Boosted Higgs to bb𝛕𝛕 identification in Di-Higgs events at the ATLAS experiment

dc.contributor.advisorSandoval Usme, Carlos Eduardo
dc.contributor.authorGarcia Ruiz, Miguel Angel
dc.contributor.researchgroupGrupo de Partículas Fenyx-Un
dc.date.accessioned2026-01-27T17:31:48Z
dc.date.available2026-01-27T17:31:48Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractThis thesis presents a study of Higgs boson pair production in the HH → bb𝛕𝛕 decay channel, with a particular focus on the boosted regime, where the Higgs bosons are produced with high transverse momentum (pT ). In such scenarios, the decay products of each Higgs boson become highly collimated, resulting in the formation of boosted jets. Several techniques are explored to identify these boosted jets, varying from methods based on simulated and reconstructed jet information to the use of multivariate algorithms—specifically Boosted Decision Trees (BDTs). Both qualitative and quantitative evaluations are provided for each identification strategy, enabling a performance comparison among the implemented methods for boosted bb𝛕𝛕 events. Additionally, this thesis includes results from the qualification task conducted within the ATLAS experiment, which focused on the third release of datasets for the ATLAS Open Data project. A summary of the main contributions to the qualification task, along with key results, is also presented.eng
dc.description.abstractEsta tesis presenta un estudio de la producción de pares de bosones de Higgs en el canal de desintegración HH → bb𝛕𝛕, con un enfoque particular en el régimen boosted, donde los bosones de Higgs se producen con un alto momento transverso (pT). En estos escenarios, los productos de la desintegración de cada bosón de Higgs se encuentran altamente colimados, lo que da lugar a la formación de jets boosted. Se exploran diversas técnicas para identificar estos jets boosted, que van desde métodos basados en la información de la simulación y reconstrucción de jets hasta el uso de algoritmos multivariados - en particular, Boosted Decision Trees (BDTs). Se presentan evaluaciones tanto cualitativas como cuantitativas para cada estrategia de identificación, lo que permite comparar el rendimiento de los diferentes métodos implementados para eventos bb𝛕𝛕 en el régimen boosted. Adicionalmente, esta tesis incluye los resultados obtenidos durante el qualification task realizado en el experimento ATLAS, enfocado en la tercera entrega de conjuntos de datos del proyecto ATLAS Open Data. También se presenta un resumen de las principales contribuciones al qualification task, junto con los resultados más relevantes obtenidos. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaExperimental Particle Physics
dc.format.extentxiii, 138 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89333
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.relation.referencesMary K. Gaillard, Paul D. Grannis, and Frank J. Sciulli. “The Standard Model of Particle Physics”. In: (Nov. 1998). arXiv: hep- ph/9812285 [hep-ex]. url: https: //arxiv.org/pdf/hep-ph/9812285.
dc.relation.referencesD. Griffiths. Introduction to elementary particles. Wiley-VCH, 2020.
dc.relation.referencesATLAS Collaboration. “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”. In: Physics Letters B 716.1 (Aug. 2012), pp. 1–29. url: https://cds.cern.ch/record/1471031/files/plb- 716-1.pdf.
dc.relation.referencesMissMJ et al. Standard Model of Elementary Particles (Anti). Accessed: 2025-09-15. 2006. url: https://commons.wikimedia.org/wiki/File:Standard_Model_of_ Elementary_Particles_Anti.svg.
dc.relation.referencesMark Thomson. Modern Particle Physics. Cambridge University Press, 2021.
dc.relation.referencesParticle Data Group. Review of Particle Physics. Oxford: Oxford University Press, 2022, p. 2270. url: https://cds.cern.ch/record/2836514/files/ptac097.pdf.
dc.relation.referencesM. Shifman. “Historical Curiosity: How Asymptotic Freedom of the Yang-Mills Theory Could Have Been Discovered Three Times Before Gross, Wilczek, and Politzer, But Was Not”. In: (Jan. 2024). arXiv: 2203.12030 [hep-ph]. url: https://arxiv.org/ pdf/2203.12030.
dc.relation.referencesAhmed Abokhalil. “The Higgs Mechanism and Higgs Boson: Unveiling the Symmetry of the Universe”. In: (June 2023). arXiv: 2306.01019 [hep-ph]. url: https://arxiv. org/pdf/2306.01019.
dc.relation.referencesATLAS Collaboration. Legacy search for the non-resonant production of Higgs boson pairs via gluon fusion and vector-boson fusion in the b+̂b↑ ω + ω ↑ final state in proton- ↑ proton collisions at s = 13 TeV with the ATLAS detector. Tech. rep. CERN, 2024. url: https://cds.cern.ch/record/2848395/files/ATL-COM-PHYS-2023-043.pdf.
dc.relation.referencesJ. Baglio et al. “The measurement of the Higgs self-coupling at the LHC: theoretical status”. In: Journal of High Energy Physics (Apr. 2013). doi: 10.1007/JHEP04(2013) 151.
dc.relation.referencesF. Bishara, R. Contino, and J. Rojo. “Higgs pair production in vector-boson fusion at the LHC and beyond”. In: European Physical Journal C (July 2017). doi: 10.1140/ epjc/s10052-017-5037-9.
dc.relation.referencesR. Frederix et al. “Higgs pair production at the LHC with NLO and parton-shower e!ects”. In: Journal of High Energy Physics (Mar. 2014). arXiv: 1401.7340 [hep-ex]. url: https://arxiv.org/pdf/1401.7340.
dc.relation.referencesATLAS Collaboration. Measurement prospects of the pair production and self-coupling of the Higgs boson with the ATLAS experiment at the HL-LHC. Dec. 2018. url: https: //cds.cern.ch/record/2652727/files/ATL-PHYS-PUB-2018-053.pdf.
dc.relation.referencesATLAS Collaboration. HL-LHC prospects for the measurement of Higgs boson pair production in the bbbb final state and combination with the bbyy and bb𝛕𝛕 final states at the ATLAS experiment. Nov. 2022. url: https://cds.cern.ch/record/2841244/ files/ATL-PHYS-PUB-2022-053.pdf.
dc.relation.referencesL. Evans and P. Bryant. “LHC Machine”. In: Journal of Instrumentation 3.08 (2008). doi: 10.1088/1748-0221/3/08/S08001.
dc.relation.referencesCERN. The Large Hadron Collider. Accessed: 2025-08-31. url: https://home.cern/ science/accelerators/accelerator-complex.
dc.relation.referencesATLAS Collaboration. “The ATLAS Experiment at the CERN Large Hadron Col- lider”. In: Journal of Instrumentation 3.08 (2008). doi: 10.1088/1748-0221/3/08/ S08003.
dc.relation.referencesATLAS Collaboration. Experiment Overview. Technical Design Report. CERN, 1999, pp. 3–27. url: https://cds.cern.ch/record/391176/files/cer-0317330.pdf.
dc.relation.referencesV. A. Mitsou and ATLAS TRT Collaboration. “The ATLAS Transition Radiation Tracker”. In: (2003). arXiv: hep-ex/0311058 [hep-ex]. url: https://arxiv.org/ pdf/hep-ex/0311058.pdf.
dc.relation.referencesM. A. Kagan and ATLAS Collaboration. “Overview of the ATLAS Insertable B-Layer (IBL) Project”. In: Proceedings of the 2013 IEEE Nuclear Science Symposium. 2013. url: https : / / cds . cern . ch / record / 1607149 / files / ATL - INDET - PROC - 2013 - 010.pdf.
dc.relation.referencesATLAS Collaboration. Calorimeter Overview. Liquid Argon Calorimeter Technical De- sign Report. CERN, 1996, pp. 2–13. url: https://cds.cern.ch/record/331061/ files/CERN-LHCC-96-41.pdf.
dc.relation.referencesL. Pontecorvo and ATLAS Collaboration. The ATLAS Muon Spectrometer. Tech. rep. CERN, 2003. url: https://cds.cern.ch/record/676896/files/sn-atlas-2003- 030.pdf.
dc.relation.referencesA. Krasznahorkay and ATLAS Collaboration. The Evolution of the Trigger and Data Acquisition System in the ATLAS Experiment. Tech. rep. CERN, 2013. url: http: //cds.cern.ch/record/1604503/files/ATL-DAQ-PROC-2013-018.pdf.
dc.relation.referencesL. J. Caviedes Betancourt. Calibration of the NNJvt algorithm to mitigate pile-up on jets at the ATLAS experiment. Universidad Nacional de Colombia, 2024.
dc.relation.referencesDavison Soper. “Parton Distribution Functions”. In: (Sept. 1996). arXiv: hep- lat/ 9609018. url: https://arxiv.org/pdf/hep-lat/9609018.
dc.relation.referencesG. Heinrich and A. Olsson. “Perturbative QCD”. In: (Sept. 2025). arXiv: 2509.02790. url: https://arxiv.org/pdf/2509.02790.
dc.relation.referencesJohn Campbell et al. “QCD splitting functions beyond kinematical limits”. In: (May 2025). arXiv: 2505.10408. url: https://arxiv.org/pdf/2505.10408.
dc.relation.referencesParticle Data Group. Monte Carlo Event Generators. Accessed on 2025-09-10. 2024. url: https://pdg.lbl.gov/2024/reviews/rpp2024-rev-mc-event-gen.pdf.
dc.relation.referencesATLAS Collaboration. Underlying Event in ATLAS. June 2013. url: https://cds. cern.ch/record/1555403/files/ATL-PHYS-SLIDE-2013-330.pdf.
dc.relation.referencesFrancesco Rubbo. Pileup and jets at ATLAS. Aug. 2016. url: https : / / indico . cern.ch/event/566346/contributions/2291217/attachments/1329741/1997774/ jetMeetingAtBNL_20160831.pdf.
dc.relation.referencesYouqi Song. “Probing the Parton Shower and Hadronization with Novel Jet Sub- structure Measurements at STAR”. In: CERN Indico Conference. Feb. 2024. url: https://indico.cern.ch/event/1345629/contributions/5799507/attachments/ 2799656/4884811/YouqiSong_star_jetsubstructure.pdf.
dc.relation.referencesATLAS Collaboration. “Optimisation of large-radius jet reconstruction for the ATLAS detector in 13 TeV proton-proton collisions”. In: (May 2021). arXiv: 2009 . 04986 [hep-ex]. url: https://arxiv.org/pdf/2009.04986.
dc.relation.referencesATLAS Collaboration. “Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1”. In: European Physical Journal C (July 2017). doi: 10.1140/epjc/s10052-017-5004-5.
dc.relation.referencesATLAS Collaboration. “Jet reconstruction and performance using particle flow with the ATLAS Detector”. In: (Aug. 2017). arXiv: 1703.10485 [hep-ex]. url: https: //arxiv.org/pdf/1703.10485.
dc.relation.referencesATLAS Collaboration. Early Inner Detector Tracking Performance in the 2015 Data at ↑ s = 13 TeV. Dec. 2015. url: https://cds.cern.ch/record/2110140/files/ATL- PHYS-PUB-2015-051.pdf.
dc.relation.referencesATLAS Collaboration. “Jet energy scale and resolution measured in proton-proton collisions at s = 13 TeV with the ATLAS detector”. In: (Aug. 2021). arXiv: 2007. 02645 [hep-ex]. url: https://arxiv.org/pdf/2007.02645.
dc.relation.referencesM. Aaboud et al. “Jet reconstruction and performance using particle flow with the ATLAS Detector”. In: (Aug. 2017). arXiv: 1703 . 10485 [hep-ex]. url: https : / / arxiv.org/pdf/1703.10485.
dc.relation.referencesATLAS Collaboration. Improving jet substructure performance in ATLAS using Track- CaloClusters. July 2017. url: https://cds.cern.ch/record/2275636/files/ATL- PHYS-PUB-2017-015.pdf.
dc.relation.referencesATLAS Collaboration. “Optimisation of large-radius jet reconstruction for the ATLAS detector in 13 TeV proton-proton collisions”. In: (May 2021). arXiv: 2009 . 04986 [hep-ex]. url: https://arxiv.org/pdf/2009.04986.
dc.relation.referencesGavin P. Salam. “Towards Jetography”. In: European Physical Journal C (Apr. 2010). arXiv: 0906.1833 [hep-ex]. url: https://arxiv.org/pdf/0906.1833.
dc.relation.referencesGavin P. Salam and Gregory Soyez. “A practical Seedless Infrared-Safe Cone jet algo- rithm”. In: Journal of High Energy Physics (Apr. 2007). arXiv: 0704.0292 [hep-ex]. url: https://arxiv.org/pdf/0704.0292.
dc.relation.referencesSebastian Sapeta. “QCD and Jets at Hadron Colliders”. In: (Sept. 2016). arXiv: 1511. 09336. url: https://cds.cern.ch/record/2109870/files/arXiv:1511.09336. pdf.
dc.relation.referencesCMS Collaboration. A Cambridge-Aachen (C-A) based Jet Algorithm for boosted top- jet tagging. July 2009. url: https://cds.cern.ch/record/1194489/files/JME- 09-001-pas.pdf.
dc.relation.referencesMatteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-kt jet clustering algo- rithm”. In: Journal of High Energy Physics (Feb. 2008). arXiv: 0802.1189 [hep-ex]. url: https://arxiv.org/pdf/0802.1189.
dc.relation.referencesATLAS Collaboration. Tagging and suppression of pileup jets with the ATLAS detector. May 2014. url: https://cds.cern.ch/record/1700870/files/ATLAS-CONF-2014- 018.pdf.
dc.relation.referencesDavid Krohn, Jesse Thaler, and Lian-Tao Wang. “Jet Trimming”. In: (Feb. 2010). arXiv: 0912.1342 [hep-ex]. url: https://arxiv.org/pdf/0912.1342.
dc.relation.referencesGregory Soyez et al. “Pileup subtraction for jet shapes”. In: (Nov. 2012). arXiv: 1211. 2811 [hep-ex]. url: https://arxiv.org/pdf/1211.2811.
dc.relation.referencesZhong-Bo Kang et al. “Soft drop groomed jet angularities at the LHC”. In: (Apr. 2019). arXiv: 1811.06983 [hep-ex]. url: https://arxiv.org/pdf/1811.06983.
dc.relation.referencesATLAS Collaboration. “Pileup Per Particle Identification”. In: (Sept. 2014). arXiv: 1407.6013. url: https://arxiv.org/pdf/1407.6013.
dc.relation.referencesJesse Thaler and Ken Van Tilburg. “Identifying Boosted Objects with N-subjettiness”. In: (Jan. 2011). arXiv: 1011.2268. url: https://arxiv.org/pdf/1011.2268.
dc.relation.referencesAndrew J. Larkoski, Gavin P. Salamb, and Jesse Thaler. “Energy Correlation Functions for Jet Substructure”. In: (July 2013).
dc.relation.referencesATLAS Collaboration. Run 2 Jet Moments. Accessed: 2025-09-31. url: https : / / twiki.cern.ch/twiki/bin/view/AtlasProtected/Run2JetMoments.
dc.relation.referencesF. Anselmo et al. “Event Generators for LHC”. In: (1995). url: https://cds.cern. ch/record/220309/files/p130.pdf.
dc.relation.referencesTorbjörn Sjöstrand. “Monte Carlo generators”. In: (Nov. 2006). url: https://cds. cern.ch/record/999717/files/p51.pdf.
dc.relation.referencesStefan Höche. “Introduction to parton-shower event generators”. In: (June 2015). arXiv: 1411.4085. url: https://arxiv.org/pdf/1411.4085.
dc.relation.referencesEnrico Bothmann et al. “Event generation with SHERPA”. In: (Oct. 2024). arXiv: 2410.22148. url: https://arxiv.org/pdf/2410.22148.
dc.relation.referencesAlwall J. et al. “The automated computation of tree-level and next-to-leading order di!erential cross sections, and their matching to parton shower simulations”. In: (July 2014). arXiv: 1405.0301. url: https://arxiv.org/pdf/1405.0301.
dc.relation.referencesTorbjörn Sjöstrand, Stephen Mrenna, and Peter Z. Skands. “PYTHIA 6.4 Physics and Manual”. In: (May 2006). arXiv: hep-ph/0603175. url: https://arxiv.org/pdf/ hep-ph/0603175.
dc.relation.referencesAndrea Banfi et al. “A POWHEG generator for deep inelastic scattering”. In: (Feb. 2024). arXiv: 2309.02127. url: https://arxiv.org/pdf/2309.02127.
dc.relation.referencesChristian Bierlich et al. “A comprehensive guide to the physics and usage of PYTHIA 8.3”. In: (Mar. 2022). arXiv: 2203.11601. url: https://arxiv.org/pdf/2203.11601.
dc.relation.referencesTullio Basaglia et al. “Geant4: a Game Changer in High Energy Physics and Related Applicative Fields”. In: (May 2024). arXiv: 2405.12159. url: https://arxiv.org/ pdf/2405.12159.
dc.relation.referencesPich A. “Precision Tau Physics”. In: (Dec. 2013). arXiv: 1310.7922 [hep-ph]. url: https://arxiv.org/pdf/1310.7922.
dc.relation.referencesATLAS Collaboration. “Search for resonant and non-resonant Higgs boson pair pro- duction in the b+b-𝛕+𝛕- decay channel using 13 TeV pp collision data from the ATLAS detector”. In: (2023). arXiv: 2209.10910 [hep-ex]. url: https://arxiv.org/pdf/ 2209.10910.
dc.relation.referencesATLAS Collaboration. “Search for the non-resonant production of Higgs boson pairs via gluon fusion and vector-boson fusion in the b+b-𝛕+𝛕- final state in proton–proton collisions at s = 13 TeV with the ATLAS detector”. In: (2024). arXiv: 2404.12660 [hep-ex]. url: https://arxiv.org/pdf/2404.12660.
dc.relation.referencesATLAS Collaboration. “Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton–proton collision data”. In: (2014). arXiv: 1404.2240 [hep-ex]. url: https://arxiv.org/pdf/1404.2240.
dc.relation.referencesATLAS Collaboration. “Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using s = 13 TeV p-p collisions with the ATLAS detector”. In: (2023). arXiv: 2306.03637 [hep-ex]. url: https://arxiv.org/pdf/2306.03637.
dc.relation.referencesATLAS Collaboration. “Constraints on Higgs boson production with large transverse momentum using H → bb̄ decays in the ATLAS detector”. In: (2024). arXiv: 2111. 08340 [hep-ex]. url: https://arxiv.org/pdf/2111.08340.
dc.relation.referencesA. Vaswani et al. “Attention is All You Need”. In: Advances in Neural Information Processing Systems. 2017. arXiv: 1706.03762 [cs.CL]. url: https://arxiv.org/ pdf/1706.03762.
dc.relation.referencesATLAS Collaboration. Transformer Neural Networks for Identifying Boosted Higgs Bosons decaying into bb̄ and cc̄ in ATLAS. Tech. rep. CERN, 2023. url: https : //cds.cern.ch/record/2866601/files/ATL-PHYS-PUB-2023-021.pdf.
dc.relation.referencesD. Krohn, J. Thaler, and L.-T. Wang. “Jets with Variable R”. In: (2009). arXiv: 0903.0392 [hep-ph]. url: https://arxiv.org/pdf/0903.0392.
dc.relation.referencesATLAS Collaboration. Variable Radius, Exclusive-kt , and Center-of-Mass Subjet Re- construction for Higgs(→ bb̄) Tagging in ATLAS. Tech. rep. CERN, 2017. url: https: //cds.cern.ch/record/2268678/files/ATL-PHYS-PUB-2017-010.pdf.
dc.relation.referencesATLAS Collaboration. Identification of Boosted Higgs Bosons Decaying Into bb̄ With Neural Networks and Variable Radius Subjets in ATLAS. Tech. rep. CERN, 2020. url: https://cds.cern.ch/record/2724739/files/ATL-PHYS-PUB-2020-019.pdf.
dc.relation.referencesATLAS Collaboration. Efficiency corrections for a tagger for boosted H → bb̄ decays in p-p collisions at s = 13 TeV with the ATLAS detector. Tech. rep. CERN, 2021. url: https://cds.cern.ch/record/2777811/files/ATL-PHYS-PUB-2021-035.pdf.
dc.relation.referencesATLAS Collaboration. Optimisation and performance studies of the ATLAS b-tagging algorithms for the 2017-18 LHC run. ATLAS Public Note. CERN, July 2017. url: https://cds.cern.ch/record/2273281/files/ATL-PHYS-PUB-2017-013.pdf.
dc.relation.referencesATLAS Collaboration. Identification of Boosted Higgs Bosons decaying into a pair of collimated 𝛕-leptons decaying hadronically with Transformer Neural Networks in ATLAS. ATLAS Public Note. CERN, May 2025. url: https://cds.cern.ch/record/2933253/files/ATL-PHYS-PUB-2025-026.pdf.
dc.relation.referencesATLAS Collaboration. “Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in pp collisions at s = 8 TeV”. In: (July 2015). arXiv: 1412.7086 [hep-ex]. url: https://arxiv.org/pdf/1412.7086.
dc.relation.referencesATLAS Collaboration. Measurement of the tau lepton reconstruction and identification performance in the ATLAS experiment using pp collisions at s = 13 TeV. ATLAS Conference Note. CERN, May 2017. url: https://cds.cern.ch/record/2261772/ files/ATLAS-CONF-2017-029.pdf.
dc.relation.referencesATLAS Collaboration. “Reconstruction and identification of boosted di-𝛕 systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS”. In: (Dec. 2020). arXiv: 2007.14811. url: https://arxiv.org/pdf/2007.14811.
dc.relation.referencesATLAS Collaboration. “Improved reconstruction of highly boosted 𝛕-lepton pairs in the 𝛕𝛕→ (µ𝛕µ 𝛕ε )(hadrons + 𝛕ε ) decay channels with the ATLAS detector”. In: (July 2025). arXiv: 2412.14937 [hep-ex]. url: https://arxiv.org/pdf/2412.14937.
dc.relation.referencesA. J. Larkoski et al. “Soft drop”. In: JHEP (May 2014). doi: 10.1007/JHEP05(2014) 146. url: http://dx.doi.org/10.1007/JHEP05(2014)146.
dc.relation.referencesM. Dasgupta et al. “Towards an understanding of jet substructure”. In: JHEP (Sept. 2013). doi: 10 . 1007 / JHEP09(2013 ) 029. url: http : / / dx . doi . org / 10 . 1007 / JHEP09(2013)029.
dc.relation.referencesP. Berta et al. “Particle-level pileup subtraction for jets and jet shapes”. In: JHEP (June 2014). doi: 10.1007/JHEP06(2014)092. url: http://dx.doi.org/10.1007/ JHEP06(2014)092.
dc.relation.referencesM. Cacciari, G. P. Salam, and G. Soyez. “SoftKiller, a particle-level pileup removal method”. In: Eur. Phys. J. C (Feb. 2015). doi: 10.1140/epjc/s10052-015-3267-2. url: http://dx.doi.org/10.1140/epjc/s10052-015-3267-2.
dc.relation.referencesM. Cacciari, G. P. Salam, and G. Soyez. “The catchment area of jets”. In: JHEP (Apr. 2008). doi: 10.1088/1126- 6708/2008/04/005. url: https://dx.doi.org/10. 1088/1126-6708/2008/04/005.
dc.relation.referencesATLAS Collaboration. Development of ATLAS Primary Vertex Reconstruction for LHC Run 3. ATLAS Public Note. CERN, Apr. 2019. url: https://cds.cern.ch/ record/2670380/files/ATL-PHYS-PUB-2019-015.pdf.
dc.relation.referencesATLAS Collaboration. Easyjet Framework – GitLab Repository. https://gitlab.cern.ch/easyjet/easyjet. Accessed: 2025-09-13.
dc.relation.referencesM. A. Garcia Ruiz. GitHub Repository - Thesis Work: HHbbtautau-boosted-analysis. Accessed: 2025-09-13. 2025. url: https://github.com/Miagarciaru/HHbbtautau-boosted-analysis.
dc.relation.referencesCERN. PDG Identifiers. https://pdg.web.cern.ch/pdg/2020/pdgid/PDGIdentifiers. html. Accessed: 2025-08-31.
dc.relation.referencesCERN. ATLAS Open Data Website. https://opendata.atlas.cern/. Accessed: 2025-08-31.
dc.relation.referencesATLAS Collaboration. Review of the 13 TeV ATLAS Open Data release. ATLAS Analysis Note. CERN, Apr. 2020. url: https://cds.cern.ch/record/2707171/files/ ANA-OTRC-2019-01-PUB-updated.pdf.
dc.relation.referencesBinder. url: https://mybinder.org/ (visited on 09/13/2025).
dc.relation.referencesKaggle. url: https://www.kaggle.com/ (visited on 09/13/2025).
dc.relation.referencesSWAN. url: https://swan.web.cern.ch/swan/ (visited on 09/13/2025).
dc.relation.referencesDocker. url: https://www.docker.com/ (visited on 09/13/2025).
dc.relation.referencesATLAS Open Data C++ Framework Repository. url: https://github.com/atlas- outreach-data-tools/atlas-outreach-cpp-framework-13tev (visited on 09/13/2025).
dc.relation.referencesATLAS Open Data Derivation Framework. url: https://opendata.atlas.cern/ docs/tutresearch/derivation_framework (visited on 09/13/2025).
dc.relation.referencesIJC-Lab. Irène Joliot-Curie Lab. Accessed: 2025-09-31. url: https://www.ijclab. in2p3.fr/en/home/.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.subject.blaaAtlas open data (Plataforma)
dc.subject.blaaFísica de altas energías
dc.subject.blaaBosón de Higgs
dc.subject.bnePartículas (Física nuclear)
dc.subject.ddc530 - Física
dc.subject.proposalDi-Higgs productioneng
dc.subject.proposalBoosted jetseng
dc.subject.proposalHigh energy regimeeng
dc.subject.proposalROOTeng
dc.subject.proposalMachine learning techniqueseng
dc.subject.proposalATLAS open dataeng
dc.subject.proposalProducción de di-Higgsspa
dc.subject.proposalJets boostedspa
dc.subject.proposalRégimen de altas energı́asspa
dc.subject.proposalROOTspa
dc.subject.proposalTécnicas de machine learningspa
dc.subject.proposalDatos abiertos del experimento ATLASspa
dc.subject.wikidataRooteng
dc.subject.wikidataMachine learning techniqueeng
dc.subject.wikidataHiggs bosoneng
dc.subject.wikidataBosón de Higgsspa
dc.titleBoosted Higgs to bb𝛕𝛕 identification in Di-Higgs events at the ATLAS experimenteng
dc.title.translatedIdentificación de Higgs potenciados a bb𝛕𝛕 en eventos de di-Higgs en el experimento ATLASspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
corrected_master_thesis_current_version_not_signed.pdf
Tamaño:
8.82 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: