Síntesis de híbridos cumarina-chalcona y evaluación de la actividad antiparasitaria in vitro

dc.contributor.advisorDurango Restrepo, Diego Luis
dc.contributor.advisorGil González, Jesús Humberto
dc.contributor.authorValencia Cossio, Sebastián
dc.date.accessioned2024-02-05T21:50:21Z
dc.date.available2024-02-05T21:50:21Z
dc.date.issued2023-01-22
dc.descriptionIlustraciones, fotosspa
dc.description.abstractLas enfermedades protozoarias causadas por Trypanosoma cruzii y Leishmania panamensis, son de amplio interés debido a los altos índices de contagios y de muertes que generan alrededor del mundo, prevaleciendo en América latina, Asia y África. Por lo tanto, es imperioso buscar nuevos compuestos como alternativa terapéutica que sirvan como nuevas estrategias eficientes, de fácil acceso, baja resistencia y pocos efectos secundarios en el tratamiento de infecciones protozoarias. Las cumarinas y las chalconas son metabolitos secundarios producidos por las plantas, los cuales han demostrado poseer una gran variedad de actividades farmacológicas. Se ha encontrado que poseen propiedades antiinflamatorias, antibacterianas, antitrombóticas, anticancerígenas, antiAlzheimer, antidiabéticas y antivirales etc. Igualmente han demostrado poseer actividad antiprotozoaria, lo cual genera un posicionamiento importante de estas moléculas en la lucha contra estos parásitos. Las cumarinas y chalconas son dos clases importantes de compuestos bioactivos, que han sido ampliamente estudiados en el área de la química medicinal. Estos compuestos se pueden obtener en el laboratorio por medio de síntesis química y han evidenciado de manera individual o mediante la formación de híbridos, que poseen potencial in vitro contra algunos protozoos. La formación de híbridos entre cumarinas y chalconas se podría aducir como una posible alternativa farmacológica en el tratamiento de infecciones parasitarias. La síntesis de híbridos entre estos dos compuestos se realizó haciendo uso de manera sucesiva de las reacciones de Knoevenagel y Claisen-Schmidt, respectivamente, para su posterior análisis in vitro de citotoxicidad en células U937 y de actividad en amastigotes de Trypanosoma cruzii y promastigotes de Leishmania braziliensis. Los compuestos se caracterizaron por métodos espectroscópicos modernos (IR, RMN). Basados en las propiedades farmacológicas de los híbridos, se realizó un análisis cualitativo de estructura-actividad y de parámetros farmacológicos.La mayoría de los hibridos poseen actividad antiparasitaria contra T. cruzi y L. braziliensis, y una baja toxicidad en la línea celular U937. Las sustituciones de carácter O-alquilo y OH- favorecen en buena medida la actividad inhibitoria. La gran mayoría de los hibridos poseen un perfil farmacológico adecuado; el hibrido H25 exhibió resultados similares al Benznidazol, lo cual lo destaca como un compuesto con potencial para el desarrollo farmacológico. (texto tomado de la fuente)spa
dc.description.abstractProtozoan diseases caused by Trypanosoma cruzii and Leishmania panamensis are of broad interest due to the high rates of infections and deaths they generate around the world, prevailing in Latin America, Asia and Africa. Therefore, it is imperative to search for new compounds as a therapeutic alternative that serve as new efficient strategies, easy access, low resistance and few side effects in the treatment of protozoan infections. Coumarins and chalcones are secondary metabolites produced by plants, which have been shown to have a wide variety of pharmacological activities. It has been found that they have antiinflammatory, antibacterial, antithrombotic, anticancer, antiAlzheimer's, antidiabetic and antiviral properties, etc. They have also been shown to have antiprotozoal activity, which generates an important position for these molecules in the fight against these parasites. Coumarins and chalcones are two important classes of bioactive compounds, which have been widely studied in the area of medicinal chemistry. These compounds can be obtained in the laboratory through chemical synthesis and have shown, individually or through the formation of hybrids, that they have in vitro potential against some protozoa. The formation of hybrids between coumarins and chalcones could be argued as a possible pharmacological alternative in the treatment of parasitic infections. The synthesis of hybrids between these two compounds was carried out successively using the Knoevenagel and Claisen-Schmidt reactions, respectively, for subsequent in vitro analysis of cytotoxicity in U937 cells and activity in Trypanosoma cruzii amastigotes and Leishmania promastigotes. braziliensis. The compounds were characterized by modern spectroscopic methods (IR, NMR). Based on the pharmacological properties of the hybrids, a qualitative analysis of structure-activity and pharmacological parameters was carried out. Most of the hybrids have antiparasitic activity against T. cruzi and L. braziliensis, and low toxicity in the U937 cell line. Substitutions of O-alkyl and OH- character greatly favor the inhibitory activity. The vast majority of hybrids have an adequate pharmacological profile; Hybrid H25 exhibited similar results to Benznidazole, which highlights it as a compound with potential for pharmacological development.eng
dc.description.curricularareaÁrea Curricular en Ciencias Naturalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extent149 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85629
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.references(1) Organizacion Mundial de la Salud (OMS). Hoja de Ruta Sobre Enfermedades Tropicales Desatendidas 2021-2030. 2021.spa
dc.relation.references(2) Valero, N. N. H.; Uriarte, M. Environmental and Socioeconomic Risk Factors Associated with Visceral and Cutaneous Leishmaniasis: A Systematic Review. Parasitol. Res. 2020, 119 (2), 365–384. https://doi.org/10.1007/s00436-019-06575-5.spa
dc.relation.references(3) Abadías-Granado, I.; Diago, A.; Cerro, P. A.; Palma-Ruiz, A. M.; Gilaberte, Y. Cutaneous and Mucocutaneous Leishmaniasis. Actas Dermosifiliogr. 2021, 112 (7), 601–618. https://doi.org/10.1016/j.ad.2021.02.008.spa
dc.relation.references(4) Organizacion Mundial de la Salud (OMS). Leishmaniasis https://www.who.int/es/news-room/fact-sheets/detail/leishmaniasis (accessed Dec 16, 2021).spa
dc.relation.references(5) Minsalud de Colombia, F. A. M. P. PLAN ESTRATEGICO LEISHMANIASIS 2018-2022. 2019.spa
dc.relation.references(6) Ferreras González, A.; García Cuartero, I.; Gato Díez, A.; Ferreras Fernández, P. Infecciones Por Protozoos Hemoflagelados: Leishmaniasis, Enfermedad de Chagas y Tripanosomiasis Africana. Med. - Programa Form. Médica Contin. Acreditado 2014, 11 (54), 3194–3207. https://doi.org/10.1016/S0304-5412(14)70758-9.spa
dc.relation.references(7) Bern, C. Chagas’ Disease. http://dx.doi.org/10.1056/NEJMra1410150 2015, 373 (5), 456–466. https://doi.org/10.1056/NEJMRA1410150.spa
dc.relation.references(8) Organización Mundial de Salud. La enfermedad de Chagas (tripanosomiasis americana) https://www.who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed Dec 16, 2021).spa
dc.relation.references(9) World Health Organization Geneva. Chagas Disease in Latin America : An Epidemiological Update Based on 2010 Estimates Maladie de Chagas En Amérique Latine : Le Point Épidémiologique Basé Sur Les Estimations de 2010. Wkly. Epidemiol. Rec. 2015, 6, 5–13.spa
dc.relation.references(10) Herazo, R.; Torres-Torres, F.; Mantilla, C. A. G.; Carillo, L. P.; Cuervo, A.; Camargo, M. A. M.; Moreno, J. F.; Forsyth, C.; Vera, M. J.; Díaz, R. A. C.; Marchiol, A. On-Site Experience of a Project to Increase Access to Diagnosis and Treatment of Chagas Disease in High-Risk Endemic Areas of Colombia. Acta Trop. 2022, 226 (October 2021), 1–8. https://doi.org/10.1016/j.actatropica.2021.106219.spa
dc.relation.references(11) Trouiller, P.; Olliaro, P.; Torreele, E.; Orbinski, J.; Laing, R.; Ford, N. Drug Development for Neglected Diseases: A Deficient Market and a Public-Health Policy Failure. Lancet 2002, 359 (9324), 2188–2194. https://doi.org/10.1016/S0140-6736(02)09096-7.spa
dc.relation.references(12) Cardona-Arias, J. A.; Salas-Zapata, W.; Carmona-Fonseca, J. Systematic Review of Qualitative Studies about Malaria in Colombia. Heliyon 2020, 6 (5), e03964. https://doi.org/10.1016/J.HELIYON.2020.E03964.spa
dc.relation.references(13) Croft, S. L.; Barrett, M. P.; Urbina, J. A. Chemotherapy of Trypanosomiases and Leishmaniasis. Trends Parasitol. 2005, 21 (11), 508–512. https://doi.org/10.1016/J.PT.2005.08.026.spa
dc.relation.references(14) Aparicio, P.; Rodríguez, E.; Gárate, T.; Molina, R.; Soto, A.; Alvar, J. Terapéutica Antiparasitaria. Enferm. Infecc. Microbiol. Clin. 2003, 21 (10), 579–594.spa
dc.relation.references(15) Pérez-Molina, J. A.; Díaz-Menéndez, M.; Pérez-Ayala, A.; Ferrere, F.; Monje, B.; Norman, F.; López-Vélez, R. Tratamiento de Las Enfermedades Causadas Por Parásitos. Enferm. Infecc. Microbiol. Clin. 2010, 28 (1), 44–59. https://doi.org/10.1016/J.EIMC.2009.11.003.spa
dc.relation.references(16) Ahmad, P.; Ahanger, M. A.; Singh, V. P.; Tripathi, D. K.; Alam, P.; Alyemeni, M. N. Plant Metabolites and Regulation under Environmental Stress. Plant Metab. Regul. under Environ. Stress 2018, 1–434. https://doi.org/10.1016/C2016-0-03727-0.spa
dc.relation.references(17) Sanchez, S.; Demain, A. L. Secondary Metabolites. Compr. Biotechnol. Second Ed. 2011, 1, 155–167. https://doi.org/10.1016/B978-0-08-088504-9.00018-0.spa
dc.relation.references(18) Bhattacharya, A. High-Temperature Stress and Metabolism of Secondary Metabolites in Plants. Eff. High Temp. Crop Product. Metab. Macro Mol. 2019, 391–484. https://doi.org/10.1016/B978-0-12-817562-0.00005-7.spa
dc.relation.references(19) Muregi, F. W.; Ishih, A. Next-Generation Antimalarial Drugs: Hybrid Molecules as a New Strategy in Drug Design. Drug Dev. Res. 2010, 71 (1), 20. https://doi.org/10.1002/DDR.20345.spa
dc.relation.references(20) Cardona-G, W.; Yepes, A. F.; Herrera-R, A. Hybrid Molecules: Promising Compounds for the Development of New Treatments Against Leishmaniasis and Chagas Disease. Curr. Med. Chem. 2018, 25 (30), 3637–3679. https://doi.org/10.2174/0929867325666180309111428.spa
dc.relation.references(21) Uchil, A.; Murali, T. S.; Nayak, R. Escaping ESKAPE: A Chalcone Perspective. Results Chem. 2021, 3, 100229. https://doi.org/10.1016/J.RECHEM.2021.100229.spa
dc.relation.references(22) Gao, L.; Wang, F.; Chen, Y.; Li, F.; Han, B.; Liu, D. The Antithrombotic Activity of Natural and Synthetic Coumarins. Fitoterapia 2021, 154, 104947. https://doi.org/10.1016/J.FITOTE.2021.104947.spa
dc.relation.references(23) Adelusi, T. I.; Du, L.; Chowdhury, A.; Xiaoke, G.; Lu, Q.; Yin, X. Signaling Pathways and Proteins Targeted by Antidiabetic Chalcones. Life Sci. 2021, 284, 118982. https://doi.org/10.1016/J.LFS.2020.118982.spa
dc.relation.references(24) Dorababu, A. Coumarin-Heterocycle Framework: A Privileged Approach in Promising Anticancer Drug Design. Eur. J. Med. Chem. Reports 2021, 2, 100006. https://doi.org/10.1016/J.EJMCR.2021.100006.spa
dc.relation.references(25) Yoham, A. L.; Matta, C. M.; Safar, S. B.; Sankaran, M.; Kaplina, A.; Hettiarachchi, S. D.; Veliz, E. A.; Leblanc, R. M.; Vanni, S.; Graham, R. M. Targeted Delivery of Anti-Cancer Chalcone Drugs for Glioblastoma Multiforme Using Carbon Dots as Nanocarrier. J. Am. Coll. Surg. 2020, 231 (4), S180. https://doi.org/10.1016/J.JAMCOLLSURG.2020.07.291.spa
dc.relation.references(26) Li, Z.; Kong, D.; Liu, Y.; Li, M. Pharmacological Perspectives and Molecular Mechanisms of Coumarin Derivatives against Virus Disease. Genes Dis. 2021. https://doi.org/10.1016/J.GENDIS.2021.03.007.spa
dc.relation.references(27) AL-Duhaidahawi, D.; AL-Zubaidy, H. F. S.; Al-Khafaji, K.; AL-Ameiry, A. Synthesis, Anti-Inflammatory Effects, Molecular Docking and Molecular Dynamics Studies of 4-Hydroxy Coumarin Derivatives as Inhibitors of COX-II Enzyme. J. Mol. Struct. 2022, 1247, 131377. https://doi.org/10.1016/J.MOLSTRUC.2021.131377.spa
dc.relation.references(28) Husain, A.; Balushi K, A.; Akhtar, M. J.; Khan, S. A. Coumarin Linked Heterocyclic Hybrids: A Promising Approach to Develop Multi Target Drugs for Alzheimer’s Disease. J. Mol. Struct. 2021, 1241, 130618. https://doi.org/10.1016/J.MOLSTRUC.2021.130618.spa
dc.relation.references(29) Yadav, N.; Agarwal, D.; Kumar, S.; Dixit, A. K.; Gupta, R. D.; Awasthi, S. K. In Vitro Antiplasmodial Efficacy of Synthetic Coumarin-Triazole Analogs. Eur. J. Med. Chem. 2018, 145, 735–745. https://doi.org/10.1016/J.EJMECH.2018.01.017.spa
dc.relation.references(30) Aponte, J. C.; Castillo, D.; Estevez, Y.; Gonzalez, G.; Arevalo, J.; Hammond, G. B.; Sauvain, M. In Vitro and in Vivo Anti-Leishmania Activity of Polysubstituted Synthetic Chalcones. Bioorg. Med. Chem. Lett. 2010, 20 (1), 100–103. https://doi.org/10.1016/J.BMCL.2009.11.033.spa
dc.relation.references(31) Qin, H. L.; Zhang, Z. W.; Lekkala, R.; Alsulami, H.; Rakesh, K. P. Chalcone Hybrids as Privileged Scaffolds in Antimalarial Drug Discovery: A Key Review. Eur. J. Med. Chem. 2020, 193, 112215. https://doi.org/10.1016/J.EJMECH.2020.112215.spa
dc.relation.references(32) Rodríguez-Hernández, K. D.; Martínez, I.; Agredano-Moreno, L. T.; Jiménez-García, L. F.; Reyes-Chilpa, R.; Espinoza, B. Coumarins Isolated from Calophyllum Brasiliense Produce Ultrastructural Alterations and Affect in Vitro Infectivity of Trypanosoma Cruzi. Phytomedicine 2019, 61, 152827. https://doi.org/10.1016/J.PHYMED.2019.152827.spa
dc.relation.references(33) Singh, N.; Mishra, B. B.; Bajpai, S.; Singh, R. K.; Tiwari, V. K. Natural Product Based Leads to Fight against Leishmaniasis. Bioorg. Med. Chem. 2014, 22 (1), 18–45. https://doi.org/10.1016/J.BMC.2013.11.048.spa
dc.relation.references(34) Magill, A. J. Leishmaniasis. Hunter’s Trop. Med. Emerg. Infect. Dis. Ninth Ed. 2013, 739–760. https://doi.org/10.1016/B978-1-4160-4390-4.00099-0.spa
dc.relation.references(35) Sharma, U.; Singh, S. Immunobiology of Leishmaniasis. IJEB Vol.47(06) [June 2009] 2009, 47, 412–423.spa
dc.relation.references(36) Gyapong, J. O. An Overview of Neglected Tropical Diseases.; 2016.spa
dc.relation.references(37) Abadías-Granado, I.; Diago, A.; Cerro, P. A.; Palma-Ruiz, A. M.; Gilaberte, Y. Cutaneous and Mucocutaneous Leishmaniasis. Actas Dermo-Sifiliográficas (English Ed. 2021, 112 (7), 601–618. https://doi.org/10.1016/J.ADENGL.2021.05.011.spa
dc.relation.references(38) Instituto Nacional de salud; Ministerio de Salud; 2022. Boletin Epidemiológico Semanal 25 https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2022_Boletín_epidemiologico_semana_25.pdf (accessed Feb 27, 2023).spa
dc.relation.references(39) Peláez, R. G.; Muskus, C. E.; Cuervo, P.; Marín-Villa, M. Expresión Diferencial de Proteínas En Leishmania (Viannia) Panamensis Asociadas Con Mecanismos de Resistencia a Antimoniato de Meglumina. Biomedica 2012, 32 (3), 418–429. https://doi.org/10.7705/BIOMEDICA.V32I3.392.spa
dc.relation.references(40) Díaz, M. L.; González, C. I. Enfermedad de Chagas Agudo: Transmisión Oral de Trypanosoma Cruzi Como Una Vía de Transmisión Re-Emergente. Rev. la Univ. Ind. Santander. Salud 2014, 46 (2), 177–188.spa
dc.relation.references(41) Aronson, N.; Herwaldt, B. L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E. M.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin. Infect. Dis. 2016, 63 (12), e202–e264. https://doi.org/10.1093/CID/CIW670.spa
dc.relation.references(42) Vélez Bernal, I. D.; Robledo Restrepo, S. M.; Torres Gutiérrez, C.; Carrillo Bonilla, L. M.; López Carvajal, L.; Muskus López, C. E. Manual de Procedimientos Para El Diagnóstico y Control de La Leishmaniasis En Centroamérica; 2010.spa
dc.relation.references(43) Coura, J. R.; Dias, J. C. P.; Frasch, A. C. C.; Guhl, F.; Lazzari, J. O.; Lorca, M.; Monroy Escobar, C.; Ponce, C.; Silveira, A. C.; Velazquez, G.; Zingales, B. Control of Chagas Disease. World Heal. Organ. - Tech. Rep. Ser. 2002, No. 905, 1–99. https://doi.org/10.1016/s0035-9203(02)90338-x.spa
dc.relation.references(44) Angulo, V. M. Enfermedad de Chagas En Santander. Medicas-UIS 1992, 6 (4), 204–206.spa
dc.relation.references(45) Guhl, F. Estado Actual Del Control de La Enfermedad de Chagas En Colombia. Medicina (B. Aires). 1999, 59 (SUPPL. 2), 103–116.spa
dc.relation.references(46) Instituto Nacional de Salud. Enfermedad de Chagas En Busca de La Sostenibilidad. Bol. epidemiológico Sem. 2021, Semana 14 (Boletin del 4 al 10 de abril 2021), 7 y 8.spa
dc.relation.references(47) Ligia Perez, Yesika Rojas, M. R. La Enfermedad De Chagas En El Departamento De Amazonas (Colombia). SSA-ES Tripanosomiasis Updat. 2005, 1 (1), 187–212.spa
dc.relation.references(48) Cantey, P. T.; Stramer, S. L.; Townsend, R. L.; Kamel, H.; Ofafa, K.; Todd, C. W.; Currier, M.; Hand, S.; Varnado, W.; Dotson, E.; Hall, C.; Jett, P. L.; Montgomery, S. P. CDC - Chagas Disease - Epidemiology & Risk Factors. Transfusion 2019, 52 (9), 1922–1930. https://doi.org/10.1111/J.1537-2995.2012.03581.X/FULL.spa
dc.relation.references(49) Bern, C.; Montgomery, S. P.; Herwaldt, B. L.; Rassi, A.; Marin-Neto, J. A.; Dantas, R. O.; Maguire, J. H.; Acquatella, H.; Morillo, C.; Kirchhoff, L. V.; Gilman, R. H.; Reyes, P. A.; Salvatella, R.; Moore, A. C. Evaluation and Treatment of Chagas Disease in the United States: A Systematic Review. JAMA 2007, 298 (18), 2171–2181. https://doi.org/10.1001/JAMA.298.18.2171.spa
dc.relation.references(50) Edwards, M. S.; Stimpert, K. K.; Bialek, S. R.; Montgomery, S. P. Evaluation and Management of Congenital Chagas Disease in the United States. J. Pediatric Infect. Dis. Soc. 2019, 8 (5), 461–469. https://doi.org/10.1093/JPIDS/PIZ018.spa
dc.relation.references(51) Pan, S.-Y.; Litscher, G.; Gao, S.-H.; Zhou, S.-F.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M. Historical Perspective of Traditional Indigenous Medical Practices: The Current Renaissance and Conservation of Herbal Resources. 2014. https://doi.org/10.1155/2014/525340.spa
dc.relation.references(52) Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal Plants: Past History and Future Perspective. J. Herbmed Pharmacol. 2017, 7 (1), 1–7. https://doi.org/10.15171/JHP.2018.01.spa
dc.relation.references(53) Kılıç, C. S. Herbal Coumarins in Healthcare. Herb. Biomol. Healthc. Appl. 2022, 363–380. https://doi.org/10.1016/B978-0-323-85852-6.00003-2.spa
dc.relation.references(54) Li, N.; Guo, T. ting; Zhou, D. Bioactive Sesquiterpene Coumarins From Plants. Stud. Nat. Prod. Chem. 2018, 59, 251–282. https://doi.org/10.1016/B978-0-444-64179-3.00008-6.spa
dc.relation.references(55) Fitocosmética: Fitoingredientes y otros productos naturales - Jelena L. Nadinic, Arnaldo L. Bandoni, Virginia S. Martino, Graciela E. Ferraro - Google Libros https://books.google.com.co/books?id=9uBDDAAAQBAJ&pg=PT87&dq=cumarinas+y+estructura&hl=es&sa=X&ved=2ahUKEwikmvyG8O30AhV6RDABHXUyA00Q6AF6BAgLEAI#v=onepage&q=cumarinas y estructura&f=false (accessed Dec 18, 2021).spa
dc.relation.references(56) Sugino, T.; Tanaka, K. Solvent-Free Coumarin Synthesis. Chem. Lett. 2001, No. 2, 110–111. https://doi.org/10.1246/cl.2001.110.spa
dc.relation.references(57) Vilas-Boas, D. F.; Oliveira, R. R. G.; Gonçalves-Santos, E.; Silva, L. S.; Diniz, L. F.; Mazzeti, A. L.; Brancaglion, G. A.; Carvalho, D. T.; Caldas, S.; Novaes, R. D.; Caldas, I. S. 4-Nitrobenzoylcoumarin Potentiates the Antiparasitic, Anti-Inflammatory and Cardioprotective Effects of Benznidazole in a Murine Model of Acute Trypanosoma Cruzi Infection. Acta Trop. 2022, 228. https://doi.org/10.1016/J.ACTATROPICA.2022.106314.spa
dc.relation.references(58) Rodríguez-Hernández, K. D.; Martínez, I.; Reyes-Chilpa, R.; Espinoza, B. Mammea Type Coumarins Isolated from Calophyllum Brasiliense Induced Apoptotic Cell Death of Trypanosoma Cruzi through Mitochondrial Dysfunction, ROS Production and Cell Cycle Alterations. Bioorg. Chem. 2020, 100, 103894. https://doi.org/10.1016/J.BIOORG.2020.103894.spa
dc.relation.references(59) Silva, L. G.; Gomes, K. S.; Costa-Silva, T. A.; Romanelli, M. M.; Tempone, A. G.; Sartorelli, P.; Lago, J. H. G. Calanolides E1 and E2, Two Related Coumarins from Calophyllum Brasiliense Cambess. (Clusiaceae), Displayed in Vitro Activity against Amastigote Forms of Trypanosoma Cruzi and Leishmania Infantum. https://doi.org/10.1080/14786419.2020.1765347 2020, 35 (23), 5373–5377. https://doi.org/10.1080/14786419.2020.1765347.spa
dc.relation.references(60) Gomes Nascimento Soares, F.; Göethel, G.; Porto Kagami, L.; Machado das Neves, G.; Sauer, E.; Birriel, E.; Varela, J.; Luís Gonçalves, I.; Von Poser, G.; González, M.; Fábio Kawano, D.; Reisdorfer Paula, F.; Borges de Melo, E.; Cristina Garcia, S.; Cerecetto, H.; Lucia Eifler-Lima, V. Novel Coumarins Active against Trypanosoma Cruzi and Toxicity Assessment Using the Animal Model Caenorhabditis Elegans. 2019. https://doi.org/10.1186/s40360-019-0357-z.spa
dc.relation.references(61) Coelho, G. S.; Andrade, J. S.; Xavier, V. F.; Sales Junior, P. A.; Rodrigues de Araujo, B. C.; Fonseca, K. da S.; Caetano, M. S.; Murta, S. M. F.; Vieira, P. M.; Carneiro, C. M.; Taylor, J. G. Design, Synthesis, Molecular Modelling, and in Vitro Evaluation of Tricyclic Coumarins against Trypanosoma Cruzi. Chem. Biol. Drug Des. 2019, 93 (3), 337–350. https://doi.org/10.1111/CBDD.13420.spa
dc.relation.references(62) Rosa, I. A.; de Almeida, L.; Alves, K. F.; Marques, M. J.; Fregnan, A. M.; Silva, C. A.; Giacoppo, J. O. S.; Ramalho, T. C.; Carvalho, D. T.; dos Santos, M. H. Synthesis and in Vitro Evaluation of Leishmanicidal Activity of 7-Hydroxy-4-Phenylcoumarin Derivatives. Med. Chem. Res. 2016 261 2016, 26 (1), 131–139. https://doi.org/10.1007/S00044-016-1729-1.spa
dc.relation.references(63) Costa, R. S.; Souza Filho, O. P.; Dias Júnior, O. C. S.; Silva, J. J.; Le Hyaric, M.; Santos, M. A. V; Velozo, E. S. In Vitro Antileishmanial and Antitrypanosomal Activity of Compounds Isolated from the Roots of Zanthoxylum Tingoassuiba. Rev. Bras. Farmacogn. 2018, 28, 551–558. https://doi.org/10.1016/j.bjp.2018.04.013.spa
dc.relation.references(64) Freitas, R. F.; Prokopczyk, I. M.; Zottis, A.; Oliva, G.; Andricopulo, A. D.; Trevisan, M. T. S.; Vilegas, W.; Silva, M. G. V.; Montanari, C. A. Discovery of Novel Trypanosoma Cruzi Glyceraldehyde-3-Phosphate Dehydrogenase Inhibitors. Bioorg. Med. Chem. 2009, 17 (6), 2476–2482. https://doi.org/10.1016/J.BMC.2009.01.079.spa
dc.relation.references(65) Brenzan, M. A.; Nakamura, C. V.; Prado Dias Filho, B.; Ueda-Nakamura, T.; Young, M. C. M.; Aparício Garcia Cortez, D. Antileishmanial Activity of Crude Extract and Coumarin from Calophyllum Brasiliense Leaves against Leishmania Amazonensis. Parasitol. Res. 2007 1013 2007, 101 (3), 715–722. https://doi.org/10.1007/S00436-007-0542-7.spa
dc.relation.references(66) Donnelly, D. M. X. The Chemistry of Chalcones and Related Compounds : By D. N. Dhar. John Wiley, New York, 1981. 285 Pp. Phytochemistry 1982, 21 (9), 2435. https://doi.org/10.1016/0031-9422(82)85234-5.spa
dc.relation.references(67) Prashar, H.; Chawla, A.; Sharma, A. K.; Kharb, R. Chalcone as a Versatile Moiety for Diverse Pharmacological Activities. Int. J. Pharm. Sci. Res. 2012, 3 (07), 1913–1927.spa
dc.relation.references(68) Patil, C. B.; Mahajan, S. K.; Katti, S. A. Chalcone: A Versatile Molecule. J. Pharm. Sci. Res. 2009, 1 (3), 11–22.spa
dc.relation.references(69) Rodrigues, D. F.; Maniscalco, D. A.; Silva, F. A. J.; Chiari, B. G.; Castelli, M. V.; Isaac, V. L. B.; Cicarelli, R. M. B.; López, S. N. Trypanocidal Activity of Flavokawin B, a Component of Polygonum Ferrugineum Wedd. Planta Med. 2017, 83 (3–04), 239–244. https://doi.org/10.1055/S-0042-112031.spa
dc.relation.references(70) Borsari, C.; Santarem, N.; Torrado, J.; Olías, A. I.; Corral, M. J.; Baptista, C.; Gul, S.; Wolf, M.; Kuzikov, M.; Ellinger, B.; Witt, G.; Gribbon, P.; Reinshagen, J.; Linciano, P.; Tait, A.; Costantino, L.; Freitas-Junior, L. H.; Moraes, C. B.; Bruno dos Santos, P.; Alcântara, L. M.; Franco, C. H.; Bertolacini, C. D.; Fontana, V.; Tejera Nevado, P.; Clos, J.; Alunda, J. M.; Cordeiro-da-Silva, A.; Ferrari, S.; Costi, M. P. Methoxylated 2’-Hydroxychalcones as Antiparasitic Hit Compounds. Eur. J. Med. Chem. 2017, 126, 1129–1135. https://doi.org/10.1016/J.EJMECH.2016.12.017.spa
dc.relation.references(71) Sandjo, L. P.; de Moraes, M. H.; Kuete, V.; Kamdoum, B. C.; Ngadjui, B. T.; Steindel, M. Individual and Combined Antiparasitic Effect of Six Plant Metabolites against Leishmania Amazonensis and Trypanosoma Cruzi. Bioorg. Med. Chem. Lett. 2016, 26 (7), 1772–1775. https://doi.org/10.1016/J.BMCL.2016.02.044.spa
dc.relation.references(72) González, L. A.; Upegui, Y. A.; Rivas, L.; Echeverri, F.; Escobar, G.; Robledo, S. M.; Quiñones, W. Effect of Substituents in the A and B Rings of Chalcones on Antiparasite Activity. Arch. Pharm. (Weinheim). 2020, 353 (12). https://doi.org/10.1002/ARDP.202000157.spa
dc.relation.references(73) Osman, M. S.; Awad, T. A.; Shantier, S. W.; Garelnabi, E. A.; Osman, W.; Mothana, R. A.; Nasr, F. A.; Elhag, R. I. Identification of Some Chalcone Analogues as Potential Antileishmanial Agents: An Integrated in Vitro and in Silico Evaluation. Arab. J. Chem. 2022, 15 (4), 103717. https://doi.org/10.1016/J.ARABJC.2022.103717.spa
dc.relation.references(74) Ortalli, M.; Ilari, A.; Colotti, G.; De Ionna, I.; Battista, T.; Bisi, A.; Gobbi, S.; Rampa, A.; Di Martino, R. M. C.; Gentilomi, G. A.; Varani, S.; Belluti, F. Identification of Chalcone-Based Antileishmanial Agents Targeting Trypanothione Reductase. Eur. J. Med. Chem. 2018, 152, 527–541. https://doi.org/10.1016/J.EJMECH.2018.04.057.spa
dc.relation.references(75) Gomes, M. N.; Alcântara, L. M.; Neves, B. J.; Melo-Filho, C. C.; Freitas-Junior, L. H.; Moraes, C. B.; Ma, R.; Franzblau, S. G.; Muratov, E.; Andrade, C. H. Computer-Aided Discovery of Two Novel Chalcone-like Compounds Active and Selective against Leishmania Infantum. Bioorg. Med. Chem. Lett. 2017, 27 (11), 2459–2464. https://doi.org/10.1016/J.BMCL.2017.04.010.spa
dc.relation.references(76) Chen, X.; Mukwaya, E.; Wong, M. S.; Zhang, Y. A Systematic Review on Biological Activities of Prenylated Flavonoids. Pharm. Biol. 2014, 52 (5), 655–660. https://doi.org/10.3109/13880209.2013.853809.spa
dc.relation.references(77) Passalacqua, T. G.; Dutra, L. A.; De Almeida, L.; Velásquez, A. M. A.; Torres Esteves, F. A.; Yamasaki, P. R.; Dos Santos Bastos, M.; Regasini, L. O.; Michels, P. A. M.; Da Silva Bolzani, V.; Graminha, M. A. S. Synthesis and Evaluation of Novel Prenylated Chalcone Derivatives as Anti-Leishmanial and Anti-Trypanosomal Compounds. Bioorg. Med. Chem. Lett. 2015, 25 (16), 3342–3345. https://doi.org/10.1016/J.BMCL.2015.05.072.spa
dc.relation.references(78) Claudio Viegas-Junior; Eliezer J. Barreiro; Carlos Alberto Manssour Fraga. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14 (17), 1829–1852. https://doi.org/10.2174/092986707781058805.spa
dc.relation.references(79) Lazar, C.; Kluczyk, A.; Kiyota, T.; Konishi, Y. Drug Evolution Concept in Drug Design: 1. Hybridization Method. J. Med. Chem. 2004, 47 (27), 6973–6982. https://doi.org/10.1021/jm049637+.spa
dc.relation.references(80) Oliveira Pedrosa, M.; Duarte da Cruz, R.; Oliveira Viana, J.; de Moura, R.; Ishiki, H.; Barbosa Filho, J.; Diniz, M.; Scotti, M.; Scotti, L.; Bezerra Mendonca, F. Hybrid Compounds as Direct Multitarget Ligands: A Review. Curr. Top. Med. Chem. 2017, 17 (9), 1044–1079. https://doi.org/10.2174/1568026616666160927160620.spa
dc.relation.references(81) Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79 (3), 629–661. https://doi.org/10.1021/ACS.JNATPROD.5B01055/SUPPL_FILE/NP5B01055_SI_002.DOCX.spa
dc.relation.references(82) Coa, J. C.; García, E.; Carda, M.; Agut, R.; Vélez, I. D.; Muñoz, J. A.; Yepes, L. M.; Robledo, S. M.; Cardona, W. I. Synthesis, Leishmanicidal, Trypanocidal and Cytotoxic Activities of Quinoline-Chalcone and Quinoline-Chromone Hybrids. Med. Chem. Res. 2017, 26 (7), 1405–1414. https://doi.org/10.1007/S00044-017-1846-5/TABLES/1.spa
dc.relation.references(83) Ramírez–Prada, J.; Robledo, S. M.; Vélez, I. D.; Crespo, M. del P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of Novel Quinoline–Based 4,5–Dihydro–1H–Pyrazoles as Potential Anticancer, Antifungal, Antibacterial and Antiprotozoal Agents. Eur. J. Med. Chem. 2017, 131, 237–254. https://doi.org/10.1016/J.EJMECH.2017.03.016.spa
dc.relation.references(84) Khatoon, S.; Aroosh, A.; Islam, A.; Kalsoom, S.; Ahmad, F.; Hameed, S.; Abbasi, S. W.; Yasinzai, M.; Naseer, M. M. Novel Coumarin-Isatin Hybrids as Potent Antileishmanial Agents: Synthesis, in Silico and in Vitro Evaluations. Bioorg. Chem. 2021, 110, 104816. https://doi.org/10.1016/J.BIOORG.2021.104816.spa
dc.relation.references(85) Aucamp, J.; N’Da, D. D. In Vitro Antileishmanial Efficacy of Antiplasmodial Active Aminoquinoline-Chalcone Hybrids. Exp. Parasitol. 2022, 236–237, 108249. https://doi.org/10.1016/J.EXPPARA.2022.108249.spa
dc.relation.references(86) Ibrar, A.; Zaib, S.; Jabeen, F.; Iqbal, J.; Saeed, A. Unraveling the Alkaline Phosphatase Inhibition, Anticancer, and Antileishmanial Potential of Coumarin–Triazolothiadiazine Hybrids: Design, Synthesis, and Molecular Docking Analysis. Arch. Pharm. (Weinheim). 2016, 349 (7), 553–565. https://doi.org/10.1002/ARDP.201500392.spa
dc.relation.references(87) Sangshetti, J. N.; Kalam Khan, F. A.; Kulkarni, A. A.; Patil, R. H.; Pachpinde, A. M.; Lohar, K. S.; Shinde, D. B. Antileishmanial Activity of Novel Indolyl–Coumarin Hybrids: Design, Synthesis, Biological Evaluation, Molecular Docking Study and in Silico ADME Prediction. Bioorg. Med. Chem. Lett. 2016, 26 (3), 829–835. https://doi.org/10.1016/J.BMCL.2015.12.085.spa
dc.relation.references(88) Rodriguez S., Figueroa R. , Matos M. , Olea-Azar C., Maya J.D., Uriarte E. , Santana L., B. F. Synthesis and Trypanocidal Properties of New Coumarin-Chalcone Derivatives. Med. Chem. (Los. Angeles). 2015, 5 (4). https://doi.org/10.4172/2161-0444.1000260.spa
dc.relation.references(89) Hu, C. M.; Luo, Y. X.; Wang, W. J.; Li, J. P.; Li, M. Y.; Zhang, Y. F.; Xiao, D.; Lu, L.; Xiong, Z.; Feng, N.; Li, C. Synthesis and Evaluation of Coumarin-Chalcone Derivatives as α-Glucosidase Inhibitors. Front. Chem. 2022, 10. https://doi.org/10.3389/FCHEM.2022.926543/FULL.spa
dc.relation.references(90) Patel, K.; Karthikeyan, C.; Hari Narayana Moorthy, N. S.; Deora, G. S.; Solomon, V. R.; Lee, H.; Trivedi, P. Design, Synthesis and Biological Evaluation of Some Novel 3-Cinnamoyl-4-Hydroxy-2H-Chromen-2-Ones as Antimalarial Agents. Med. Chem. Res. 2012, 21 (8), 1780–1784. https://doi.org/10.1007/S00044-011-9694-1/METRICS.spa
dc.relation.references(91) Sun, Y. F.; Cui, Y. P. The Synthesis, Characterization and Properties of Coumarin-Based Chromophores Containing a Chalcone Moiety. Dye. Pigment. 2008, 78 (1), 65–76. https://doi.org/10.1016/J.DYEPIG.2007.10.014.spa
dc.relation.references(92) Knoevenagel, E. Condensation von Malonsäure Mit Aromatischen Aldehyden Durch Ammoniak Und Amine. Berichte der Dtsch. Chem. Gesellschaft 1898, 31 (3), 2596–2619. https://doi.org/10.1002/CBER.18980310308.spa
dc.relation.references(93) Isac-García, J.; Dobado, J. A.; Calvo-Flores, F. G.; Martínez-García, H. Green Chemistry Experiments. Exp. Org. Chem. 2016, 417–484. https://doi.org/10.1016/B978-0-12-803893-2.50013-9.spa
dc.relation.references(94) Tietze, L. F.; Beifuss, U. The Knoevenagel Reaction. Compr. Org. Synth. 1991, 341–394. https://doi.org/10.1016/B978-0-08-052349-1.00033-0.spa
dc.relation.references(95) Knoevenagel Condensation - an overview | ScienceDirect Topics https://www-sciencedirect-com.ezproxy.unal.edu.co/topics/chemistry/knoevenagel-condensation#reaction (accessed Feb 27, 2023).spa
dc.relation.references(96) Ferreira, J. M. G. O.; De, J. B. M.; Filho, R.; Batista, P. K.; Teotonio, E. E. S.; Vale, J. A. Rapid and Efficient Uncatalyzed Knoevenagel Condensations from Binary Mixture of Ethanol and Water. Artic. J. Braz. Chem. Soc 2018, 29 (7), 1382–1387. https://doi.org/10.21577/0103-5053.20170240.spa
dc.relation.references(97) Aldol Condensation - an overview | ScienceDirect Topics https://www.sciencedirect.com/topics/chemistry/aldol-condensation# (accessed Feb 27, 2023).spa
dc.relation.references(98) Ouellette, R. J.; Rawn, J. D. Condensation Reactions of Carbonyl Compounds. Org. Chem. Study Guid. 2015, 419–463. https://doi.org/10.1016/B978-0-12-801889-7.00022-4.spa
dc.relation.references(99) Vazquez-Rodriguez, S.; Lama López, R.; Matos, M. J.; Armesto-Quintas, G.; Serra, S.; Uriarte, E.; Santana, L.; Borges, F.; Muñoz Crego, A.; Santos, Y. Design, Synthesis and Antibacterial Study of New Potent and Selective Coumarin-Chalcone Derivatives for the Treatment of Tenacibaculosis. Bioorg. Med. Chem. 2015, 23 (21), 7045–7052. https://doi.org/10.1016/J.BMC.2015.09.028.spa
dc.relation.references(100) Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, Biological Evaluation and Molecular Docking of Novel Chalcone–Coumarin Hybrids as Anticancer and Antimalarial Agents. Eur. J. Med. Chem. 2014, 85, 65–76. https://doi.org/10.1016/J.EJMECH.2014.07.087.spa
dc.relation.references(101) Xi, G. L.; Liu, Z. Q. Coumarin Moiety Can Enhance Abilities of Chalcones to Inhibit DNA Oxidation and to Scavenge Radicals. Tetrahedron 2014, 70 (44), 8397–8404. https://doi.org/10.1016/J.TET.2014.08.063.spa
dc.relation.references(102) Patel, K.; Karthikeyan, C.; Hari Narayana Moorthy, N. S.; Deora, G. S.; Solomon, V. R.; Lee, H.; Trivedi, P. Design, Synthesis and Biological Evaluation of Some Novel 3-Cinnamoyl-4-Hydroxy-2H-Chromen-2-Ones as Antimalarial Agents. Med. Chem. Res. 2011 218 2011, 21 (8), 1780–1784. https://doi.org/10.1007/S00044-011-9694-1.spa
dc.relation.references(103) Vazquez-Rodriguez, S.; Figueroa-Guíñez, R.; Matos, M. J.; Santana, L.; Uriarte, E.; Lapier, M.; Maya, J. D.; Olea-Azar, C. Synthesis of Coumarin-Chalcone Hybrids and Evaluation of Their Antioxidant and Trypanocidal Properties. Medchemcomm 2013, 4 (6), 993–1000. https://doi.org/10.1039/c3md00025g.spa
dc.relation.references(104) Cuellar, J. E.; Quiñones, W.; Robledo, S.; Gil, J.; Durango, D. Coumaro-Chalcones Synthesized under Solvent-Free Conditions as Potential Agents against Malaria, Leishmania and Trypanosomiasis. Heliyon 2022, 8 (2), e08939. https://doi.org/10.1016/J.HELIYON.2022.E08939.spa
dc.relation.references(105) Roy, K.; Kar, S. How to Judge Predictive Quality of Classification and Regression Based QSAR Models? Front. Comput. Chem. Vol. 2 Comput. Appl. Drug Des. Biomol. Syst. 2015, 71–120. https://doi.org/10.1016/B978-1-60805-979-9.50003-2.spa
dc.relation.references(106) Davis, A. M. Quantitative Structure-Activity Relationships. Compr. Med. Chem. III 2017, 3–8, 379–392. https://doi.org/10.1016/B978-0-12-409547-2.12348-0.spa
dc.relation.references(107) Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in Drug Design--a Review. Curr. Top. Med. Chem. 2010, 10 (1), 95–115. https://doi.org/10.2174/156802610790232260.spa
dc.relation.references(108) Agrawal, V.; Dubey, V.; Shaik, B.; … J. S.-J. of the I.; 2009, U. Modeling of Lipophilicity of Some Organic Compounds Using Structural and Topological Indices. J. Indian Chem. 2009, No. Soc., 86, 1–9.spa
dc.relation.references(109) Wood, J. M.; Maibaum, J.; Rahuel, J.; Grütter, M. G.; Cohen, N. C.; Rasetti, V.; Rüger, H.; Göschke, R.; Stutz, S.; Fuhrer, W.; Schilling, W.; Rigollier, P.; Yamaguchi, Y.; Cumin, F.; Baum, H. P.; Schnell, C. R.; Herold, P.; Mah, R.; Jensen, C.; O’Brien, E.; Stanton, A.; Bedigian, M. P. Structure-Based Design of Aliskiren, a Novel Orally Effective Renin Inhibitor. Biochem. Biophys. Res. Commun. 2003, 308 (4), 698–705. https://doi.org/10.1016/S0006-291X(03)01451-7.spa
dc.relation.references(110) Oprea, T. I.; Davis, A. M.; Teague, S. J.; Leeson, P. D. Is There a Difference between Leads and Drugs? A Historical Perspective. J. Chem. Inf. Comput. Sci. 2001, 41 (5), 1308–1315. https://doi.org/10.1021/CI010366A.spa
dc.relation.references(111) Turfus, S. C.; Delgoda, R.; Picking, D.; Gurley, B. J. Pharmacokinetics. Pharmacogn. Fundam. Appl. Strateg. 2017, 495–512. https://doi.org/10.1016/B978-0-12-802104-0.00025-1.spa
dc.relation.references(112) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23 (1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1.spa
dc.relation.references(113) Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45 (12), 2615–2623. https://doi.org/10.1021/JM020017N.spa
dc.relation.references(114) Wang, Y.; Zhang, W.; Dong, J.; Gao, J. Design, Synthesis and Bioactivity Evaluation of Coumarin-Chalcone Hybrids as Potential Anticancer Agents. Bioorg. Chem. 2020, 95 (September 2019), 103530. https://doi.org/10.1016/j.bioorg.2019.103530.spa
dc.relation.references(115) Murillo, J. A.; Gil, J. F.; Upegui, Y. A.; Restrepo, A. M.; Robledo, S. M.; Quiñones, W.; Echeverri, F.; San Martin, A.; Olivo, H. F.; Escobar, G. Antileishmanial Activity and Cytotoxicity of Ent-Beyerene Diterpenoids. Bioorg. Med. Chem. 2019, 27 (1), 153–160. https://doi.org/10.1016/J.BMC.2018.11.030.spa
dc.relation.references(116) Cuartas, V.; Robledo, S. M.; Vélez, I. D.; Crespo, M. del P.; Sortino, M.; Zacchino, S.; Nogueras, M.; Cobo, J.; Upegui, Y.; Pineda, T.; Yepes, L.; Insuasty, B. New Thiazolyl-Pyrazoline Derivatives Bearing Nitrogen Mustard as Potential Antimicrobial and Antiprotozoal Agents. Arch. Pharm. (Weinheim). 2020, 353 (5), e1900351. https://doi.org/10.1002/ARDP.201900351.spa
dc.relation.references(117) Buckner, F. S.; Verlinde, C. L. M. J.; La Flamme, A. C.; Van Voorhis, W. C. Efficient Technique for Screening Drugs for Activity against Trypanosoma Cruzi Using Parasites Expressing Beta-Galactosidase. Antimicrob. Agents Chemother. 1996, 40 (11), 2592–2597. https://doi.org/10.1128/AAC.40.11.2592.spa
dc.relation.references(118) Bosquiroli, L. S. S.; Demarque, D. P.; Rizk, Y. S.; Cunha, M. C.; Marques, M. C. S.; De Matos, M. F. C.; Kadri, M. C. T.; Carollo, C. A.; Arruda, C. C. P. In Vitro Anti-Leishmania Infantum Activity of Essential Oil from Piper Angustifolium. Rev. Bras. Farmacogn. 2015, 25 (2), 124–128. https://doi.org/10.1016/J.BJP.2015.03.008.spa
dc.relation.references(119) Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7. https://doi.org/10.1038/SREP42717.spa
dc.relation.references(120) Himangini; Pathak, D. P.; Sharma, V.; Kumar, S. Designing Novel Inhibitors against Falcipain-2 of Plasmodium Falciparum. Bioorg. Med. Chem. Lett. 2018, 28 (9), 1566–1569. https://doi.org/10.1016/J.BMCL.2018.03.058.spa
dc.relation.references(121) Patra, S. K.; Manivannan, R.; Son, Y. A. Multicolor Emissive Organic Material to Display Aggregation Caused Red Shift with Dual State Emission, and Application towards Rewritable Data Storage. J. Photochem. Photobiol. A Chem. 2023, 444, 114945. https://doi.org/10.1016/J.JPHOTOCHEM.2023.114945.spa
dc.relation.references(122) Yang, F.; Fan, H.; Xue, Z.; Wang, X. Synthesis and Fluorescent Properties of Coumarin–Chalcone Hybrids. https://doi.org/10.3184/174751917X15035711817504 2017, 41 (9), 534–536. https://doi.org/10.3184/174751917X15035711817504.spa
dc.relation.references(123) Moya-Alvarado, G.; Yañez, O.; Morales, N.; González-González, A.; Areche, C.; Núñez, M. T.; Fierro, A.; García-Beltrán, O. Coumarin-Chalcone Hybrids as Inhibitors of MAO-B: Biological Activity and In Silico Studies. Mol. 2021, Vol. 26, Page 2430 2021, 26 (9), 2430. https://doi.org/10.3390/MOLECULES26092430.spa
dc.relation.references(124) Aliaga, M. E.; Tiznado, W.; Cassels, B. K.; Nuñez, M. T.; Millán, D.; Pérez, E. G.; García-Beltrán, O.; Pavez, P. Substituent Effects on Reactivity of 3-Cinnamoylcoumarins with Thiols of Biological Interest. RSC Adv. 2013, 4 (2), 697–704. https://doi.org/10.1039/C3RA44695F.spa
dc.relation.references(125) Robledo-O’Ryan, N.; Moncada-Basualto, M.; Mura, F.; Olea-Azar, C.; Matos, M. J.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.; Moncada-Basualto, M.; Lapier, M.; Maya, J. D. Synthesis, Antioxidant and Antichagasic Properties of a Selected Series of Hydroxy-3-Arylcoumarins. Bioorg. Med. Chem. 2017, 25 (2), 621–632. https://doi.org/10.1016/J.BMC.2016.11.033.spa
dc.relation.references(126) MacIel-Rezende, C. M.; De Almeida, L.; Costa, É. D. M.; Pires, F. R.; Alves, K. F.; Junior, C. V.; Dias, D. F.; Doriguetto, A. C.; Marques, M. J.; Dos Santos, M. H. Synthesis and Biological Evaluation against Leishmania Amazonensis of a Series of Alkyl-Substituted Benzophenones. Bioorg. Med. Chem. 2013, 21 (11), 3114–3119. https://doi.org/10.1016/J.BMC.2013.03.045.spa
dc.relation.references(127) Gonçalves, G. A.; Spillere, A. R.; das Neves, G. M.; Kagami, L. P.; von Poser, G. L.; Canto, R. F. S.; Eifler-Lima, V. L. Natural and Synthetic Coumarins as Antileishmanial Agents: A Review. Eur. J. Med. Chem. 2020, 203, 112514. https://doi.org/10.1016/J.EJMECH.2020.112514.spa
dc.relation.references(128) El Khatabi, K.; Aanouz, I.; Aouidate, A.; Ghaleb, A.; Abdelaziz Ajana, M.; Bouachrine, M.; Lakhlifi, T. QSAR Studies of the 4-Fluorobenzyl L-Valinate Amide Benzoxaborale (AN11736) Derivatives against Trypanosoma. RHAZES Green Appl. Chem. 2019, 4 (4), 51–64. https://doi.org/10.48419/IMIST.PRSM/RHAZES-V4.16203.spa
dc.relation.references(129) Lipinski, C. A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1 (4), 337–341. https://doi.org/10.1016/J.DDTEC.2004.11.007.spa
dc.relation.references(130) Yoshida, K.; Shigeoka, T.; Yamauchi, F. Relationship between Molar Refraction and N-Octanol/Water Partition Coefficient. Ecotoxicol. Environ. Saf. 1983, 7 (6), 558–565. https://doi.org/10.1016/0147-6513(83)90015-5.spa
dc.relation.references(131) Daunes, S.; D’Silva, C.; Kendrick, H.; Yardley, V.; Croft, S. L. QSAR Study on the Contribution of Log P and Es to the in Vitro Antiprotozoal Activity of Glutathione Derivatives. J. Med. Chem. 2001, 44 (18), 2976–2983. https://doi.org/10.1021/JM000502N/ASSET/IMAGES/MEDIUM/JM000502NN00001.GIF.spa
dc.relation.references(132) Prasanna, S.; Doerksen, R. J. Topological Polar Surface Area: A Useful Descriptor in 2D-QSAR. Curr. Med. Chem. 2009, 16 (1), 21. https://doi.org/10.2174/092986709787002817.spa
dc.relation.references(133) Liu, M.; Wilairat, P.; Go, M. L. Antimalarial Alkoxylated and Hydroxylated Chalones: Structure-Activity Relationship Analysis. J. Med. Chem. 2001, 44 (25), 4443–4452. https://doi.org/10.1021/JM0101747/SUPPL_FILE/JM0101747_S.PDF.spa
dc.relation.references(134) Chan, C.; Yin, H.; Garforth, J.; McKie, J. H.; Jaouhari, R.; Speers, P.; Douglas, K. T.; Rock, P. J.; Yardley, V.; Croft, S. L.; Fairlamb, A. H. Phenothiazine Inhibitors of Trypanothione Reductase as Potential Antitrypanosomal and Antileishmanial Drugs. J. Med. Chem. 1998, 41 (2), 148–156. https://doi.org/10.1021/JM960814J/SUPPL_FILE/JM148.PDF.spa
dc.relation.references(135) Turabekova, M. A.; Rasulev, B. F. A QSAR Toxicity Study of a Series of Alkaloids with the Lycoctonine Skeleton. Mol. 2004, Vol. 9, Pages 1194-1207 2004, 9 (12), 1194–1207. https://doi.org/10.3390/91201194.spa
dc.relation.references(136) García, E.; Ochoa, R.; Vásquez, I.; Conesa-Milián, L.; Carda, M.; Yepes, A.; Vélez, I. D.; Robledo, S. M.; Cardona-G, W. Furanchalcone–Biphenyl Hybrids: Synthesis, in Silico Studies, Antitrypanosomal and Cytotoxic Activities. Med. Chem. Res. 2019, 28 (4), 608–622. https://doi.org/10.1007/S00044-019-02323-7/METRICS.spa
dc.relation.references(137) Ibrahim, Z. Y.; Uzairu, A.; Shallangwa, G. A.; Abechi, S. E. Application of QSAR Method in the Design of Enhanced Antimalarial Derivatives of Azetidine-2-Carbonitriles, Their Molecular Docking, Drug-Likeness, and SwissADME Properties. Iran. J. Pharm. Res. IJPR 2021, 20 (3), 254–270. https://doi.org/10.22037/IJPR.2021.114536.14901.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.lembMedicina tropical
dc.subject.lembEnfermedades parasitarias
dc.subject.lembInfecciones por protozoarios
dc.subject.lembCumarinas
dc.subject.lembAgentes antiparasitarios
dc.subject.lembTrypanosoma cruzii
dc.subject.lembLeishmaniasis
dc.subject.proposalT. cruzispa
dc.subject.proposalL. braziliensisspa
dc.subject.proposalActividad biológicaspa
dc.subject.proposalHíbridosspa
dc.subject.proposalCumarinasspa
dc.subject.proposalChalconasspa
dc.subject.wikidataLeishmaniasis cutánea
dc.subject.wikidataChalcona
dc.titleSíntesis de híbridos cumarina-chalcona y evaluación de la actividad antiparasitaria in vitrospa
dc.title.translatedSynthesis of coumarin-chalcone hybrids and evaluation of antiparasitic activity in vitroeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022097116.2024.pdf
Tamaño:
3.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en ciencias-Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: