Bacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomate

dc.contributor.advisorGonzalez Almario, Carolinaspa
dc.contributor.advisorGonzalez Almario, Adrianaspa
dc.contributor.authorVargas Baquero, Christian Davidspa
dc.contributor.corporatenameAgrosaviaspa
dc.date.accessioned2020-09-03T16:22:14Zspa
dc.date.available2020-09-03T16:22:14Zspa
dc.date.issued2020-03-14spa
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractLa marchitez vascular en tomate ocasionada tanto por Fusarium oxysporum f. sp. lycopersici (Fol) como por Ralstonia solanacearum (Rs) llegan a ocasionar pérdidas superiores al 80% solo con uno de estos patógenos. Además, sumado al hecho, que ambos microorganismos ocasionan síntomas similares que lleva a la dificultad del diagnóstico del agente causal, también se ignora, la posibilidad de una posible coinfección por parte de los dos microorganismos, lo cual conlleva a malas implementaciones de estrategias de manejo. Por lo tanto, el objetivo de este trabajo fue evaluar la actividad antagónica y respuesta de defensa inducida por efecto de bacterias acidolácticas (BAL) en plantas de tomate frente a los patógenos vasculares de origen fúngico (Fol) y bacteriano (Rs) en modelos monopatogénicos y en un modelo de coinfección. Por consiguiente, en el primer capítulo, se estandarizó el primer modelo de coinfección entre los dos patógenos en tomate variedad Santa Cruz Kada a partir de dos cepas previamente caracterizadas a nivel molecular y por su vilurencia en plantas de tomate. Se seleccionó un modelo sincrónico a las concentraciones más altas evaluadas, lo cual permitió la expresión más temprana de los síntomas. Por otro lado, en el segundo capítulo, mediante el modelo establecido previamente, se evaluó la eficacia de biocontrol y la expresión diferencial de genes asociados a rutas de señalización de resistencia sistémica de una cepa de BAL seleccionada previamente por su alta eficacia a nivel in planta y su alto grado de inhibición in vitro contra los dos patógenos. Los resultados demostraron que la aplicación en semilla de la cepa AC40 es un potencial insumo para el manejo de estas problemáticas ya que registró rangos de 52,3% de eficiencia para el control de Fol, 68,6% para el control de Rs y 55,95% para el control de la mezcla de los dos patógenos. (Texto tomado de la fuente).spa
dc.description.abstractVascular wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici (Fol) or by Ralstonia solanacearum (Rs) causes losses of more than 80% with only one of these pathogens. In addition, added to the fact that both microorganisms cause similar symptoms leading difficulties in the diagnosis of the causal agent, the possibility of a possible coinfection by the two microorganisms is ignored, which leads to poor implementation of management strategies. Therefore, the objective of this work was to evaluate the antagonistic activity and defense response induced by the effect of acidolactic bacteria (BAL) in tomato plants against vascular pathogens of fungal (Fol) and bacterial (Rs) origin in monopathogenic models and in a coinfection model. Therefore, in the first chapter the first coinfection model between the two pathogens in tomato variety Santa Cruz Kada was standardized from two strains previously characterized at molecular and virulent level. A synchronous model was selected at the highest concentrations evaluated, which allowed the earliest expression of symptoms. On the other hand, in the second chapter, by means of the previously established model, the efficacy of biocontrol and the differential expression of genes associated to signaling routes of systemic resistance of a BAL strain previously selected for its high efficacy at in planta assay and its high degree of in vitro inhibition against the two pathogens were evaluated. The results showed how the application in seed of AC40 strain is a potential input for the management of these problems since it registered ranges of 52.3% of efficiency for the control of Fol, 68.6% for Rs and 55.95% for coinfection model.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaFitopatologíaspa
dc.format.extentxvi, 100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78371
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Agronomíaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbbasi S, Safaie N, Sadeghi A, Shamsbakhsh M (2019) Streptomyces Strains Induce Resistance to Fusarium oxysporum f. sp. lycopersici Race 3 in Tomato Through Different Molecular Mechanisms 10 doi:10.3389/fmicb.2019.01505spa
dc.relation.referencesAbbott WS (1925) A method of computing the effectiveness of an insecticide Economic Entomology 18:265-267spa
dc.relation.referencesAbdullah AS, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A (2017) Host-Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants Frontiers in plant science 8:1806-1806 doi:10.3389/fpls.2017.01806spa
dc.relation.referencesAgrios GN (2005) Plant pathology. Academic pressspa
dc.relation.referencesAhn K, Lee K-B, Kim Y-J, Koo Y-M (2014) Quantitative analysis of the three main genera in effective microorganisms using qPCR Korean Journal of Chemical Engineering 31:849-854 doi:10.1007/s11814-013-0274-6spa
dc.relation.referencesAimé S, Alabouvette C, Steinberg C, Olivain C (2013) The Endophytic Strain Fusarium oxysporum Fo47: A Good Candidate for Priming the Defense Responses in Tomato Roots Molecular Plant-Microbe Interactions 26:918-926 doi:10.1094/MPMI-12-12-0290-Rspa
dc.relation.referencesAllen C, Prior P, Hayward AC (2005) Bacterial wilt disease and the Ralstonia solanacearum species complex. American Phytopathological Society (APS Press), St. Paulspa
dc.relation.referencesAraújo Pena MA, Noda H, Machado FM, Paiva MSDS (2010) Adaptabilidade e estabilidade de genótipos de tomateiro sob cultivo em solos de terra firme e várzea da Amazônia infestados por Ralstonia solanacearum Bragantia 69:27-37spa
dc.relation.referencesAriyapitipun T, Mustapha A, Clarke AD (1999) Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions Journal of food protection 62:913-920spa
dc.relation.referencesAsha B, Nayaka Chandr S, Shankar Udaya A, Srinivas C, Niranjana S (2011) Selection of effective bio-​ antagonistic bacteria for biological control of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici Bioscan 6:239-244spa
dc.relation.referencesAtkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field Journal of Experimental Botany 63:3523-3543 doi:10.1093/jxb/ers100spa
dc.relation.referencesAxelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, Wright AV, Ouwehand A (eds) Lactic acid bacteria; Microbiology and functional aspects, vol 139. 3rd edition edn. Taylor & Francis, Madison Avenue, New York, USA., pp 1-66spa
dc.relation.referencesBannihatti R, Suryawanshi A (2019) Integrated management of bacterial wilt of tomato caused by Ralstonia solanacearum International Journal of Communication Systems 7:1599-1603spa
dc.relation.referencesBarrett LG, Kniskern JM, Bodenhausen N, Zhang W, Bergelson J (2009) Continua of specificity and virulence in plant host–pathogen interactions: causes and consequences New Phytologist 183:513-529 doi:10.1111/j.1469-8137.2009.02927.xspa
dc.relation.referencesBartholomew JW, Mittwer T (1952) The Gram stain Bacteriological reviews 16:1-29spa
dc.relation.referencesBauer T et al. (2018) First Insights Into Within Host Translocation of the Bacillus cereus Toxin Cereulide Using a Porcine Model Frontiers in microbiology 9:2652-2652 doi:10.3389/fmicb.2018.02652spa
dc.relation.referencesBertoldo C, Gilardi G, Spadaro D, Gullino ML, Garibaldi A (2015) Genetic diversity and virulence of Italian strains of Fusarium oxysporum isolated from Eustoma grandiflorum European Journal of Plant Pathology 141:83-97 doi:10.1007/s10658-014-0526-2spa
dc.relation.referencesBhuvanendra KH, Udaya SA, Nayaka C, Kini SR, Shetty HS, Prakash H (2010) Biochemical characterization of Fusarium oxysporum f. sp. cubense isolates from India African Journal of Biotechnology 9spa
dc.relation.referencesBidellaoui B, Segarra G, Hakkou A, Isabel Trillas M (2019) Beneficial effects of Rhizophagus irregularis and Trichoderma asperellum strain T34 on growth and fusarium wilt in tomato plants Journal of Plant Pathology 101:121-127 doi:10.1007/s42161-018-0159-yspa
dc.relation.referencesBlainski JML, da Rocha Neto AC, Luiz C, Rossi MJ, Di Piero RM (2017) Lactobacillus plantarum exopolysaccharides induce resistance against tomato bacterial spot Journal of Agricultural Science 9:162spa
dc.relation.referencesBlank SC (2014) The Economics of American Agriculture: Evolution and Global Development: Evolution and Global Development.spa
dc.relation.referencesBorel B (2017) When the pesticides run out Nature 543:302-304spa
dc.relation.referencesBozzini E (2017) Pesticide Policy and Politics in the European Union: regulatory assessment, implementation and enforcement.spa
dc.relation.referencesBrilli F et al. (2019) Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress Journal of Plant Physiology 232:82-93 doi:10.1016/j.jplph.2018.10.029spa
dc.relation.referencesBurdon J, Laine A (2019) Coevolutionary Dynamics in a Metapopulation Context. In: Burdon JJ (ed) Evolutionary Dynamics of Plant-Pathogen Interactions. Cambridge University Press, Cambridge, pp 168-218. doi:10.1017/9781108625517.007spa
dc.relation.referencesBurdon JJ, Chilvers GA (1982) Host Density as a Factor in Plant Disease Ecology Annual Review of Phytopathology 20:143-166 doi:10.1146/annurev.py.20.090182.001043spa
dc.relation.referencesCaldwell D, Kim B-S, Iyer-Pascuzzi AS (2017) Ralstonia solanacearum Differentially Colonizes Roots of Resistant and Susceptible Tomato Plants Phytopathology 107:528-536 doi:10.1094/PHYTO-09-16-0353-Rspa
dc.relation.referencesCarmona Gutiérrez SL (2019) Identificación de un aislamiento de Fusarium oxysporum f. sp. lycopersici y respuesta fisiológica en tomate durante la infección frente a dos elicitores fúngicos. Universidad Nacional de Colombiaspa
dc.relation.referencesCastilho NPA, Colombo M, Oliveira LLd, Todorov SD, Nero LA (2019) Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes BMC Microbiology 19:63 doi:10.1186/s12866-019-1436-4spa
dc.relation.referencesCha J-Y et al. (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil The ISME Journal 10:119-129 doi:10.1038/ismej.2015.95spa
dc.relation.referencesChanclud E, Morel J-B (2016) Plant hormones: a fungal point of view Molecular Plant Pathology 17:1289-1297 doi:10.1111/mpp.12393spa
dc.relation.referencesChang IS, Kim BH, Shin PK (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation Applied and Environmental Microbiology 63:1spa
dc.relation.referencesChant SR, Gbaja IS (1986) Effect of Co-infection by Fusarium oxysporum and Cowpea Mosaic Virus on the Growth and Colonization of Cowpea Seedlings (Vigna unguiculata [L.] Walp.) Journal of Phytopathology 116:81-87 doi:10.1111/j.1439-0434.1986.tb00897.xspa
dc.relation.referencesChen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants Plant Signal Behav 4:493-496 doi:10.4161/psb.4.6.8392spa
dc.relation.referencesChiang KS, Liu HI, Tsai JW, Tsai JR, Bock CH (2017) A discussion on disease severity index values. Part II: using the disease severity index for null hypothesis testing Annals of Applied Biology 171:490-505 doi:10.1111/aab.12396spa
dc.relation.referencesConrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant–pathogen interactions Trends in Plant Science 7:210-216 doi:10.1016/S1360-1385(02)02244-6spa
dc.relation.referencesCorsetti A, Gobbetti M, Rossi J, Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1 Applied microbiology and biotechnology 50:253-256spa
dc.relation.referencesCotes AM (2018) Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 vol 1. Agrosavia, Bogota Colombiaspa
dc.relation.referencesCurutiu C, Lazar V, Chifiriuc MC (2017) 10 - Pesticides and antimicrobial resistance: from environmental compartments to animal and human infections. In: Grumezescu AM (ed) New Pesticides and Soil Sensors. Academic Press, pp 373-392. doi:10.1016/B978-0-12-804299-1.00011-4spa
dc.relation.referencesa Silva MP, Tylka GL, Munkvold GP (2016) Seed Treatment Effects on Maize Seedlings Coinfected with Fusarium spp. and Pratylenchus penetrans American Phytopathological Society 100:431-437 doi:10.1094/pdis-03-15-0364-respa
dc.relation.referencesDe Vleesschauwer D, Höfte M (2009) Rhizobacteria-Induced Systemic Resistance Advances in Botanical Research 51:223-281 doi:10.1016/S0065-2296(09)51006-3spa
dc.relation.referencesDeberdt P, Quénéhervé P, Darrasse A, Prior P (1999) Increased susceptibility to bacterial wilt in tomatoes by nematode galling and the role of Mi gene in resistance to nematode and bacterial wilt Plant Pathology 48:408-414spa
dc.relation.referencesDeslandes L, Genin S (2014) Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms Current Opinion in Plant Biology 20:110-117 doi:10.1016/j.pbi.2014.05.002spa
dc.relation.referencesDi Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus Molecular Plant Pathology 4:315-325 doi:10.1046/j.1364-3703.2003.00180.xspa
dc.relation.referencesDi X, Gomila J, Takken FLW (2017) Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum Molecular Plant Pathology 18:1024-1035 doi:10.1111/mpp.12559spa
dc.relation.referencesDiniz I et al. (2017) A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae PLOS ONE 12:e0178159 doi:10.1371/journal.pone.0178159spa
dc.relation.referencesDonley N (2019) The USA lags behind other agricultural nations in banning harmful pesticides Environmental Health 18:44 doi:10.1186/s12940-019-0488-0spa
dc.relation.referencesDromph KM (2001) Dispersal of entomopathogenic fungi by collembolans Soil Biology and Biochemistry 33:2047-2051 doi:10.1016/S0038-0717(01)00130-4spa
dc.relation.referencesEl-Mabrok A, Hassan Z, Mokhtar A, Hussain K, Kahar F (2012) Screening of Lactic Acid Bacteria as Biocontrol Against (Collectotrichum capsici) on Chilli Bangi Research Journal of Applied Sciences 7:446-473spa
dc.relation.referencesElanchezhiyan K, Keerthana U, Nagendran K, Prabhukarthikeyan SR, Prabakar K, Raguchander T, Karthikeyan G (2018) Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici Physiological and Molecular Plant Pathology 103:92-101 doi:10.1016/j.pmpp.2018.05.008spa
dc.relation.referencesElmer WH (2002) Influence of Inoculum Density of Fusarium oxysporum f. sp. cyclaminis and Sodium Chloride on Cyclamen and the Development of Fusarium Wilt Plant Disease 86:389-393 doi:10.1094/PDIS.2002.86.4.389spa
dc.relation.referencesElphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Piror P. , Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS press, Minnesota USA, pp 9-28spa
dc.relation.referencesElphinstone JG, Hennessy J, Wilson JK, Stead DE (1996) Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts EPPO Bulletin 26:663-678 doi:10.1111/j.1365-2338.1996.tb01511.xspa
dc.relation.referencesElshahawy IE, Saied NM, Abd-El-Kareem F, Morsy AA (2018) Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora Journal of Plant Pathology 100:493-503 doi:10.1007/s42161-018-0113-zspa
dc.relation.referencesFAO (2019) FAOSTAT, Food and agriculture data. http://www.fao.org/faostat/en/#data.spa
dc.relation.referencesFegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex? . In: Allen C, Prior P, Hayward A (eds) Bacterial Wilt: The Disease and the Ralstonia solanacearum Species Complex. American Phytopathological Society, St. Paul, Minnesota, pp 449-461spa
dc.relation.referencesFleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR Biotechnology Letters 28:1601-1613 doi:10.1007/s10529-006-9127-2spa
dc.relation.referencesFox J et al. (2012) Package ‘car’ Vienna: R Foundation for Statistical Computingspa
dc.relation.referencesGajbhiye MH, Kapadnis BP (2016) Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants Biocontrol Science and Technology 26:1451-1470 doi:10.1080/09583157.2016.1213793spa
dc.relation.referencesGarcía Valderrama DS (2018) Control del marchitamiento vascular de la uchuva basado en mezclas de microorganismos rizosféricos provenientes de suelos potencialmente supresivos. Universidad Nacional de Colombiaspa
dc.relation.referencesGbaja IS, Chant SR (1985) The Effects of Co-Infection by Sunn-Hemp Mosaic Virus (SHMV) and Fusarium oxysporum on the Growth of French Bean Journal of Phytopathology 113:252-259 doi:10.1111/j.1439-0434.1985.tb00083.xspa
dc.relation.referencesGfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate Biochemical Pathway Science Signaling 3:cm3 doi:10.1126/scisignal.3109cm3spa
dc.relation.referencesGog JR, Grenfell BT (2002) Dynamics and selection of many-strain pathogens Proceedings of the National Academy of Sciences 99:17209 doi:10.1073/pnas.252512799spa
dc.relation.referencesGómez Marroquín MR (2019) Evaluación de sustancias bioactivas como alternativa para el manejo de la marchitez vascular causada por Fusarium oxysporum f. sp. lycopersici. Universidad Nacional de Colombiaspa
dc.relation.referencesGonzález A, Plener L, Restrepo S, Boucher C, Genin S (2011) Detection and functional characterization of a large genomic deletion resulting in decreased pathogenicity in Ralstonia solanacearum race 3 biovar 2 strains Environmental Microbiology 13:3172-3185 doi:10.1111/j.1462-2920.2011.02636.xspa
dc.relation.referencesGrimault V, Prior P (1993) Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum Plant Pathology 42:589-594 doi:10.1111/j.1365-3059.1993.tb01539.xspa
dc.relation.referencesHamed HA, Moustafa YA, Abdel-Aziz SM (2011) In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant Life Science Journal 8:462-468spa
dc.relation.referencesHammerschmidt R (2009) Systemic Acquired Resistance. In: Loon LCV (ed) Advances in Botanical Research, vol 51. Academic Press, pp 173-222. doi:10.1016/S0065-2296(09)51005-1spa
dc.relation.referencesHelander IM, von Wright A, Mattila-Sandholm TM (1997) Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria Trends in Food Science & Technology 8:146-150 doi:10.1016/S0924-2244(97)01030-3spa
dc.relation.referencesHoffman MD, Zucker LI, Brown PJB, Kysela DT, Brun YV, Jacobson SC (2015) Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells Analytical Chemistry 87:12032-12039 doi:10.1021/acs.analchem.5b02087spa
dc.relation.referencesHuang Q, Allen C (2000) Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants Physiological and Molecular Plant Pathology 57:77-83 doi:10.1006/pmpp.2000.0283spa
dc.relation.referencesJangir M, Pathak R, Sharma S, Sharma S (2018b) Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici Biological Control 123:60-70 doi:10.1016/j.biocontrol.2018.04.018spa
dc.relation.referencesJiang C-J et al. (2010) Abscisic Acid Interacts Antagonistically with Salicylic Acid Signaling Pathway in Rice–Magnaporthe grisea Interaction Molecular Plant-Microbe Interactions 23:791-798 doi:10.1094/MPMI-23-6-0791spa
dc.relation.referencesKalpage M, De Costa D (2015) Isolation of bacteriophages and determination of their efficiency in controlling Ralstonia solanacearum causing bacterial wilt of tomato Tropical Agricultural Research 26spa
dc.relation.referencesKanugala S et al. (2019) Chumacin-1 and Chumacin-2 from Pseudomonas aeruginosa strain CGK-KS-1 as novel quorum sensing signaling inhibitors for biocontrol of bacterial blight of rice Microbiological Research 228:126301 doi:10.1016/j.micres.2019.126301spa
dc.relation.referencesLaitila A, Alakomi HL, Raaska L, Mattila-Sandholm T, Haikara A (2002) Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley Journal of Applied Microbiology 93:566-576 doi:10.1046/j.1365-2672.2002.01731.xspa
dc.relation.referencesLamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A (2016) Toward a Reduced Reliance on Conventional Pesticides in European Agriculture Plant Disease 100:10-24 doi:10.1094/PDIS-05-15-0574-FEspa
dc.relation.referencesLeBlanc N, Essarioui A, Kinkel L, Kistler HC (2017) Phylogeny, Plant Species, and Plant Diversity Influence Carbon Use Phenotypes Among Fusarium Populations in the Rhizosphere Microbiome Phytobiomes Journal 1:150-157 doi:10.1094/PBIOMES-06-17-0028-Rspa
dc.relation.referencesLemos Blainski JM, da Rocha Neto AC, Schimidt EC, Voltolini JA, Rossi MJ, Di Piero RM (2018) Exopolysaccharides from Lactobacillus plantarum induce biochemical and physiological alterations in tomato plant against bacterial spot Applied microbiology and biotechnology 102:4741-4753 doi:10.1007/s00253-018-8946-0spa
dc.relation.referencesLobna H, Aymen EM, Hajer R, Naima MH-B, Najet H-R (2017) Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica European Journal of Plant Pathology 148:463-472 doi:10.1007/s10658-016-1104-6spa
dc.relation.referencesMadigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA, Brock T (2016) Book Review: Brock Biology of Microorganisms – 14th edition vol 99. Science Progress, vol 3. SAGE Publications Ltd. doi:10.3184/003685016X14721564318450cspa
dc.relation.referencesMcGovern RJ (2015) Management of tomato diseases caused by Fusarium oxysporum Crop Protection 73:78-92 doi:10.1016/j.cropro.2015.02.021spa
dc.relation.referencesMoreno Velandia CA (2017) Interactions between Bacillus amyloliquefaciens Bs006, Fusarium oxysporum Map5 and Cape gooseberry (Physalis peruviana). National University of Colombiaspa
dc.relation.referencesMousa WK et al. (2015) An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products Frontiers in Microbiology 6 doi:10.3389/fmicb.2015.01157spa
dc.relation.referencesNirmaladevi D et al. (2016) Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici Scientific Reports 6:21367 doi:10.1038/srep21367spa
dc.relation.referencesZhang Y, Bo C, Wang L (2019) Novel Crosstalks between Circadian Clock and Jasmonic Acid Pathway Finely Coordinate the Tradeoff among Plant Growth, Senescence and Defense International Journal of Molecular Sciences 20 doi:10.3390/ijms20215254spa
dc.relation.referencesZheng X, Zhu Y, Liu B, Lin N, Zheng D (2017) Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots Microbial Pathogenesis 113:144-151 doi:10.1016/j.micpath.2017.10.046spa
dc.relation.referencesZuluaga AP et al. (2015) Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii BMC Genomics 16:246 doi:10.1186/s12864-015-1460-1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocBacterias entomógenasspa
dc.subject.agrovocentomogenous bacteriaeng
dc.subject.agrovocEnfermedades de las plantasspa
dc.subject.agrovocFusarium oxysporumspa
dc.subject.agrovocFusarium oxysporumeng
dc.subject.agrovocRalstonia solanacearumspa
dc.subject.agrovocRalstonia solanacearumeng
dc.subject.agrovocfusariosis del tomatespa
dc.subject.agrovocFusarium wilt of tomatoeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.proposalRalstonia solanacearumspa
dc.subject.proposalFusarium oxysporumeng
dc.subject.proposalFusarium oxysporum f. sp. lycopersicieng
dc.subject.proposalFusarium oxysporumspa
dc.subject.proposalBacterias acido lácticasspa
dc.subject.proposalRalstonia solanacearumeng
dc.subject.proposalBiological controleng
dc.subject.proposalCoinfecciónspa
dc.subject.proposalControl biológicospa
dc.subject.proposalLactic acid bacteriaeng
dc.subject.proposalCoinfectioneng
dc.titleBacterias ácido lácticas como biocontroladoras de la marchitez vascular ocasionada por Fusarium oxysporum y Ralstonia solanacearum en tomatespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Christian BALs tomate.pdf
Tamaño:
3.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: