, “A Bayesian Spatial Model Highlights Distinct Dynamics in Deforestation from Coca and Pastures in an Andean Biodiversity Hotspot,” Forests, vol. 6, no. 11, pp. 3828–3846, 2015. | spa |
dc.relation.references | S. Saha, M. Saha, K. Mukherjee, A. Arabameri, P. T. T. Ngo, and G. C. Paul, “Predicting the deforestation probability using the binary logistic regression, random forest, ensemble rotational forest, REPTree: A case study at the Gumani River Basin, India,” Science of The Total Environment, vol. 730, p. 139197, Aug. 2020. | spa |
dc.relation.references | MADS, “Programa Nacional de Pago por Servicios Ambientales (PSA),” Tech. Rep. ISBN digital: 978-958-5551-25-1, Ministerio de Ambiente y Desarrollo Sostenible. Oficina de Negocios Verdes y Sostenibles., Bogot´a, Colombia, 2021. | spa |
dc.relation.references | Elsevier, “Scopus: An abstract and citation database,” 2025. Accessed: 10 December 2024. | spa |
dc.relation.references | J. G. C. Ball, K. Petrova, D. A. Coomes, and S. Flaxman, “Using deep convolutional neural networks to forecast spatial patterns of Amazonian deforestation,” Methods in Ecology and Evolution, vol. 13, no. 11, pp. 2622–2634, 2022. eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13953. | spa |
dc.relation.references | O. Oktay, J. Schlemper, L. L. Folgoc, M. J. Lee, M. P. Heinrich, K. Misawa, K. Mori, S. G. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, “Attention U-Net: Learning Where to Look for the Pancreas,” ArXiv, vol. abs/1804.03999, 2018. | spa |
dc.relation.references | D. Maji, P. Sigedar, and M. Singh, “Attention Res-UNet with Guided Decoder for semantic segmentation of brain tumors,” Biomedical Signal Processing and Control, vol. 71, p. 103077, 2022. | spa |
dc.relation.references | A. Gonz´alez-Gonz´alez, J. C. Villegas, N. Clerici, and J. F. Salazar, “Spatial-temporal dynamics of deforestation and its drivers indicate need for locally-adapted environmental governance in Colombia,” Ecological Indicators, vol. 126, p. 107695, 2021. | spa |
dc.relation.references | C. Dez´ecache, J.-M. Salles, G. Vieilledent, and B. H´erault, “Moving forward socioeconomically focused models of deforestation,” Global Change Biology, vol. 23, pp. 3484–3500, Sept. 2017. Publisher: John Wiley & Sons, Ltd. | spa |
dc.relation.references | J. E. Mejía Villegas, Patrón Espacial de la Deforestación Tropical en la Región de Urabá. Trabajo de Grado Modalidad Monografía, Universidad Nacional de Colombia, Sede Medellín, 2010. | spa |
dc.relation.references | E. E. Maeda, C. M. d. Almeida, A. d. C. Ximenes, A. R. Formaggio, Y. E. Shimabukuro, and P. Pellikka, “Dynamic modeling of forest conversion: Simulation of past and future scenarios of rural activities expansion in the fringes of the xingu national park, brazilian amazon,” International Journal of Applied Earth Observation and Geoinformation, vol. 13, no. 3, pp. 435–446, 2011. | spa |
dc.relation.references | J. Rice, C. S. Seixas, M. E. Zaccagnin, M. Bedoya-Gait´an, and N. Valderrama, “The IPBES regional assessment report on biodiversity and ecosystem services for the Americas,” tech. rep., Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 2018. | spa |
dc.relation.references | A. Gayen and S. Saha, “Deforestation probable area predicted by logistic regression in Pathro river basin: a tributary of Ajay river,” Spatial Information Research, vol. 26, pp. 1–9, Feb. 2018. | spa |
dc.relation.references | A. S. A. d. P. Pereira, V. J. d. Santos, S. d. C. Alves, A. A. e. Silva, C. G. d. Silva, and M. L. Calijuri, “Contribution of rural settlements to the deforestation dynamics in the Legal Amazon,” Land Use Policy, vol. 115, p. 106039, 2022. | spa |
dc.relation.references | A. Etter, C. McAlpine, D. Pullar, and H. Possingham, “Modelling the conversion of Colombian lowland ecosystems since 1940: Drivers, patterns and rates,” Journal of Environmental Management, vol. 79, no. 1, pp. 74–87, 2006. | spa |
dc.relation.references | Y. Li, H. Zhang, X. Xue, Y. Jiang, and Q. Shen, “Deep learning for remote sensing image classification: A survey,” WIREs Data Mining and Knowledge Discovery, vol. 8, no. 6, p. e1264, 2018. eprint: https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1264. | spa |
dc.relation.references | O. Abdi, J. Uusitalo, and V.-P. Kivinen, “Logging Trail Segmentation via a Novel UNet Convolutional Neural Network and High-Density Laser Scanning Data,” Remote Sensing, vol. 14, no. 2, 2022. | spa |
dc.relation.references | D. L. Torres, J. N. Turnes, P. J. Soto Vega, R. Q. Feitosa, D. E. Silva, J. Marcato Junior, and C. Almeida, “Deforestation Detection with Fully Convolutional Networks in the Amazon Forest from Landsat-8 and Sentinel-2 Images,” Remote Sensing, vol. 13, no. 24, 2021. | spa |
dc.relation.references | D. E. Kislov, K. A. Korznikov, J. Altman, A. S. Vozmishcheva, and P. V. Krestov, “Extending deep learning approaches for forest disturbance segmentation on very high-resolution satellite images,” Remote Sensing in Ecology and Conservation, vol. 7, no. 3, pp. 355–368, 2021. eprint: https://zslpublications.onlinelibrary.wiley.com/doi/pdf/10.1002/rse2.194. | spa |
dc.relation.references | B. Hosseiny, A. M. Abdi, and S. Jamali, “Urban land use and land cover classification with interpretable machine learning – A case study using Sentinel-2 and auxiliary data,” Remote Sensing Applications: Society and Environment, vol. 28, p. 100843, 2022. | spa |
dc.relation.references | X. Li and A. Yeh, “Neural-network-based cellular automata for simulating multiple land use changes using GIS,” International Journal of Geographical Information Science, vol. 16, pp. 323–343, June 2002. | spa |
dc.relation.references | M. Campos-Taberner, F. J. Garc´ıa-Haro, B. Mart´ınez, E. Izquierdo-Verdiguier, C. Atzberger, G. Camps-Valls, and M. A. Gilabert, “Understanding deep learning in land use classification based on Sentinel-2 time series,” Scientific Reports, vol. 10, p. 17188, Oct. 2020. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 330 - Economía::333 - Economía de la tierra y de la energía | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.lemb | Deforestación - Control - Antioquia, Colombia | |
dc.subject.lemb | Uso de la tierra - Antioquia, Colombia | |
dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
dc.subject.lemb | Predicciones tecnológicas | |
dc.subject.proposal | deforestación | spa |
dc.subject.proposal | coberturas del suelo | spa |
dc.subject.proposal | imágenes satelitales | spa |
dc.subject.proposal | aprendizaje de máquinas | spa |
dc.subject.proposal | región tropical | spa |
dc.subject.proposal | deforestation | eng |
dc.subject.proposal | land cover | eng |
dc.subject.proposal | satellite imagery | eng |
dc.subject.proposal | machine learning | eng |
dc.subject.proposal | tropical region | eng |
dc.title | Modelo para la predicción de patrones de deforestación en el departamento de Antioquia empleando aprendizaje de máquinas | spa |
dc.title.translated | Model for predicting deforestation patterns in Antioquia, Colombia using machine learning | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017144032.2025.pdf
- Tamaño:
- 8.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Sistemas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: