Caracterización bioquímica, funcional y biológica del veneno de Crotalus durissus cumanensis colombiana

dc.contributor.advisorVega Castro, Nohora Angélica
dc.contributor.advisorUmaña Pérez, Yadi Adriana
dc.contributor.authorRodríguez Vargas, Ariadna Lorena
dc.contributor.cvlacRODRIGUEZ VARGAS, ARIADNA LORENA [0001378971]spa
dc.contributor.googlescholarRodriguez Vargas, Ariadna [m3BS1-EAAAAJ&hl=es]spa
dc.contributor.orcidRodríguez-Vargas Ariadna [000000016636987X]spa
dc.contributor.researchgateRodriguez Vargas Ariadna Lorena [Ariadna-Rodriguez-Vargas]spa
dc.contributor.researchgroupGrupo de Investigación en Proteinas Gripspa
dc.date.accessioned2024-03-19T16:05:34Z
dc.date.available2024-03-19T16:05:34Z
dc.date.issued2023
dc.descriptionilustraciones, fotografias, diagramasspa
dc.description.abstractEn el veneno de serpientes cascabel predomina la actividad neurotóxica de las fosfolipasas tipo A2 (PLA2) y las miotoxinas de bajo peso molecular, además de los efectos hemocitotóxicos relacionados con proteasas. Se evaluaron las diferencias bioquímicas y biológicas en los venenos de Crotalus durissus cumanensis de tres ecorregiones de Colombia: Magdalena Medio (MM), Caribe (CA) y Orinoquía (OR). Se realizaron SDSPAGE y HPLC, letalidad, desfibrinación, procoagulación y actividades enzimáticas. Se realizó el reconocimiento de los antivenenos, mediante determinación de dosis efectiva (ED), Western blotting (WB) y ELISA. En los tres venenos, se encontraron proteasas y PLA2, incluida la subunidad básica de crotoxina. Solo se detectó crotamina en el veneno de CA. Hubo mayor letalidad, actividad coagulante, actividad fosfolipasa A2 y actividad hialuronidasa para el veneno de MM. Se encontraron diferencias en el reconocimiento de los antivenenos de uso comercial, colombiano y mexicano, por WB e inmunoafinidad. Existe variabilidad intraespecífica, considerando las diferencias en la abundancia e intensidad de los componentes, además de la actividad y respuesta a los antivenenos. La lectina tipo C (CTL) del veneno pudo ser aislada parcialmente y aparece unida a una serinoproteasa, al parecer por efecto de su glicosilación. Esta CTL mostró un efecto proliferativo sobre líneas celulares. Se purificó crotamina y se modeló su estructura tridimensional. Se demostró su efecto sobre la línea celular de cáncer de pulmón A549, mostrando un interesante efecto pro-apoptótico. Además, se hizo un docking molecular con una canal de potasio dependiente de voltaje, que también estaría involucrado en su efecto citotóxico. (Texto tomado de la fuente)spa
dc.description.abstractIn rattlesnake venom, the neurotoxic activity of phospholipase A2 (PLA2) and low molecular weight myotoxins predominates, in addition to protease-related hemocytotoxic effects. Biochemical and biological differences in Crotalus durissus cumanensis venoms from three ecoregions of Colombia: Magdalena Medio (MM), Caribe (CA) and Orinoquía (OR) were evaluated. SDS-PAGE and HPLC, lethality, defibrination, procoagulation, and enzymatic activities were performed. Recognition of antivenoms was achieved by determination of effective dose (ED), Western blotting (WB) and ELISA. In all three venoms, proteases and PLA2, including the basic crotoxin subunit, were found. Crotamine was only detected in CA venom. There was higher lethality, coagulant activity, phospholipase A2 activity, and hyaluronidase activity for the MM venom. Differences were found in the recognition of commercially used antivenoms, Colombian and Mexican, by WB and immunoaffinity. There is intraspecific variability, considering the differences in the abundance and intensity of the components, as well as the activity and response to antivenoms. The C-type lectin (CTL) of the venom could be partially isolated and appears bound to a serineprotease, apparently due to its glycosylation. This CTL showed a proliferative effect on cell lines. Crotamine was purified and its three-dimensional structure was modeled. Its effect on the A549 lung cancer cell line was demonstrated, showing an interesting pro-apoptotic effect. In addition, a molecular docking with a voltage-gated potassium channel was made, which would also be involved in its cytotoxic effect.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ciencias - Bioquímicaspa
dc.description.researchareaEstudio de lectinas de venenos animalesspa
dc.description.sponsorshipMinciencias | Ministerio de Ciencia Tecnología e Innovaciónspa
dc.description.sponsorshipColfuturospa
dc.format.extentxxvii, 292 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85817
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Bioquímicaspa
dc.relation.referencesAcosta-Peña, A., Núñez, V., Pereañez, J., & Rey-Suárez, P. (2022). Immunorecognition and Neutralization of Crotalus durissus cumanensis Venom by a Commercial Antivenom Produced in Colombia. Toxins, 14(235), 1–14.spa
dc.relation.referencesAdade, C., Carvalho, A., Tomaz, M., Costa, T., Godinho, J., Melo, P., Lima, A. P., Rodrigues, J., Zingali, R., & Souto-Padrón, T. (2014). Crovirin, a Snake Venom Cysteine-Rich Secretory Protein (CRISP) with Promising Activity against Trypanosomes and Leishmania. PLoS Neglected Tropical Diseases, 8(10), 1–12. https://doi.org/10.1371/journal.pntd.0003252spa
dc.relation.referencesAgarwal, J. R., Griesinger, F., Stühmer, W., & Pardo, L. A. (2010). The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Molecular Cancer, 9(1), 18. https://doi.org/10.1186/1476-4598-9-18spa
dc.relation.referencesAguilar, I., Guerrero, B., Salazar, A. M., Giro, M. E., Peez, J. C., Sachez, E. E., & Rodrıuez-Acosta, A. (2007). Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon, 50, 214–224.spa
dc.relation.referencesAlam Rojas, S. N. (2022). Purificación y evaluacion de la actividad biologica de la lectina del veneno de Crotalus durissus cumanensis. Universidad Nacional de Colombia.spa
dc.relation.referencesAlexander, G., Grothusen, J., Zepeda, H., & Schwartzman, R. J. (1988). Gyroxin, a toxin from the venom of Crotalus durissus terrificus, is a thrombin-like enzyme. Toxicon : Official Journal of the International Society on Toxinology, 26(10), 953–960. https://doi.org/10.1016/0041-0101(88)90260-7spa
dc.relation.referencesAlmeida, J., Resende, L., Watanabe, R., Corassola, V., Huancahuire-Vega, S., Caldeira, C., Coutinho-Neto, A., Soares, A., Vale, N., Gomes, P., Marangoni, S., Calderon, L., & Da Silva, S. (2016). Snake venom peptides and low mass proteins: Molecular tools and therapeutic agents. Current Medicinal Chemistry, 23, 1–29.spa
dc.relation.referencesAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2spa
dc.relation.referencesAlvarez-Flores, M. P., Faria, F., de Andrade, S. A., & Chudzinski-Tavassi, A. M. (2017). Snake Venom Components Affecting the Coagulation System. In Snake Venoms (Issue February 2019, pp. 5–6). https://doi.org/10.1007/978-94-007-6410-1spa
dc.relation.referencesAlves, B. F. A., & Ferreira, R. S. (2022). Antineoplastic properties and pharmacological applications of Crotalus durissus terrificus snake venom. Revista Da Sociedade Brasileira de Medicina Tropical, 55(August), 1–10. https://doi.org/10.1590/0037- 8682-0323-2022spa
dc.relation.referencesAmazonas, D. R., Portes-Junior, J. A., Nishiyama-Jr, M. Y., Nicolau, C. A., Chalkidis, H. M., Mourão, R. H. V., Grazziotin, F. G., Rokyta, D. R., Gibbs, H. L., Valente, R. H., Junqueira-de-Azevedo, I. L. M., & Moura-da-Silva, A. M. (2018). Molecular mechanisms underlying intraspecific variation in snake venom. Journal of Proteomics, 181, 60–72. https://doi.org/10.1016/j.jprot.2018.03.032spa
dc.relation.referencesAndrade-Silva, D., Ashline, D., Tran, T., Lopes, A. S., Cardoso, S. R. T., Da Silva Reis, M., Zelanis, A., Serrano, S. M. T., & Reinhold, V. (2018). Structures of N-glycans of bothrops venoms revealed as molecular signatures that contribute to venom phenotype in viperid snakes. Molecular and Cellular Proteomics, 17(7), 1261–1284. https://doi.org/10.1074/mcp.RA118.000748spa
dc.relation.referencesAndrade-Silva, D., Zelanis, A., Kitano, E. S., Junqueira-De-Azevedo, I. L. M., Reis, M. S., Lopes, A. S., & Serrano, S. M. T. (2016). Proteomic and glycoproteomic profilings reveal that post-translational modifications of toxins contribute to venom phenotype in snakes. Journal of Proteome Research, 15(8), 2658–2675. https://doi.org/10.1021/acs.jproteome.6b00217spa
dc.relation.referencesAndrade-Silva, D., Zelanis, A., Travaglia-Cardoso, S. R., Nishiyama-Jr, M. Y., & Serrano, S. M. T. (2021). Venom Profiling of the Insular Species Bothrops alcatraz: Characterization of Proteome, Glycoproteome, and N-Terminome Using Terminal Amine Isotopic Labeling of Substrates. Journal of Proteome, 20, 1341–1358.spa
dc.relation.referencesAndrew, S. M., & Titus, J. A. (2001). Fragmentation of Immunoglobulin G. In Current Protocols in Immunology (Vol. 21, Issue 1, pp. 2.8.1-2.8.10). John Wiley & Sons, Ltd. https://doi.org/10.1002/0471142735.im0208s21spa
dc.relation.referencesAngulo, Y., Castro, A., Lomonte, B., Rucavado, A., Fernández, J., Calvete, J., & Gutiérrez, J. M. (2014). Isolation and characterization of four medium-size disintegrins from the venoms of Central American viperid snakes of the genera Atropoides, Bothrops, Cerrophidion and Crotalus. Biochimie, 107, 376–384. https://doi.org/10.1016/j.biochi.2014.10.010spa
dc.relation.referencesAngulo, Y., & Lomonte, B. (2009). Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper. Toxicon, 54, 949–957.spa
dc.relation.referencesAntúnez, J., Fernández, J., Lomonte, B., Angulo, Y., Sanz, L., Pérez, A., Calvete, J., & Gutiérrez, J. M. (2010). Antivenomics of Atropoides mexicanus and Atropoides picadoi snake venoms: Relationship to the neutralization of toxic and enzymatic activities. Journal of Venom Research, 1, 8–17.spa
dc.relation.referencesAragón-Ortiz, F., Mentele, R., & Auerswald, E. A. (1996). Amino acid sequence of a lectin-like protein from Lachesis muta stenophyrs venom. Toxicon : Official Journal of the International Society on Toxinology, 34(7), 763–769. https://doi.org/10.1016/0041-0101(96)00011-6spa
dc.relation.referencesAranda-Souza, M. A., Rossato, F. A., Costa, R. A. P., Figueira, T. R., Castilho, R. F., Guarniere, M. C., Nunes, E. S., Coelho, L. C. B. B., Correia, M. T. S., & Vercesi, A. E. (2014). A lectin from Bothrops leucurus snake venom raises cytosolic calcium levels and promotes B16-F10 melanoma necrotic cell death via mitochondrial permeability transition. Toxicon, 82, 97–103.spa
dc.relation.referencesArbuckle, K. (2017). Evolutionary Context of Venom in Animals. In P Gopalakrishnakone & A. Malhotra (Eds.), Evolution of Venomous Animals and Their Toxins (1st ed., pp. 3–31). Springer. https://doi.org/10.1007/978-94-007-6458-3_16spa
dc.relation.referencesArévalo-Páez, M., Rada-Vargas, E., Betancur-Hurtado, C., Renjifo, J. M., & Renjifo- Ibáñez, C. (2017). Neuromuscular effect of venoms from adults and juveniles of Crotalus durissus cumanensis (Humboldt, 1811) from Guajira, Colombia. Toxicon, 139, 41–44.spa
dc.relation.referencesArlinghaus, F. T., & Eble, J. A. (2012). C-type lectin-like proteins from snake venoms. Toxicon, 60, 512–519.spa
dc.relation.referencesArnaud, G., García-de León, F. J., Beltrán, L. F., & Carbajal-Saucedo, A. (2021). Proteomic comparison of adult and juvenile Santa Catalina rattlesnake (Crotalus catalinensis) venom. Toxicon, 193(December 2020), 55–62. https://doi.org/10.1016/j.toxicon.2021.01.014spa
dc.relation.referencesAyerbe, S. (2009). Ofidismo en Colombia. Enfoque, diagnóstico y tratamiento. In R. Ordóñez, Carlos; Ferrada, Ricardo; Buitrago (Ed.), Cuidado intensivo y trauma (2nd ed., pp. 1143–1168). Distribuna.spa
dc.relation.referencesBaaten, B. J. G., Li, C. R., & Bradley, L. M. (2010). Multifaceted regulation of T cells by CD44. Communicative and Integrative Biology, 3(6), 508–512. https://doi.org/10.4161/cib.3.6.13495spa
dc.relation.referencesBaaten, B. J. G., Tinoco, R., Chen, A. T., & Bradley, L. M. (2012). Regulation of antigen-experienced T cells: Lessons from the quintessential memory marker CD44. Frontiers in Immunology, 3(FEB), 1–12. https://doi.org/10.3389/fimmu.2012.00023spa
dc.relation.referencesBachmann, M., Costa, R., Peruzzo, R., Prosdocimi, E., Checchetto, V., & Leanza, L. (2018). Targeting Mitochondrial Ion Channels to Fight Cancer. International Journal of Molecular Sciences, 19(7). https://doi.org/10.3390/ijms19072060spa
dc.relation.referencesBaines, M. G., & Thorpe, R. (1992). Purification of immunoglobulin g (IgG). Methods inMolecular Biology (Clifton, N.J.), 80, 79–104. https://doi.org/10.1385/0-89603-204-3:79spa
dc.relation.referencesBanerjee, A., Lee, A., Campbell, E., & MacKinnon, R. (2013). Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. ELife, 2013(2), 1–22. https://doi.org/10.7554/eLife.00594spa
dc.relation.referencesBarros, L. C., Soares, A. M., Costa, F. L., Rodrigues, V. M., Fuly, A. L., Giglio, J. R., Gallacci, M., Thomazini-Santos, I. A., Barraviera, S., Barraviera, B., & Ferreira Junior, R. S. (2011). Biochemical and biological evaluation of gyroxin isolated from Crotalus durissus terrificus venom. In Journal of Venomous Animals and Toxins including Tropical Diseases (Vol. 17). scielo .spa
dc.relation.referencesBatista da Cunha, D., Pupo Silvestrini, A. V., Gomes da Silva, A. C., Maria de Paula Estevam, D., Pollettini, F. L., de Oliveira Navarro, J., Alves, A. A., Remédio Zeni Beretta, A. L., Annichino Bizzacchi, J. M., Pereira, L. C., & Mazzi, M. V. (2018). Mechanistic insights into functional characteristics of native crotamine. Toxicon, 146, 1–12. https://doi.org/10.1016/j.toxicon.2018.03.007spa
dc.relation.referencesBatuwangala, T., Leduc, M., Gibbins, J. M., Bon, C., & Jones, E. Y. (2004). Structure of the snake-venom toxin convulxin. Acta Crystallographica Section D: Biological Crystallography, 60(1), 46–53. https://doi.org/10.1107/S0907444903021620spa
dc.relation.referencesBaudou, F. G., Litwin, S., Lanari, L. C., Laskowicz, R. D., Damin, C. F., Chippaux, J. P., & de Roodt, A. R. (2017). Antivenom against Crotalus durissus terrificus venom: Immunochemical reactivity and experimental neutralizing capacity. Toxicon, 140, 11– 17.spa
dc.relation.referencesBerman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235spa
dc.relation.referencesBhattacharjee, E., Mitra, J., & Bhattacharyya, D. (2017). L-Amino Acid Oxidase from Venoms. In Ponnampalam Gopalakrishnakone, L. J. Cruz, & S. Luo (Eds.), Toxins and drug discovery (1st ed., pp. 295–320). Springer.spa
dc.relation.referencesBickler, P. (2020). Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways. Toxins, 12(68), 1–26.spa
dc.relation.referencesBioclon. (2016). Full Prescribing Information (FPI) Antivipmyn®Tri. Instituto Bioclon, S.A. de C.V. https://archiveansm.integra.fr/afssaps/content/download/149311/1964979/version/2/file/FINAL_Antivipmyn+Tri+IPP-A_sep2016_ENG.pdfspa
dc.relation.referencesBlair, C., & Sánchez-Ramírez, S. (2016). Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus). Molecular Phylogenetics and Evolution, 97, 145–154. https://doi.org/10.1016/j.ympev.2015.12.020spa
dc.relation.referencesBocian, A., Urbanik, M., Hus, K., Łyskowski, A., Petrilla, V., Andrejčáková, Z., Petrillová, M., & Legáth, J. (2016). Proteomic analyses of Agkistrodon contortrix contortrix venom using 2D electrophoresis and MS techniques. Toxins, 8(12). https://doi.org/10.3390/toxins8120372spa
dc.relation.referencesBoldrini-França, J., Cologna, C. T., Pucca, M. B., Bordon, K. de C. F., Amorim, F. G., Anjolette, F. A. P., Cordeiro, F. A., Wiezel, G. A., Cerni, F. A., Pinheiro-Junior, E. L., Shibao, P. Y. T., Ferreira, I. G., de Oliveira, I. S., Cardoso, I. A., Arantes, E. C., De Castro, K., Bordon, F., Amorim, F. G., Pino Anjolette, F. A., ... Au-Gusto Cerni, F. (2017). Minor snake venom proteins: Structure, function and potential applications. Biochimica et Biophysica Acta (BBA), 1861(4), 824–838. https://doi.org/10.1016/j.bbagen.2016.12.022spa
dc.relation.referencesBoldrini-França, J., Corrêa-Netto, C., Silva, M. M. S., Rodrigues, R. S., De La Torre, P., Pérez, A., Soares, A. M., Zingali, R. B., Nogueira, R. A., Rodrigues, V. M., Sanz, L., & Calvete, J. (2010). Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. Journal of Proteomics, 73, 1758–1776. https://doi.org/10.1016/j.jprot.2010.06.001spa
dc.relation.referencesBollag, D. M., & Edelstein, S. J. (1991). Isoelectric focusing and two dimensional gel electrophoresis. In D. M. Bollag, M. D. Roziycki, & S. J. Edelstein (Eds.), Protein method (pp. 161–174). Wiley-Liss a John Wiley & sons, INK.spa
dc.relation.referencesBonnardel, F., Mariethoz, J., Salentin, S., Robin, X., Schroeder, M., Perez, S., Lisacek, F., & Imberty, A. (2019). UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands. Nucleic Acids Research, 47(D1), D1236–D1244. https://doi.org/10.1093/nar/gky832spa
dc.relation.referencesBordon, K. C. F., Perino, M. G., Giglio, J. R., & Arantes, E. C. (2012). Isolation, enzymatic characterization and antiedematogenic activity of the first reported rattlesnake hyaluronidase from Crotalus durissus terrificus venom. Biochimie, 94, 2740–2748. https://doi.org/10.1016/j.biochi.2012.08.014spa
dc.relation.referencesBorja, M., Neri-Castro, E., Pérez-Morales, R., Strickland, J., Ponce-López, R., Parkinson, C., Espinosa-Fematt, J., Sáenz-Mata, J., Flores-Martínez, E., Alagón, A., & Castañeda-Gaytán, G. (2018). Ontogenetic change in the venom of mexican blacktailed rattlesnakes (Crotalus molossus nigrescens). Toxins, 10(12).spa
dc.relation.referencesBoyer, R. F., & Boyer, R. (2006). Biochemistry laboratory: modern theory and techniques. Benjamin Cummings San Francisco.spa
dc.relation.referencesBray, F., Ren, J., Masuyer, E., & Ferlay, J. (2013). Estimates of global cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer., 132(5), 1133–1145.spa
dc.relation.referencesBrissett, N. C., & Perkins, S. J. (1996). The protein fold of the hyaluronate-binding proteoglycan tandem repeat domain of link protein, aggrecan and CD44 is similar to that of the C-type lectin superfamily. FEBS Letters, 388(2–3), 211–216. https://doi.org/https://doi.org/10.1016/0014-5793(96)00576-5spa
dc.relation.referencesBurnette, W. N. (1981). “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry, 112(2), 195–203. https://doi.org/10.1016/0003-2697(81)90281-5spa
dc.relation.referencesCalderon, L. A., Sobrinho, J. C., Zaqueo, K. D., de Moura, A. A., Grabner, A. N., Mazzi, M. V, Marcussi, S., Nomizo, A., Fernandes, C. F., Zuliani, J. P., Carvalho, B. M., da Silva, S. L., Stabeli, R. G., & Soares, A. M. (2014). Antitumoral activity of snake venom proteins: new trends in cancer therapy. Biomed Res Int, 2014, 1–19.spa
dc.relation.referencesCalvete, J. (2013). Snake venomics: From the inventory of toxins to biology. Toxicon, 75, 44–62. https://doi.org/10.1016/j.toxicon.2013.03.020spa
dc.relation.referencesCalvete, J. (2017). Venomics: integrative venom proteomics and beyond. Biochemical Journal, 474(5). https://doi.org/10.1042/BCJ20160577spa
dc.relation.referencesCalvete, J., Fasoli, E., Sanz, L., Boschetti, E., & Righetti, P. G. (2009). Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. Journal of Proteome Research, 8(6), 3055–3067.spa
dc.relation.referencesCalvete, J., Sanz, L., Angulo, Y., Lomonte, B., Gutiérrez, J. M., & De La Rosa, M. (2009). Venoms, venomics, antivenomics. FEBS Letters, 583, 1736–1743.spa
dc.relation.referencesCalvete, J., Sanz, L., Cid, P., De La Torre, P., Flores-Díaz, M., dos Santos, M., Borges, A., Bremo, A., Angulo, Y., Lomonte, B., Alape-Girón, A., & Gutiérrez, J. M. (2010). Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America. Journal of Proteome Research, 9, 528–544.spa
dc.relation.referencesCampbell, J., & Lamar, W. (2004). The venomous reptiles of the western hemisphere. Comstock Press.spa
dc.relation.referencesCampeiro, J. D., Marinovic, M. P., Carapeto, F. C., Dal Mas, C., Monte, G. G., Carvalho Porta, L., Nering, M. B., Oliveira, E. B., & Hayashi, M. A. F. (2018). Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids, 50(2), 267–278. https://doi.org/10.1007/s00726-017-2513-3spa
dc.relation.referencesCarbajal-Márquez, R. A., Cedeño-Vázquez, J. R., Martínez-Arce, A., Neri-Castro, E., & Machkour- M’Rabet, S. C. (2020). Accessing cryptic diversity in Neotropical rattlesnakes (Serpentes: Viperidae: Crotalus) with the description of two new species. Zootaxa, 4729(4), 451–481.spa
dc.relation.referencesCarvalho, D. D., Marangoni, S., Oliveira, B., & Novello, J. C. (1998). Isolation and Characterization of a New Lectin From the Venom of the Snake Bothrops jararacussu. Biochemistry and Molecular Biology International, 44(5), 933–938.spa
dc.relation.referencesCarvalho, E. V. M. M., Oliveira, W. F., Coelho, L. C. B. B., & Correia, M. T. S. (2018). Lectins as mitosis stimulating factors: Briefly reviewed. Life Sciences, 207(April), 152–157. https://doi.org/10.1016/j.lfs.2018.06.003spa
dc.relation.referencesCasewell, N. R., Jackson, T. N. W., Laustsen, A. H., & Sunagar, K. (2020). Causes and Consequences of Snake Venom Variation. Trends in Pharmacological Sciences, 41(8), 570–581. https://doi.org/10.1016/j.tips.2020.05.006spa
dc.relation.referencesCastaño, S. (2019). Informe del Evento: Accidente Ofídico, Colombia, 2019. Report. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ACCIDENTE_OFÍDICIO_2019.pdfspa
dc.relation.referencesCastro, H. C., Zingali, R. B., Albuquerque, M. G., Pujol-Luz, M., & Rodrigues, C. R. (2004). Snake venom thrombin-like enzymes: from reptilase to now. Cellular and Molecular Life Sciences : CMLS, 61(7–8), 843–856. https://doi.org/10.1007/s00018- 003-3325-zspa
dc.relation.referencesCéspedes, N., Castro, F., Jiménez, E., Montealegre, L., Castellanos, A., Cañas, C., Arévalo-Herrera, M., & Herrera, S. (2010). Biochemical comparison of venoms from young Colombian Crotalus durissus cumanensis and their parents. Journal of Venomous Animals and Toxins Including Tropical Diseases, 16(2), 268–284.spa
dc.relation.referencesCevallos, M. A., Navarro-Duque, C., Varela-Julia, M., & Alagon, A. C. (1992). Molecular mass determination and assay of venom hyaluronidases by sodium dodecyl sulfate- polyacrylamide gel electrophoresis. Toxicon, 30(8), 925–930. https://doi.org/10.1016/0041-0101(92)90392-Ispa
dc.relation.referencesChen, E., & Yates, J. (2007). Cancer proteomics by quantitative shotgun proteomics. Molecular Oncology, 1(2), 144–159. https://doi.org/https://doi.org/10.1016/j.molonc.2007.05.001spa
dc.relation.referencesChen, P., De Schutter, K., Van Damme, E. J. M., & Smagghe, G. (2021). Can Plant Lectins Help to Elucidate Insect Lectin-Mediated Immune Response? Insects, 12(6). https://doi.org/10.3390/insects12060497spa
dc.relation.referencesChin, L. S., Park, C. C., Zitnay, K. M., Sinha, M., DiPatri, A. J. J., Perillán, P., & Simard, J. M. (1997). 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines. Journal of Neuroscience Research, 48(2), 122–127.spa
dc.relation.referencesChippaux, J. P., & Goyffon, M. (1998). Venoms, antivenoms and immunotherapy. Toxicon, 36(6), 823–846.spa
dc.relation.referencesChippaux, J. P., Williams, V., & White, J. (1991). Snake Venom Variability: Methods of Study, results and interpretation. Toxicon, 29(11), 1279–1303.spa
dc.relation.referencesChippaux, Jean Philippe. (2010). Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Biologie Aujourd’hui, 204(1), 87–91. https://doi.org/10.1051/jbio/2009043spa
dc.relation.referencesClement, H., Corrales-García, L. L., Bolaños, D., Corzo, G., & Villegas, E. (2019). Immunogenic properties of recombinant enzymes from bothrops ammodytoides towards the generation of neutralizing antibodies against its own venom. Toxins, 11(12), 1–14. https://doi.org/10.3390/toxins11120702spa
dc.relation.referencesClemetson, K. J., & Sci-, A. (2009). Snake Venom and Receptor Crosslinking . BLOOD, 114(22), SCI-37. https://doi.org/10.1182/blood.V114.22.SCI-37.SCI-37spa
dc.relation.referencesClemetson, K., Morita, T., & Kini, M. (2009). Classification and nomenclature of snake venom C-type lectins and related proteins. Toxicon, 54(1), 83.spa
dc.relation.referencesClemetson, K., Navdaev, A., Dörmann, D., Du, X.-Y., & Clemetson, J. M. (2001). Multifunctional Snake C-Type Lectins Affecting Platelets. Haemostasis, 31, 148–154.spa
dc.relation.referencesCollection, A. T. C. (2012). Thawing, Propagating, and Cryopreserving Protocol NCI- PBCFHTB132 (MDA-MB-468) Breast Adenocarcinoma. American Type Culture Collection, 26, 1–25.spa
dc.relation.referencesCoronado, A., Georgieva, D., Buck, F., Azat, H., Ullah, A., Spencer, P. J., Arni, R. K., & Betzel, C. (2012). Purification , crystallization and preliminary X-ray diffraction analysis of crotamine , a myotoxic polypeptide from the Brazilian snake Crotalus durissus terrificus. 1052–1054. https://doi.org/10.1107/S1744309112032721spa
dc.relation.referencesCosta, B. A., Sanches, L., Gomide, A. B., Bizerra, F., Dal Mas, C., Oliveira, E. B., Perez, K. R., Itri, R., Oguiura, N., & Hayashi, M. A. F. (2014). Interaction of the Rattlesnake Toxin Crotamine with Model Membranes. The Journal of Physical Chemistry B, 118(20), 5471–5479. https://doi.org/10.1021/jp411886uspa
dc.relation.referencesCoutinho-Neto, A., Caldeira, C. A. S., Souza, G. H. M. F., Zaqueo, K. D., Kayano, A. M., Silva, R. S., Zuliani, J. P., Soares, A. M., Stábeli, R. G., & Calderon, L. A. (2013). ESI-MS/MS identification of a bradykinin-potentiating peptide from Amazon Bothrops atrox Snake Venom using a hybrid Qq-oaTOF mass spectrometer. Toxins, 5, 327– 335.spa
dc.relation.referencesCristina, R. ., Kocsis, R., Tulcan, C., Alexa, E., Boldura, O. ., Hulea, C. ., Dumitrescu, E., Radulov, I., & Muselin, F. (2020). Protein structure of the venom in nine species of snake: from bio-compounds to possible healing agents. Brazilian Journal of Medical and Biological Research, 53(1), 1–7.spa
dc.relation.referencesCummings, R., & Etzler, M. (2009). Antibodies and Lectins in Glycan Analysis. In A. Varki, R. Cummings, & J. Esko (Eds.), Essentials of Glycobiology (2nd editio). Cold Spring Harbor Laboratory Press. https://www.ncbi.nlm.nih.gov/books/NBK1919/spa
dc.relation.referencesDal Mas, C., Moreira, J. T., Pinto, S., Monte, G. G., Nering, M. B., Oliveira, E. B., Gazarini, M. L., Mori, M. A., & Hayashi, M. A. F. (2016). Anthelmintic effects of a cationic toxin from a South American rattlesnake venom. Toxicon : Official Journal of the International Society on Toxinology, 116, 49–55.spa
dc.relation.referencesDaltry, J. C., Wüster, W., & Thorpe, R. S. (1996). Diet and snake venom evolution. Nature, 379(6565), 537–542. https://doi.org/10.1038/379537a0spa
dc.relation.referencesde Araújo, A. L., & Radvanyi, F. (1987). Determination of phospholipase A2activity by a colorimetric assay using a pH indicator. Toxicon, 25(11), 1181–1188. https://doi.org/10.1016/0041-0101(87)90136-Xspa
dc.relation.referencesde Azevedo, M., Hering, S., & Cupo, P. (2009). Accidente Crotálico. In J. Cardoso, F. de Siqueira, F. Wen, C. Sant ́Ana, & V. Haddad (Eds.), Animais Peçonhentos no Brasil2 (2nd ed., pp. 108–115). Sarvier.spa
dc.relation.referencesde Fátima, M., Furtado, D., Cardoso, S. T., Soares, O. E., Pereira, A. Pietro, Fernandes, D. S., Tambourgi, D. V., & Sant ’anna, O. A. (2009). Antigenic cross-reactivity and immunogenicity of Bothrops venoms from snakes of the Amazon region. Toxicon, 55, 881–887.spa
dc.relation.referencesde Navarro, Y., & Pérez, G. (1978). Normalización del método de migración capilar para evaluar eritroaglutinación. Revista Colombiana de Química, 8, 15–23. http://www.bdigital.unal.edu.co/15564/1/10195-18887-1-PB.pdfspa
dc.relation.referencesDe Roodt, A. R., Dolab, J. A., Hajos, S. E., Gould, E., Dinápoli, H., Troiano, J. C., Gould, J., Dokmetjian, J. C., Carfagnini, J. C., Fernández, T., Amoroso, M., Segre, L., & Vidal, J. C. (2000). Some toxic and enzymatic activities of Bothrops ammodytoides (yarara nata) venom. Toxicon, 38(1), 49–61. https://doi.org/10.1016/S0041- 0101(99)00126-9spa
dc.relation.referencesDesgrosellier, J. S., & Cheresh, D. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews. Cancer, 10(1), 9–22. https://doi.org/10.1038/nrc2748spa
dc.relation.referencesDominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939xspa
dc.relation.referencesDrickamer, K. (1999). C-type lectin-like domains. Current Opinion in Structural Biology, 9(5), 585–590. https://doi.org/10.1016/s0959-440x(99)00009-3spa
dc.relation.referencesDyer, R. R., Ford, K. I., & Robinson, R. A. S. (2019). Chapter Twenty-One - The roles of S-nitrosylation and S-glutathionylation in Alzheimer’s disease. In B. A. B. T.-M. in E. Garcia (Ed.), Post-translational Modifications That Modulate Enzyme Activity (Vol. 626, pp. 499–538). Academic Press. https://doi.org/https://doi.org/10.1016/bs.mie.2019.08.004spa
dc.relation.referencesEarl, S. T. H., Robson, J., Trabi, M., de Jersey, J., Masci, P. P., & Lavin, M. F. (2011). Characterisation of a mannose-binding C-type lectin from Oxyuranus scutellatus snake venom. Biochimie, 93(3), 519–527. https://doi.org/10.1016/j.biochi.2010.11.006spa
dc.relation.referencesEble, J. (2019). Structurally robust and functionally highly versatile—C-type lectin (- related) proteins in snake venoms. Toxins, 11(3). https://doi.org/10.3390/toxins11030136spa
dc.relation.referencesEble, J. a, Niland, S., Dennes, A., Schmidt-Hederich, A., Bruckner, P., & Brunner, G. (2002). Rhodocetin antagonizes stromal tumor invasion in vitro and other alpha2beta1 integrin-mediated cell functions. Matrix Biology : Journal of the International Society for Matrix Biology, 21, 547–558.spa
dc.relation.referencesEl-Aziz, T. M. A., Soares, A. G., & Stockand, J. D. (2019). Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins, 11(10), 1–25. https://doi.org/10.3390/toxins11100564spa
dc.relation.referencesEl Chamy Maluf, S., Dal Mas, C., Oliveira, E. B., Melo, P. M., Carmona, A. K., Gazarini, M. L., & Hayashi, M. A. F. (2016). Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides, 78, 11–16. https://doi.org/10.1016/j.peptides.2016.01.013spa
dc.relation.referencesElífio-Esposito, S., P, H., A, M., LOPES- FERREIRA, M., C, R., M, S., F, H.-Z., J, B., & L, P. (2007). A C-TYPE LECTIN FROM Bothrops jararacussu VENOM CAN ADHERE TO EXTRACELLULAR MATRIX PROTEINS AND INDUCE THE ROLLING OF LEUKOCYTES. J. Venom.Anim. Toxins. Trop.Dis, 13(4), 782–799.spa
dc.relation.referencesEngmark, M., Lomonte, B., Gutiérrez, J. M., Laustsen, A. H., De Masi, F., Andersen, M. R., & Lund, O. (2017). Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping. PLoS Neglected Tropical Diseases, 11(7), 1–23.spa
dc.relation.referencesEspino-Solis, G. P., Riaño-Umbarila, L., Becerril, B., & Possani, L. D. (2009). Antidotes against venomous animals: State of the art and prospectives. Journal of Proteomics, 72(2), 183–199. https://doi.org/10.1016/j.jprot.2009.01.020spa
dc.relation.referencesFadel, V., Bettendorff, P., Herrmann, T., de Azevedo, W. F. J., Oliveira, E. B., Yamane, T., & Wüthrich, K. (2005). Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus. Toxicon : Official Journal of the International Society on Toxinology, 46(7), 759–767. https://doi.org/10.1016/j.toxicon.2005.07.018spa
dc.relation.referencesFalcao, C. B., & Radis-Baptista, G. (2020). Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally- minimized fragments for applications in medicine and biotechnology. Peptides, 126(December 2019), 170234. https://doi.org/10.1016/j.peptides.2019.170234spa
dc.relation.referencesFaure, G., Porowinska, D., & Saul, F. (2017). Crotoxin from Crotalus durissus terrificus and Crotoxin-Related Proteins: Structure and Function Relationship. In Ponnampalam Gopalakrishnakone, L. J. Cruz, & S. Luo (Eds.), Toxins and drug discovery (1st ed., pp. 3–20). Springer.spa
dc.relation.referencesFerlay J, Ervik M, Lam F, Colombet M, Mery L, P. M. (2020). Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer. https://gco.iarc.frspa
dc.relation.referencesFerlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D., Forman, D., & Bray, F. (2013). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 Lyon, France. International Agency for Research on Cancer.spa
dc.relation.referencesFerraz, C. R., Arrahman, A., Xie, C., Casewell, N. R., Lewis, R. J., Kool, J., & Cardoso, F. C. (2019). Multifunctional toxins in snake venoms and therapeutic implications: From pain to hemorrhage and necrosis. Frontiers in Ecology and Evolution, 7(JUN), 1–19. https://doi.org/10.3389/fevo.2019.00218spa
dc.relation.referencesFletcher, J. E., Hubert, M., Wieland, S. J., Gong, Q.-H., & Jiang, M.-S. (1996). Similarities and differences in mechanisms of cardiotoxins, melittin and other myotoxins. Toxicon, 34(11), 1301–1311. https://doi.org/https://doi.org/10.1016/S0041- 0101(96)00105-5spa
dc.relation.referencesForman, D., & Sierra, M. S. (2016). Cancer in Central and South America: Introduction. Cancer Epidemiology, S3–S10.spa
dc.relation.referencesFox, J. W. (2013). A brief review of the scientific history of several lesser-known snake venom proteins: L-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon, 62, 75–82. https://doi.org/10.1016/j.toxicon.2012.09.009spa
dc.relation.referencesFox, J. W., & Serrano, S. M. T. (2008). Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. The FEBS Journal, 275(12), 3016–3030. https://doi.org/10.1111/j.1742-4658.2008.06466.xspa
dc.relation.referencesFrancischetti, I. M. B., Saliou, B., Leduc, M., Carlini, C. R., Hatmi, M., Randon, J., Faili, A., & Cassian, B. (1997). Convulxin, a potent platelet-aggregating protein from crotalus durissus terrificus venom, specifically binds to platelets. Toxicon, 35(8), 1217–1228. https://doi.org/10.1016/S0041-0101(97)00021-4spa
dc.relation.referencesFry, B. (2005). From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Research, 15(3), 403–420.spa
dc.relation.referencesFujimoto, Z., Tateno, H., & Hirabayashi, J. (2014). Lectin structures: classification based on the 3-D structures. Methods in Molecular Biology (Clifton, N.J.), 1200, 579–606. https://doi.org/10.1007/978-1-4939-1292-6_46spa
dc.relation.referencesFurtado, M. F. D., Santos, M. C., & Kamiguti, A. S. (2003). Age-related biological activity of South American rattlesnake (Crotalus durissus terrificus) venom. Journal of Venomous Animals and Toxins Including Tropical Diseases, 9(2), 186–201. https://doi.org/10.1590/S1678-91992003000200005spa
dc.relation.referencesFusco, L., Acosta, O., & Leiva, L. (2010). Comparación de protocolos de inmunización en la produccion de antiveneno crotálico. Universidad Tecnológica Nacional, 2–6.spa
dc.relation.referencesFusco, L. S., Neto, E. B., Francisco, A. F., Alfonso, J., Soares, A., Pimenta, D. C., & Leiva, L. C. (2020). Fast venomic analysis of Crotalus durissus terrificus from northeastern Argentina. Toxicon: X, 7(March), 100047. https://doi.org/10.1016/j.toxcx.2020.100047spa
dc.relation.referencesGarrido Cavalcante, W. L., Ponce-Soto, L. A., Marangoni, S., & Gallacci, M. (2015). Neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis. Toxicon, 96, 46–49. https://doi.org/10.1016/j.toxicon.2015.01.006spa
dc.relation.referencesGartner, T. K., & Ogilvie, M. L. (1984). Isolation and characterization of three Ca2+- dependent β-galactoside-specific lectins from snake venoms. Biochemical Journal, 224, 301–307.spa
dc.relation.referencesGartner, T. K., Stocker, K., & Williams, D. C. (1980). Thrombolectin: a lectin isolated from Bothrops atrox venom. FEBS Letters, 117(1), 13–16. https://doi.org/10.1016/0014- 5793(80)80902-1spa
dc.relation.referencesGavel, Y., & von Heijne, G. (1990). Sequence differences between glycosylated and non- glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Engineering, 3(5), 433–442. https://doi.org/10.1093/protein/3.5.433spa
dc.relation.referencesGeyer, A., Fitzpatrick, T. B., Pawelek, P. D., Kitzing, K., Vrielink, A., Ghisla, S., & Macheroux, P. (2001). Structure and characterization of the glycan moiety of L- amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. European Journal of Biochemistry, 268(14), 4044–4053. https://doi.org/10.1046/j.1432- 1327.2001.02321.xspa
dc.relation.referencesGlyTech, I. (2018). Glycans and Cells. https://www.glytech-inc.com/hello_glycan/glycans- and-cells/spa
dc.relation.referencesGómez-Cardona, J., Gómez-Cabal, C., & Gómez-Cabal, M. L. (2017). Sueros Antiofídicos En Colombia: Análisis De La Producción, Abastecimiento Y Recomendaciones Para El Mejoramiento De La Red De Producción. Biosalud, 16(2), 96–116.spa
dc.relation.referencesGómez, J. (2021). Informe del Evento: Accidente Ofídico, Colombia, 2021. Report. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ACCIDENTE OFIDICO INFORME 2021.pdfspa
dc.relation.referencesGómez, J. (2022). Accidente ofídico, período epidemiológico XIII de 2022, Colombia. https://www.ins.gov.co/buscador-eventos/Paginas/Info-Evento.aspxspa
dc.relation.referencesGonçalves-Machado, L., Pla, D., Sanz, L., Jorge, R. J. B., Leitão-De-Araújo, M., Alves, M. L. M., Alvares, D. J., De Miranda, J., Nowatzki, J., de Morais-Zani, K., Fernandes, W., Tanaka-Azevedo, A. M., Fernández, J., Zingali, R. B., Gutiérrez, J. M., Corrêa- Netto, C., & Calvete, J. (2016). Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest. Journal of Proteomics, 135, 73–89. https://doi.org/10.1016/j.jprot.2015.04.029spa
dc.relation.referencesGuimarães-Gomes, V., Oliveira-Carvalho, A. L., Junqueira-de-Azevedo, I., Dutra, D. L., Pujol-Luz, M., Castro, H. C., Lee Ho, P., & Zingali, R. B. (2004). Cloning, characterization, and structural analysis of a C-type lectin from Bothrops insularis (BiL) venom. Archives of Biochemistry and Biophysics, 432(1), 1–11. https://doi.org/10.1016/j.abb.2004.08.018spa
dc.relation.referencesGulbins, E., Sassi, N., Grassmè, H., Zoratti, M., & Szabò, I. (2010). Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1797(6), 1251–1259. https://doi.org/https://doi.org/10.1016/j.bbabio.2010.01.018spa
dc.relation.referencesGupta, K. C., Sahni, M. K., Rathaur, B. S., Narang, C. K., & Mathur, N. K. (1979). Gel filtration medium derived from guar gum. Journal of Chromatography, 169, 183–190.spa
dc.relation.referencesGupta, R., & Brunak, S. (2002). Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput, 310–322. https://services.healthtech.dtu.dk/services/NetNGlyc-1.0/spa
dc.relation.referencesGutiérrez, J. M., Calvete, J., Habib, A., Harrison, R., Williams, D., & Warrell, D. (2017). Snakebite envenoming. Nature Reviews. Disease Primers, 3(17063), 1–20.spa
dc.relation.referencesGutiérrez, J. M., Escalante, T., & Rucavado, A. (2009). Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon, 54, 976– 987.spa
dc.relation.referencesGutiérrez, J. M., Escalante, T., Rucavado, A., & Herrera, C. (2016). Hemorrhage caused by snake venom metalloproteinases: A journey of discovery and understanding. Toxins, 8(93), 1–19. https://doi.org/10.3390/toxins8040093spa
dc.relation.referencesGutiérrez, J. M., Escalante, T., Rucavado, A., Herrera, C., & Fox, J. W. (2016). A comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel perspectives on the pathophysiology of envenoming. Toxins, 8(10). https://doi.org/10.3390/toxins8100304spa
dc.relation.referencesGutiérrez, J. M., León, G., & Burnouf, T. (2011). Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals, 39, 129–142.spa
dc.relation.referencesGutiérrez, J. M., Lomonte, B., León, G., Alape-Girón, A., Flores-Díaz, M., Sanz, L., Angulo, Y., & Calvete, J. (2009). Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. Journal of Proteomics, 72, 165–182. https://doi.org/10.1016/j.jprot.2009.01.008spa
dc.relation.referencesGutiérrez, J. M., Lomonte, B., Sanz, L., Calvete, J., & Pla, D. (2014). Immunological profile of antivenoms: Preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assays. Journal of Proteomics, 105, 340– 350.spa
dc.relation.referencesGutiérrez, J. M., Rojas, G., & Rica, U. D. C. (2009). El envenenamiento por mordedura de serpiente en Centroamérica. In Facultad de Microbiología. Instituto Clodomiro Picado.spa
dc.relation.referencesHamako, J., Suzuki, Y., Hayashi, N., Kimura, M., Ozeki, Y., Hashimoto, K., & Matsui, T. (2007). Amino acid sequence and characterization of C-type lectin purified from the snake venom of Crotalus ruber. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 146(3), 299–306.spa
dc.relation.referencesHammouda, M. B., Riahi-Chebbi, I., Souid, S., Othman, H., Aloui, Z., Srairi-Abid, N., Karoui, H., Gasmi, A., Magnenat, E. M., Wells, T. N. C., Clemetson, K. J., Rodríguez-López, J. N., & Essafi-Benkhadir, K. (2018). Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochimica et Biophysica Acta - General Subjects, 1862(3), 600–614. https://doi.org/10.1016/j.bbagen.2017.11.019spa
dc.relation.referencesHanley, B. (2020). Meta-analysis of venom toxicity of 167 most lethal ophidian species provides a basis for estimating human lethal doses. Research Square, Under Revi, 1–31.spa
dc.relation.referencesHayashi, M. A. F., Nascimento, F. D., Kerkis, A., Oliveira, V., Oliveira, E. B., Pereira, A., Rádis-Baptista, G., Nader, H. B., Yamane, T., Kerkis, I., & Tersariol, I. L. S. (2008). Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon, 52(3), 508–517. https://doi.org/10.1016/j.toxicon.2008.06.029spa
dc.relation.referencesHermanson, G. T., Mallia, A. K., & Smith, P. K. (1992). Immobilized affinity ligand techniques. San Diego (Calif.) : Academic press. http://lib.ugent.be/catalog/rug01:000302240spa
dc.relation.referencesHeussen, C., & Dowdle, E. B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry, 102(1), 196–202. https://doi.org/10.1016/0003- 2697(80)90338-3spa
dc.relation.referencesHirohashi, S., Clausen, H., Yamada, T., Shimosato, Y., & Hakomori, S. (1985). Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and - 81 expressed in cancer of blood group O or B individuals: its identification as Tn antigen. Proceedings of the National Academy of Sciences of the United States of America, 82(20), 7039–7043. https://doi.org/10.1073/pnas.82.20.7039spa
dc.relation.referencesHiu, J. J., & Yap, M. K. K. (2020). Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochemical Society Transactions, 48(2), 719–731. https://doi.org/10.1042/BST20200110spa
dc.relation.referencesHuang, L., Li, B., Li, W., Guo, H., & Zou, F. (2009). ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity. Carcinogenesis, 30(5), 737–744. https://doi.org/10.1093/carcin/bgp034spa
dc.relation.referencesICP. (2007). Determinación de Actividades Tóxicas de Venenos de Serpientes y Neutralización por Antivenenos. Manual de métodos de laboratorio. Universidad de Costa Rica. http://www.icp.ucr.ac.cr/es/material/manual-de-procedimientos- determinacion-actividades-toxicas-de-venenos-de-serpientes-y-suspa
dc.relation.referencesImberty, A., Bonnardel, F., & Lisacek, F. (2021). UniLectin, A One-Stop-Shop to Explore and Study Carbohydrate-Binding Proteins. Current Protocols, 1(11). https://doi.org/10.1002/cpz1.305spa
dc.relation.referencesINC. (2011). Cáncer en cifras. http://www.cancer.gov.co/cancer_en_cifrasspa
dc.relation.referencesINS. (2017). Suero Antiofídico Polivalente INS. Medication Package Insert; Instituto Nacional de Salud. https://www.ins.gov.co/lineas-de- accion/Produccion/SiteAssets/Paginas/suero-antiofidico-polivalente/Inserto Suero Antiofídico Polivalente.pdfspa
dc.relation.referencesInstituto Bioclon. (n.d.). Antivipmyn Tri.spa
dc.relation.referencesINVIMA. (n.d.). Consulta Datos de Producto. Retrieved May 8, 2017, from http://farmacovigilancia.invima.gov.co:8082/Consultas/consultas/consreg_encabcum. jspspa
dc.relation.referencesIsbister, G. K. (2010). Antivenom efficacy or effectiveness: The Australian experience. Toxicology, 268, 148–154.spa
dc.relation.referencesIsmail, M; Abd-Elsalam, A. (1998). Pharmacokinetics Of 125 I -Labelled IgG , F(ab’) 2 And Fab Fractions Of Scorpion And Snake Antivenins : Merits And Potential For Therapeutic Use. Toxicon, 36(11), 1523–1528.spa
dc.relation.referencesJehle, J., Schweizer, P. A., Katus, H. A., & Thomas, D. (2011). Novel roles for hERG K + channels in cell proliferation and apoptosis. Cell Death and Disease, 2(8), e193-8. https://doi.org/10.1038/cddis.2011.77spa
dc.relation.referencesJenkins, T. P., Fryer, T., Dehli, R. I., Jürgensen, J. A., Fuglsang-Madsen, A., Føns, S., & Laustsen, A. H. (2019). Toxin neutralization using alternative binding proteins. Toxins, 11(1), 1–28. https://doi.org/10.3390/toxins11010053spa
dc.relation.referencesJohnson, M. T. J., Carpenter, E. J., Tian, Z., Bruskiewich, R., Burris, J. N., Carrigan, C. T., Chase, M. W., Clarke, N. D., Covshoff, S., dePamphilis, C. W., Edger, P. P., Goh, F., Graham, S., Greiner, S., Hibberd, J. M., Jordon-Thaden, I., Kutchan, T. M., Leebens- Mack, J., Melkonian, M., ... Wong, G. K.-S. (2012). Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes. PLOS ONE, 7(11), e50226. https://doi.org/10.1371/journal.pone.0050226spa
dc.relation.referencesJones, J., Krag, S. S., & Betenbaugh, M. J. (2005). Controlling N-linked glycan site occupancy. Biochimica et Biophysica Acta, 1726(2), 121–137. https://doi.org/10.1016/j.bbagen.2005.07.003spa
dc.relation.referencesJorge, R. J. B., Monteiro, H. S. A., Gonçalves-Machado, L., Guarnieri, M. C., Ximenes, R. M., Borges-Nojosa, D. M., Luna, K. P. de O., Zingali, R. B., Corrêa-Netto, C., Gutiérrez, J. M., Sanz, L., Calvete, J., & Pla, D. (2015). Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. Journal of Proteomics, 114, 93–114. https://doi.org/10.1016/j.jprot.2014.11.011spa
dc.relation.referencesKalil, J., & Fan, H. W. (2017). Production and Utilization of Snake. In P Gopalakrishnakone, L. J. Cruz, & S. Luo (Eds.), Toxins and drug discovery (1st ed., pp. 81–102). Springer.spa
dc.relation.referencesKang, T. S., Georgieva, D., Genov, N., Murakami, M. T., Sinha, M., Kumar, R. P., Kaur, P., Kumar, S., Dey, S., Sharma, S., Vrielink, A., Betzel, C., Takeda, S., Arni, R. K., Singh, T. P., & Kini, R. M. (2011). Enzymatic toxins from snake venom: Structural characterization and mechanism of catalysis. FEBS Journal, 278, 4544–4576.spa
dc.relation.referencesKärber, G. (1931). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Archiv Für Experimentelle Pathologie Und Pharmakologie, 162(4), 480–483. https://doi.org/10.1007/BF01863914spa
dc.relation.referencesKasheverov, I. E., & Tsetlin, V. I. (2017). Snake Venom Components as Basis for Biologically Active Synthetic Peptides. In P Gopalakrishnakone, L. J. Cruz, & S. Luo (Eds.), Toxins and drug discovery (1st ed., pp. 103–128). Springer.spa
dc.relation.referencesKasturiratne, A., Wickremasinghe, A. R., De Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D. G., & De Silva, H. J. (2008). The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine, 5(11), 1591–1604. https://doi.org/10.1371/journal.pmed.0050218spa
dc.relation.referencesKaufmann, D., Tietze, A. A., & Tietze, D. (2019). In silico analysis of the subtype selective blockage of KCNA ion channels through the μ-conotoxins PIIIA, SIIIA, and GIIIa. Marine Drugs, 17(3), 8–13. https://doi.org/10.3390/md17030180spa
dc.relation.referencesKerkis, I., Hayashi, M. A. F., Prieto Da Silva, A. R. B., Pereira, A., De Sá Júnior, P. L., Zaharenko, A. J., Rádis-Baptista, G., Kerkis, A., & Yamane, T. (2014). State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. BioMed Research International.spa
dc.relation.referencesKerkis, I., Silva, F. D. S., Pereira, A., Kerkis, A., & Rádis-Baptista, G. (2010). Biological versatility of crotamine - A cationic peptide from the venom of a South American rattlesnake. Expert Opinion on Investigational Drugs, 19(12), 1515–1525. https://doi.org/10.1517/13543784.2010.534457spa
dc.relation.referencesKishi, T., Kato, M., Shimizu, T., Kato, K., Matsumoto, K., Yoshida, S., Shiosaka, S., & Hakoshima, T. (1999). Crystal structure of neuropsin, a hippocampal protease involved in kindling epileptogenesis. The Journal of Biological Chemistry, 274(7), 4220–4224. https://doi.org/10.1074/jbc.274.7.4220spa
dc.relation.referencesKobayashi, M., Sawada, K., & Kimura, T. (2017). Potential of Integrin Inhibitors for Treating Ovarian Cancer: A Literature Review. Cancers, 9(83), 1–10. https://doi.org/10.3390/cancers9070083spa
dc.relation.referencesKolatkart, A. R., Leung, A. K., Isecke, R., Brossmer, R., Drickamer, K., & Weis, W. I. (1998). Mechanism of N-acetylgalactosamine binding to a C-type animal lectin carbohydrate-recognition domain. Journal of Biological Chemistry, 273(31), 19502– 19508. https://doi.org/10.1074/jbc.273.31.19502spa
dc.relation.referencesLaemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.spa
dc.relation.referencesLambeau, G. érard, & Lazdunski, M. (1999). Receptors for a growing family of secreted phospholipases A2. Trends in Pharmacological Sciences, 20, 162–170.spa
dc.relation.referencesLamiable, A., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P., & Tufféry, P. (2016). PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Research, 44(W1), W449-54. https://doi.org/10.1093/nar/gkw329spa
dc.relation.referencesLang, F., & Stournaras, C. (2014). Ion channels in cancer: Future perspectives and clinical potential. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1638), 1–8. https://doi.org/10.1098/rstb.2013.0108spa
dc.relation.referencesLangthaler, S., Rienmüller, T., Scheruebel, S., Pelzmann, B., Shrestha, N., Zorn-Pauly, K., Schreibmayer, W., Koff, A., & Baumgartner, C. (2021). A549 in-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma. PLoS Computational Biology, 17(6), 1–28. https://doi.org/10.1371/journal.pcbi.1009091spa
dc.relation.referencesLannoo, N., & Van Damme, E. J. M. (2015). Review/N-glycans: The making of a varied toolbox. Plant Science : An International Journal of Experimental Plant Biology, 239, 67–83. https://doi.org/10.1016/j.plantsci.2015.06.023spa
dc.relation.referencesLaustsen, A. H., María Gutiérrez, J., Knudsen, C., Johansen, K. H., Bermúdez-Méndez, E., Cerni, F. A., Jürgensen, J. A., Ledsgaard, L., Martos-Esteban, A., Øhlenschlæger, M., Pus, U., Andersen, M. R., Lomonte, B., Engmark, M., & Pucca, M. B. (2018). Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon, 146. https://doi.org/10.1016/j.toxicon.2018.03.004spa
dc.relation.referencesLazarovici, P., Marcinkiewicz, C., & Lelkes, P. I. (2019). From snake venom’s disintegrins and C-type lectins to anti-platelet drugs. Toxins, 11(5), 1–15. https://doi.org/10.3390/toxins11050303spa
dc.relation.referencesLedsgaard, L., Jenkins, T. P., Davidsen, K., Krause, K. E., Martos-Esteban, A., Engmark, M., Andersen, M. R., Lund, O., & Laustsen, A. H. (2018). Antibody cross-reactivity in antivenom research. Toxins, 10(10), 1–19. https://doi.org/10.3390/toxins10100393spa
dc.relation.referencesLee-Sundlov, M. M., Stowell, S. R., & Hoffmeister, K. M. (2020). Multifaceted role of glycosylation in transfusion medicine, platelets, and red blood cells. Journal of Thrombosis and Haemostasis, 18(7), 1535–1547. https://doi.org/https://doi.org/10.1111/jth.14874spa
dc.relation.referencesLekshmi, A., Varadarajan, S. N., Lupitha, S. S., Indira, D., Mathew, K. A., Chandrasekharan Nair, A. Prasad T, Sekar H, Kochucherukkan Gopalakrishnan A, Murali, Santhoshkumar, T. R. (2017). A quantitative real-time approach for discriminating apoptosis and necrosis. Cell Death Discovery, 316101.spa
dc.relation.referencesLeón, G., Vargas, M., Segura, Á., Herrera, M., Villalta, M., Sánchez, A., Solano, G., Gómez, A., Sánchez, M., Estrada, R., & Gutiérrez, J. M. (2018). Current technology for the industrial manufacture of snake antivenoms. Toxicon, 151. https://doi.org/10.1016/j.toxicon.2018.06.084spa
dc.relation.referencesLewis, R. J., & Garcia, M. L. (2003). Therapeutic potential of venom peptides. Nature Reviews. Drug Discovery, 2(10), 790–802. https://doi.org/10.1038/nrd1197spa
dc.relation.referencesLi, Z., Jaroszewski, L., Iyer, M., Sedova, M., & Godzik, A. (2020). FATCAT 2.0: towards a better understanding of the structural diversity of proteins. Nucleic Acids Research, 48(W1), W60–W64. https://doi.org/10.1093/nar/gkaa443spa
dc.relation.referencesLimam, I., Bazaa, A., Srairi-Abid, N., Taboubi, S., Jebali, J., Zouari-Kessentini, R., Kallech-Ziri, O., Mejdoub, H., Hammami, A., El Ayeb, M., Luis, J., & Marrakchi, N. (2010). Leberagin-C, A disintegrin-like/cysteine-rich protein from Macrovipera lebetina transmediterranea venom, inhibits alphavbeta3 integrin-mediated cell adhesion. Matrix Biology, 29, 117–126.spa
dc.relation.referencesLin, C.-W., Chen, J.-M., Wang, Y.-M., Wu, S.-W., Tsai, I.-H., & Khoo, K.-H. (2011). Terminal disialylated multiantennary complex-type N-glycans carried on acutobin define the glycosylation characteristics of the Deinagkistrodon acutus venom. Glycobiology, 21(4), 530–542. https://doi.org/10.1093/glycob/cwq195spa
dc.relation.referencesLin, P., Ye, X., & Ng, T. B. (2008). Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans. Acta Biochimica et Biophysica Sinica, 40(12), 1029–1038. https://doi.org/https://doi.org/10.1111/j.1745-7270.2008.00488.xspa
dc.relation.referencesLiu, H., Sadygov, R. G., & Yates, J. R. 3rd. (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Analytical Chemistry, 76(14), 4193–4201. https://doi.org/10.1021/ac0498563spa
dc.relation.referencesLodovicho, M. E., Costa, T. R., Bernardes, C. P., Menaldo, D. L., Zoccal, K. F., Carone, S. E., Rosa, J. C., Pucca, M. B., Cerni, F. A., Arantes, E. C., Tytgat, J., Faccioli, L. H., Pereira-Crott, L. S., & Sampaio, S. V. (2017). Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom. Toxicology Letters, 265, 156–169.spa
dc.relation.referencesLomonte, B., & Calvete, J. (2017). Strategies in “snake venomics” aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(26), 1–12.spa
dc.relation.referencesLomonte, B., & Rangel, J. (2012). Snake venom Lys49 myotoxins: From phospholipases A 2 to non-enzymatic membrane disruptors. Toxicon, 60(4), 520–530. https://doi.org/10.1016/j.toxicon.2012.02.007spa
dc.relation.referencesLonngren, J., & Goldstein, I. J. (1976). Cross-linked guaran: a versatile immunosorbent for D-galactopyranosyl binding lectins. FEBS Letters, 68(1), 31–34. https://doi.org/10.1016/0014-5793(76)80397-3spa
dc.relation.referencesLoureiro, L. R., Carrascal, M. A., Barbas, A., Ramalho, J. S., Novo, C., Delannoy, P., & Videira, P. A. (2015). Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. In Biomolecules (Vol. 5, Issue 3, pp. 1783–1809). https://doi.org/10.3390/biom5031783spa
dc.relation.referencesLourenço, A., Zorzella Creste, C. F., Curtolo de Barros, L., Delazari dos Santos, L., Pimenta, D. C., Barraviera, B., & Ferreira, R. S. (2013). Individual venom profiling of Crotalus durissus terrificus specimens from a geographically limited region: Crotamine assessment and captivity evaluation on the biological activities. Toxicon, 69, 75–81. https://doi.org/10.1016/j.toxicon.2013.01.006spa
dc.relation.referencesLucena, S., Castro, R., Lundin, C., Hofstetter, A., Alaniz, A., Suntravat, M., & Anchez, E. S. (2015). Inhibition of pancreatic tumoral cells by snake venom disintegrins. Toxicon, 93, 136–143.spa
dc.relation.referencesLynch, J. (2012). El contexto de las serpientes de Colombia con un análisis de las amenazas en contra de su conservación. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 36(140), 435–449.spa
dc.relation.referencesLynch, J., Angarita-Sierra, T., & Ruiz Gomez, F. (2014). Programa Nacional para la Conservación de las Serpientes Presentes en Colombia (U. nacional de Colombia. (Ed.); Corantioqu, Issue January). Ministerio de Ambiente y Desarrollo Sostenible; Universidad Nacional de Colombia, Instituto Nacional de Salud. https://www.ins.gov.co/Comunicaciones/Infografias/PROGRAMA NACIONAL SERPIENTES.pdfspa
dc.relation.referencesMackessy, S. (2008). Venom Composition in Rattlesnakes: Trends and Biological Significance. In W. K. Hayes, K. R. Beaman, M. D. Cardwell, & S. P. Bush (Eds.), The Biology of Rattlesnakes (pp. 495–510). Loma Linda University Press.spa
dc.relation.referencesMackessy, S. (2010). Handbook of Venoms and Toxins of Reptiles (S. Mackessy (Ed.)). CRC Press.spa
dc.relation.referencesMackessy, S. (2011). Thrombin-Like Enzymes in Snake Venoms. In M. Kini, K. Clemetson, F. Markland, M. A. McLane, & M. Takashi (Eds.), Toxins and Hemostasis: From Bench to Bedside (pp. 519–557). Springer. https://doi.org/10.1007/978-90-481-9295-3spa
dc.relation.referencesMackessy, S. P., Leroy, J., Mociño-Deloya, E., Setser, K., Bryson, R. W., & Saviola, A. J. (2018). Venom ontogeny in the mexican lance-headed rattlesnake (Crotalus polystictus). Toxins, 10(7). https://doi.org/10.3390/toxins10070271spa
dc.relation.referencesMarinovic, M., Dal Mas, C., Monte, G., Felix, D., Campeiro, J., & Hayashi, M. (2017). Crotamine: Function Diversity and Potential Applications. In P Gopalakrishnakone, H. Inagaki, C. Vogel, A. Mukherjee, & T. Rahmy (Eds.), Snake Venoms. Toxinology (pp. 265–293). Springer.spa
dc.relation.referencesMarkland, F. S. (1998). Snake venoms and the hemostatic system. Toxicon : Official Journal of the International Society on Toxinology, 36(12), 1749–1800. https://doi.org/10.1016/s0041-0101(98)00126-3spa
dc.relation.referencesMarques, O., & Sazima, I. (2009). História Natural das Serpentes. In V. Cardoso, J.; de Siqueira, F.; Wen, F.; Sant ́Ana, C.; Haddad (Ed.), Animais Peçonhentos no Brasil (2nd ed., pp. 71–80). Sarvier.spa
dc.relation.referencesMartin Young, N., Van Faassen, H., Watson, D. C., & Mackenzie, C. R. (2011). Specificity analysis of the C-type lectin from rattlesnake venom, and its selectivity towards Gal- or GalNAc-terminated glycoproteins. Glycoconjugate Journal, 28(6), 427–435. https://doi.org/10.1007/s10719-011-9342-5spa
dc.relation.referencesMartins, M.; Lamar, W. (2010). Crotaluss durissus. The IUCN Red List of Threatened Species. http://www.iucnredlist.org/details/full/178477/0spa
dc.relation.referencesMatavel, A. C. S., Ferreira-Alves, D. L., Beirão, P. S. L., & Cruz, J. S. (1998). Tension generation and increase in voltage-activated Na+ current by crotamine. European Journal of Pharmacology, 348(2), 167–173. https://doi.org/https://doi.org/10.1016/S0014-2999(98)00152-6spa
dc.relation.referencesMedeiros, J. M., Oliveira, I. S., Ferreira, I. G., Alexandre-Silva, G. M., Cerni, F. A., Zottich, U., & B. Pucca, M. (2020). Fatal Rattlesnake Envenomation in Northernmost Brazilian Amazon: A Case Report and Literature Overview. Reports — Medical Cases, Images, and Videos, 3(2), 9. https://doi.org/10.3390/reports3020009spa
dc.relation.referencesMejía-Sánchez, M. A., Clement, H., Corrales-García, L. L., Olamendi-Portugal, T., Carbajal, A., & Corzo, G. (2022). Crotoxin B: Heterologous Expression, Protein Folding, Immunogenic Properties, and Irregular Presence in Crotalid Venoms. Toxins, 14(382), 1–18.spa
dc.relation.referencesMelani, R. D., Araujo, G. D. T., Carvalho, P. C., Goto, L., Nogueira, F. C. S., Junqueira, M., & Domont, G. B. (2015). Seeing beyond the tip of the iceberg: A deep analysis of the venome of the Brazilian Rattlesnake, Crotalus durissus terrificus. EuPA Open Proteomics, 8, 144–156. https://doi.org/10.1016/j.euprot.2015.05.006spa
dc.relation.referencesMelgarejo, R. (2009). Serpentes Peçonhentas do Brasil. In J. Cardoso, F. de Siqueira, F. Wen, C. Sant ́Ana, & V. Haddad (Eds.), Animais Peçonhentos no Brasil (2nd ed., pp. 42–70). Sarvier.spa
dc.relation.referencesMemar, B., Jamili, S., Shahbazzadeh, D., & Bagheri, P. K. (2016). The first report on coagulation and phospholipase A2 activities of Persian Gulf lionfish, Pterois russelli, an Iranian venomous fish. Toxicon, 113, 25–31.spa
dc.relation.referencesMendes, T. M., Oliveira, D., Figueiredo, L. F. M., Machado-de-Avila, R. A., Duarte, C. G., Dias-Lopes, C., Guimarães, G., Felicori, L., Minozzo, J. C., & Chávez-Olortegui, C. (2013). Generation and characterization of a recombinant chimeric protein (rCpLi) consisting of B-cell epitopes of a dermonecrotic protein from Loxosceles intermedia spider venom. Vaccine, 31(25), 2749–2755. https://doi.org/10.1016/j.vaccine.2013.03.048spa
dc.relation.referencesMendonça-Franqueiro, E. D. P., Alves-Paiva, R. D. M., Sartim, M. A., Callejon, D. R., Paiva, H. H., Antonucci, G. A., Rosa, J. C., Cintra, A. C. O., Franco, J. J., Arantes, E., Dias-Baruffi, M., & Vilela Sampaio, S. (2011). Isolation, functional, and partial biochemical characterization of galatrox, an acidic lectin from Bothrops atrox snake venom. Acta Biochimica et Biophysica Sinica, 43(3), 181–192. https://doi.org/10.1093/abbs/gmr003spa
dc.relation.referencesMontecucco, C., Gutiérrez, J. M., & Lomonte, B. (2008). Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: Common aspects of their mechanisms of action. Cellular and Molecular Life Sciences, 65(18), 2897– 2912. https://doi.org/10.1007/s00018-008-8113-3spa
dc.relation.referencesMora Valverde, D., Lai Jwo, T., & Estrada Umaña, R. (2014). Productividad antiofídica de equinos destinados a la industria inmunobiológica en Costa Rica. Nutrición Animal Tropical, 8(1), 44–54.spa
dc.relation.referencesMosmann, T. (1983). Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. Journal OflmmunologicalMethods, 65, 55–63.spa
dc.relation.referencesMunawar, A., Ali, S. A., Akrem, A., & Betzel, C. (2018). Snake venom peptides: Tools of biodiscovery. Toxins, 10(11), 1–29. https://doi.org/10.3390/toxins10110474spa
dc.relation.referencesMunawar, A., Zahid, A., Negm, A., Akrem, A., Spencer, P., & Betzel, C. (2016). Isolation and characterization of Bradykinin potentiating peptides from Agkistrodon bilineatus venom. Proteome Science, 14(1), 1–9.spa
dc.relation.referencesMurakami, M. T., Zela, S. P., Gava, L. M., Michelan-Duarte, S., Cintra, A. C. O., & Arni, R. K. (2003). Crystal structure of the platelet activator convulxin, a disulfide-linked α4β4 cyclic tetramer from the venom of Crotalus durissus terrificus. Biochemical and Biophysical Research Communications, 310(2), 478–482. https://doi.org/10.1016/j.bbrc.2003.09.032spa
dc.relation.referencesMurphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417(1), 1–13. https://doi.org/10.1042/BJ20081386spa
dc.relation.referencesNascimento, F. D., Sancey, L., Pereira, A., Rome, C., Oliveira, V., Oliveira, E. B., Nader, H. B., Yamane, T., Kerkis, I., Tersariol, I. L. S., Coll, J. L., & Hayashi, M. A. F. (2012). The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells. Molecular Pharmaceutics, 9(2), 211–221. https://doi.org/10.1021/mp2000605spa
dc.relation.referencesNeri-Castro, E., Lomonte, B., Gutiérrez, M. del C., Alagón, A., & Gutiérrez, J. (2013). Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: Different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies. Journal of Proteomics, 87, 103–121.spa
dc.relation.referencesNeri-Castro, E., & Ponce-López, R. (2018). Variación ontogénica en el veneno de Crotalus simus en México. Árido-Ciencia, 3(1), 42–47.spa
dc.relation.referencesNicastro, G., Franzoni, L., De Chiara, C., Mancin, A. C., Giglio, J. R., & Spisni, A. (2003). Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. European Journal of Biochemistry, 270(9), 1969–1979. https://doi.org/10.1046/j.1432-1033.2003.03563.xspa
dc.relation.referencesNing, W., Yuanyuan, L., Lipeng, Z., Xiang, L., & Chunhong, H. (2020). Targeted identification of C-type lectins in snake venom by 2DE and Western blot. Toxicon, 185, 57–63. https://doi.org/https://doi.org/10.1016/j.toxicon.2020.06.010spa
dc.relation.referencesNunes, E., de Souza, M., de Melo Vaz, A., Santana, G., Soares, F., Breitenbach, L., Guedes, P., da Silva, R., Silva-Lucca, R., Vilela, M., Camargo, M., & dos Santos, M. (2011). Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, Part B 159, 57–63. https://doi.org/1096-4959spa
dc.relation.referencesNunes, E. S., Souza, M. A. A., Vaz, A. F. M., Silva, T. G., Aguiar, J. S., Batista, A. M., Guerra, M. M. P., Guarnieri, M. C., Coelho, L. C. B. B., & Correia, M. T. S. (2012). Cytotoxic effect and apoptosis induction by Bothrops leucurus venom lectin on tumor cell lines. Toxicon, 59, 667–671. https://doi.org/10.1016/j.toxicon.2012.03.002spa
dc.relation.referencesNúñez, V., Cid, P., Sanz, L., De La Torre, P., Angulo, Y., Lomonte, B., Gutiérrez, J. M., & Calvete, J. (2009). Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. Journal of Proteomics, 73, 57–78. https://doi.org/10.1016/j.jprot.2009.07.013spa
dc.relation.referencesOgilive, M. L., Dockter, M. E., Wenz, L., & Gartner, T. K. (1986). Isolation and characterization of lactose-binding lectins from the venoms of the snakes Lachesis inuta and Dendroaspis jamesonii. Journal of Biochemistry, 100(6), 1425–1431. https://doi.org/10.1093/oxfordjournals.jbchem.a121848spa
dc.relation.referencesOguiur, N., Camargo, M. E., da Silva, A. R., & Horton, D. S. (2000). Quantification of crotamine, a small basic myotoxin, in South American rattlesnake (Crotalus durissus terrificus) venom by enzyme-linked immunosorbent assay with parallel-lines analysis. Toxicon : Official Journal of the International Society on Toxinology, 38(3), 443–448. https://doi.org/10.1016/s0041-0101(99)00157-9spa
dc.relation.referencesOguiura, N., Boni-Mitake, M., & Rádis-Baptista, G. (2005). New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon, 46, 363–370.spa
dc.relation.referencesOguiura, N., Collares, M. A., Furtado, M. F. D., Ferrarezzi, H., & Suzuki, H. (2009). Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene, 446, 35–40. http://dx.doi.org/10.1016/j.gene.2009.05.015spa
dc.relation.referencesOlaoba, O. T., Karina dos Santos, P., Selistre-de-Araujo, H. S., & Ferreira de Souza, D. H. (2020). Snake Venom Metalloproteinases (SVMPs): A structure-function update. Toxicon: X, 7, 100052. https://doi.org/10.1016/j.toxcx.2020.100052spa
dc.relation.referencesOrtiz-Prado, E., Yeager, J., Andrade, F., Schiavi-Guzman, C., Abedrabbo-Figueroa, P., Terán, E., Gómez-Barreno, L., Simbaña-Rivera, K., & Izquierdo-Condoy, J. S. (2021). Snake antivenom production in Ecuador: Poor implementation, and an unplanned cessation leads to a call for a renaissance. Toxicon, 202(September), 90– 97. https://doi.org/10.1016/j.toxicon.2021.09.014spa
dc.relation.referencesOtero-Patiño, R., Silva-Hadad, J., Barona, M., Toro, M., Quintana, J., Díaz, A., Vásquez, I., Rodríguez, V., Delgado, C., Fernández, M., Ayala, S., Conrado, N., Marín, C., Ramírez, C., Arrieta, A., Córdoba, E., Ruiz, T., García, M., Aguirre, A., ... Otero- patiño, R; Silva-haad, J; Barona, M. et al. (2007). Accidente bothrópico en Colombia: estudio multicéntrico de la eficacia, y seguridad de Antivipmyn-Tri® un antiveneno polivalente producido en México. Iatreia, 20(3), 244–262.spa
dc.relation.referencesOtero Patiño, R., León, G., Gutiérrez, J. M., Rojas, G., Toro, M. F., Barona, J., Rodríguez, V., Díaz, A., Núñez, V., Quintana, J. C., Ayala, S., Mosquera, D., Conrado, L. L., Fernández, D., Arroyo, Y., Paniagua, C. A., López, M., Ospina, C. E., Alzate, C., ... Theakston, R. D. G. (2006). Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without β-propiolactone, in the treatment of Bothrops asper bites in Colombia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 100(12), 1173–1182. https://doi.org/10.1016/j.trstmh.2006.01.006spa
dc.relation.referencesOzeki, Y., Matsui, T., Hamako, J., Suzuki, M., Fujimura, Y., Yoshida, E., Nishida, S., & Titani, K. (1994). C-type galactoside-binding lectin from Bothrops jararaca venom: comparison of its structure and function with those of botrocetin. Archives of Biochemistry and Biophysics, 308(1), 306–310. https://doi.org/10.1006/abbi.1994.1043spa
dc.relation.referencesPalomino, M., Lazo, F., Delgadillo, J., Severino, R., & Yarlequé, A. (2012). Purificación de una lectina tipo C del veneno de la serpiente peruana Lachesis muta. Sociedad Química de Perú, 78(3), 161–169.spa
dc.relation.referencesPaoletti, A. C., Parmely, T. J., Tomomori-Sato, C., Sato, S., Zhu, D., Conaway, R. C., Conaway, J. W., Florens, L., & Washburn, M. P. (2006). Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proceedings of the National Academy of Sciences of the United States of America, 103(50), 18928–18933. https://doi.org/10.1073/pnas.060637910spa
dc.relation.referencesPapadopoulos, J. S., & Agarwala, R. (2007). COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics, 23(9), 1073–1079. https://doi.org/10.1093/bioinformatics/btm076spa
dc.relation.referencesPardo, L. A. (2004). Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda, Md.), 19, 285–292. https://doi.org/10.1152/physiol.00011.2004spa
dc.relation.referencesPassero, L. F. D., Tomokane, T. Y., Corbett, C. E. P., Laurenti, M. D., & Toyama, M. H. (2007). Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitology Research, 101(5), 1365–1371. https://doi.org/10.1007/s00436-007-0653-1spa
dc.relation.referencesPatiño, A. C., Pereañez, J., Gutiérrez, J. M., & Rucavado, A. (2013). Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon, 63, 32–43.spa
dc.relation.referencesPees, B., Yang, W., Zárate-Potes, A., Schulenburg, H., & Dierking, K. (2016). High Innate Immune Specificity through Diversified C-Type Lectin-Like Domain Proteins in Invertebrates. Journal of Innate Immunity, 8(2), 129–142. https://doi.org/10.1159/000441475spa
dc.relation.referencesPeigneur, S., Orts, D. J. B., Prieto Da Silva, A. R., Oguiura, N., Boni-Mitake, M., De Oliveira, E. B., Zaharenko, A. J., De Freitas, J. C., & Tytgat, J. (2012). Crotamine pharmacology revisited: Novel insights based on the inhibition of K v channels. Molecular Pharmacology, 82(1), 90–96. https://doi.org/10.1124/mol.112.078188spa
dc.relation.referencesPereañez, J., Gómez, I. D., & Patiño, A. (2012). Relationship between the structure and the enzymatic activity of crotoxin complex and its phospholipase A 2 subunit: An in silico approach. Journal of Molecular Graphics and Modelling, 35, 36–42. https://doi.org/10.1016/j.jmgm.2012.01.004spa
dc.relation.referencesPereañez, J., Núñez, V., Huancahuire-Vega, S., Marangoni, S., & Ponce-Soto, L. A. (2009). Biochemical and biological characterization of a PLA2 from crotoxin complex of Crotalus durissus cumanensis. Toxicon, 53(5), 534–542. https://doi.org/10.1016/j.toxicon.2009.01.021spa
dc.relation.referencesPereira-Bittencourt, M., Carvalho, D. D., Gagliardi, A. R., & Collins, D. C. (1999). The effect of a lectin from the venom of the snake, Bothrops jararacussu, on tumor cell proliferation. Anticancer Research, 19(5 B), 4023–4025.spa
dc.relation.referencesPereira, A., Kerkis, A., Hayashi, M. A., Pereira, A. S., Silva, F. S., Oliveira, E. B., Prieto Da Silva, A. R., Yamane, T., Rádis-Baptista, G., & Kerkis, I. (2011). Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opinion on Investigational Drugs, 20(9), 1189–1200. https://doi.org/10.1517/13543784.2011.602064spa
dc.relation.referencesPérez-Peinado, C., Defaus, S., & Andreu, D. (2020). Hitchhiking with nature: Snake venom peptides to fight cancer and superbugs. Toxins, 12(4), 1–23. https://doi.org/10.3390/toxins12040255spa
dc.relation.referencesPérez-Verdaguer, M., Capera, J., Serrano-Novillo, C., Estadella, I., Sastre, D., & Felipe, A. (2016). The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Expert Opinion on Therapeutic Targets, 20(5), 577–591. https://doi.org/10.1517/14728222.2016.11spa
dc.relation.referencesPérez, G. (1984). Isolation and characterization of a lectin from the seeds of Erythrina edulis. Phytochemistry, 23(6), 1229–1232. https://doi.org/https://doi.org/10.1016/S0031-9422(00)80431-8spa
dc.relation.referencesPéterfi, O., Boda, F., Szabó, Z., Ferencz, E., & Bába, L. (2019). Hypotensive Snake Venom Components-A Mini-Review. Molecules (Basel, Switzerland), 24(15), 1–16. https://doi.org/10.3390/molecules24152778spa
dc.relation.referencesPfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT- PCR. Nucleic Acids Research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45spa
dc.relation.referencesPhillips, S., & Kuperwasser, C. (2014). SLUG: Critical regulator of epithelial cell identity in breast development and cancer. Cell Adhesion & Migration, 8(6), 578–587. https://doi.org/10.4161/19336918.2014.972740spa
dc.relation.referencesPirela, R., López-Jonsthon, J., & Hernández, J. (2006). Caracterización Toxinológica del Veneno Total de la Serpiente de Cascabel Crotalus durissus cumanensis (VIPERIDAE), presente en la localidad de Porshoure, Guajira Venezolana. Rev. Cient. (Maracaibo), 16(3), 232–238.spa
dc.relation.referencesPla, D., María Gutiérrez, J., & Calvete, J. (2012). Second generation snake antivenomics: Comparing immunoaffinity and immunodepletion protocols. Toxicon, 60, 688–699.spa
dc.relation.referencesPla, D., Rodríguez, Y., & Calvete, J. (2017). Third generation antivenomics: Pushing the limits of the in vitro preclinical assessment of antivenoms. Toxins, 9(5).spa
dc.relation.referencesPrado-Franceschi, J., & Brazil, O. V. (1981). Convulxin, a new toxin from the venom of the South American rattlesnake Crotalus durissus terrificus. Toxicon : Official Journal of the International Society on Toxinology, 19(6), 875–887. https://doi.org/10.1016/0041-0101(81)90085-4spa
dc.relation.referencesProbiol. (n.d.). Suero antiofídico polivalente liofilizado. In Inserto. Retrieved May 11, 2017, from http://www.probiol.com/images/pdf/probiolsueropolivalente.pdf%0Dspa
dc.relation.referencesQuintana-Castillo, J. C., Ávila-Gómez, I. C., Ceballos-Ruiz, J. F., Vargas-Muñoz, L. J., & Estrada-Gómez, S. (2017). Efecto citotóxico de fosfolipasas A2 del veneno de Crotalus durissus cumanensis de Colombia. Revista Investig Salud Univ Boyacá, 4(1), 16–37.spa
dc.relation.referencesQuintana-Castillo, J. C., Vargas, L. J., Segura, C., Estrada-Gómez, S., Bueno-Sánchez, J. C., & Alarcón, J. C. (2018). Characterization of the Venom of C. d. cumanesis of Colombia: Proteomic Analysis and Antivenomic Study. Toxins, 10(2), 2–12.spa
dc.relation.referencesQuintana, J. C., Chacón, A. M., Vargas, L., Segura, C., Gutiérrez, J. M., & Alarcón, J. C. (2012). Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and Crotoxin B. Acta Tropica, 124, 126–132.spa
dc.relation.referencesRádis-Baptista, G. (2005). Integrins, Cancer and Snake Toxins (Mini-Review). Journal of Venomous Animals and Toxins Including Tropical Diseases, 11(3), 217–241. https://doi.org/10.1590/S1678-91992005000300002spa
dc.relation.referencesRadis-Baptista, G., & Kerkis, I. (2012). Crotamine, a Small Basic Polypeptide Myotoxin from Rattlesnake Venom with Cell-Penetrating Properties. Current Pharmaceutical Design, 17(38), 4351–4361. https://doi.org/10.2174/138161211798999429spa
dc.relation.referencesRádis, G., Moreno, B., Nogueira, L., Martins, A., Tomaya, D., Tomaya, M., Azevedo, W., Cavada, B., & Yamane, T. (2005). Crotacetin, a novel snake venom c-type lectin, is homolog of convulxin. J. Venom. Anim. Toxins Incl. Trop. Dis., 11(4), 557–578.spa
dc.relation.referencesRex, C. J., & Mackessy, S. P. (2019). Venom composition of adult Western Diamondback Rattlesnakes (Crotalus atrox) maintained under controlled diet and environmental conditions shows only minor changes. Toxicon : Official Journal of the International Society on Toxinology, 164, 51–60. https://doi.org/10.1016/j.toxicon.2019.03.027spa
dc.relation.referencesReyes-Velasco, J., Meik, J. M., Smith, E. N., & Castoe, T. A. (2013). Phylogenetic relationships of the enigmatic longtailed rattlesnakes (Crotalus ericsmithi, C. lannomi, and C. stejnegeri). Molecular Phylogenetics and Evolution, 69 3, 524–534.spa
dc.relation.referencesRincon-Filho, S., Naves-de-Souza, D. L., Lopes-de-Souza, L., Silvano-de-Oliveira, J., Bonilla Ferreyra, C., Costal-Oliveira, F., Guerra-Duarte, C., & Chávez-Olórtegui, C. (2020). Micrurus surinamensis Peruvian snake venom: Cytotoxic activity and purification of a C-type lectin protein (Ms-CTL) highly toxic to cardiomyoblast-derived H9c2 cells. International Journal of Biological Macromolecules, 164, 1908–1915. https://doi.org/10.1016/j.ijbiomac.2020.08.033spa
dc.relation.referencesRivas-Mercado, E., & Garza-Ocañas, L. (2017). Disintegrins obtained from snake venom and their pharmacological potential. Medicina Universitaria, 19(74), 32–37.spa
dc.relation.referencesRizzi, C. T., Carvalho-de-Souza, J. L., Schiavon, E., Cassola, A. C., Wanke, E., & Troncone, L. R. P. (2007). Crotamine inhibits preferentially fast-twitching muscles but is inactive on sodium channels. Toxicon, 50(4), 553–562. https://doi.org/10.1016/j.toxicon.2007.04.026spa
dc.relation.referencesRodrigues, R., Izidoro, L., & Sampaio, S. (2009). Snake venom phospholipases A2: a new class of antitumor agents. Protein Peptide Lett., 5, 894.898.spa
dc.relation.referencesRodríguez-Vargas, A. (2017). Accidente ofídico. In Varios (Ed.), Guía para el Manejo de Emergencias Toxicológicas (2nd ed., pp. 499–507). Ministerio de Salud y Protección Social. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/GT/guias- manejo-emergencias-toxicologicas-outpout.pdfspa
dc.relation.referencesRojas, G., Jiménez, J., & Gutiérrez, J. (1994). Caprylic acid fractionation of hyperimmune horse plasma: Description of a simple procedure for antivenom production. Toxicon, 32(3), 351–363. https://doi.org/10.1016/0041-0101(94)90087-6spa
dc.relation.referencesRoldán-Padrón, O., Castro-Guillén, J., García-Arredondo, J., Cruz-Pérez, M., Díaz-Peña, L., Saldaña, C., Blanco-Labra, A., & García-Gasca, T. (2019). Snake Venom Hemotoxic Enzymes : Biochemical Comparison between Crotalus Species from Central Mexico. Molecules, 24(1489), 1–16.spa
dc.relation.referencesRoth, J., Zuber, C., Park, S., Jang, I., Lee, Y., Kysela, K. G., Le Fourn, V., Santimaria, R., Guhl, B., & Cho, J. W. (2010). Protein N-glycosylation, protein folding, and protein quality control. Molecules and Cells, 30(6), 497–506. https://doi.org/10.1007/s10059- 010-0159-zspa
dc.relation.referencesSalazar, A., Aguilar, I., Guerrero, B., Giron, M., Lucena, S., Sanchez, E., & Rodriguez-Acosta, A. (2008). Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Blood Coagul Fibrinolysis, 19, 525–530.spa
dc.relation.referencesSamah, S., Fatah, C., Jean-Marc, B., Safia, K. T., & Fatima, L. D. (2017). Purification and characterization of Cc-Lec, C-type lactose-binding lectin: A platelet aggregation and blood-clotting inhibitor from Cerastes cerastes venom. International Journal of Biological Macromolecules, 102, 336–350. https://doi.org/10.1016/j.ijbiomac.2017.04.018spa
dc.relation.referencesSamy, R. P., Stiles, B. G., Franco, O. L., Sethi, G., & Lim, L. H. K. (2017). Animal venoms as antimicrobial agents. Biochemical Pharmacology, 134, 127–138. https://doi.org/10.1016/j.bcp.2017.03.005spa
dc.relation.referencesSanjuán, J., Vargas, J., Ortiz, F., Gonzalez-Herrera, L., Watanabe-Minto, B., & Granja- Salcedo, Y. (2015). Determinación de la DL50 del veneno de serpientes adultas de la especie Bothrops atrox en ratones albinos. Momentos de Ciencia, 9(2), 147–152.spa
dc.relation.referencesSarray, S., Delamarre, E., Marvaldi, J., Ayeb, M. El, Marrakchi, N., & Luis, J. (2007). Lebectin and lebecetin, two C-type lectins from snake venom, inhibit α5β1 and αv- containing integrins. Matrix Biology, 26(4), 306–313. https://doi.org/10.1016/j.matbio.2007.01.001spa
dc.relation.referencesSarray, S., Luis, J., Ayeb, M. El, & Marrakchi, N. (2013). Snake Venom Peptides: Promising Molecules with Anti-Tumor Effects. In B. Hernandez & C. Hsieh (Eds.), Bioactive Food Peptides in Health and Disease (pp. 219–238). IntechOpen.spa
dc.relation.referencesSartim, M. A., & Sampaio, S. V. (2015). Snake venom galactoside-binding lectins: a structural and functional overview. Journal of Venomous Animals and Toxins Including Tropical Diseases, 21(35), 1–11. https://doi.org/10.1186/s40409-015-0038- 3spa
dc.relation.referencesSayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., ... Sherry, S. T. (2022). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20–D26. https://doi.org/10.1093/nar/gkab1112spa
dc.relation.referencesSchägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.spa
dc.relation.referencesSchendel, V., Rash, L. D., Jenner, R. A., & Undheim, E. A. B. (2019). The diversity of venom: The importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins, 11(11), 1–22. https://doi.org/10.3390/toxins11110666spa
dc.relation.referencesSeguin, L., Desgrosellier, J., Weis, S., & Cheresh, D. (2015). Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends in Cell Biology, 25(4), 234–240. https://doi.org/10.1016/j.tcb.2014.12.006spa
dc.relation.referencesSerrano-Albarrás, A., Estadella, I., Cirera-Rocosa, S., Navarro-Pérez, M., & Felipe, A. (2018). Kv1.3: a multifunctional channel with many pathological implications. In Expert opinion on therapeutic targets (Vol. 22, Issue 2, pp. 101–105). https://doi.org/10.1080/14728222.2017.1420170spa
dc.relation.referencesSerrano, S. M. T. (2013). The long road of research on snake venom serine proteinases. Toxicon, 62, 19–26. https://doi.org/10.1016/j.toxicon.2012.09.003spa
dc.relation.referencesSilva, L. M. de A. (2005). Galactomanana de Caesalpinea pulcherrima: biossíntese, estrutura e aplicação em matrizes cromatográficas. Universidade Federal do Ceará.spa
dc.relation.referencesSilveira, P. V. P., & Nishioka, S. de A. (1992). South american rattlesnake bite in a brazilian teaching hospital. clinical and epidemiological study of 87 cases, with analysis of factors predictive of renal failure. Transactions of the Royal Society of Tropical Medicine and Hygiene, 86(5), 562–564.spa
dc.relation.referencesSimsiriwong, P., Eursakun, S., & Ratanabanangkoon, K. (2012). A study on the use of caprylic acid and ammonium sulfate in combination for the fractionation of equine antivenom F(ab’)2. Biologicals, 40(5), 338–344. https://doi.org/10.1016/j.biologicals.2012.05.002spa
dc.relation.referencesSmith, P., Krohn, R., Hermanson, G., Mallia, A., Gartner, F., Provenzano, M., Fujimoto, E., Goeke, N., Olson, B., & Klenk, D. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76–85.spa
dc.relation.referencesSnake Fangs Amazing Facts. (2014). Snake Facts. https://snake- facts.weebly.com/snake-fangs.htmlspa
dc.relation.referencesSoares, S., & Oliveira, L. (2009). Venom-Sweet-Venom: N-Linked Glycosylation in Snake Venom Toxins. Protein & Peptide Letters, 16(8), 913–919. https://doi.org/10.2174/092986609788923293spa
dc.relation.referencesSommers, C., Byers, S., Thompson, E., Torri, J., & Gelmann, E. (1994). Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Research and Treatment, 31(2–3), 325–335.spa
dc.relation.referencesSousa, L. F., Nicolau, C. A., Peixoto, P. S., Bernardoni, J. L., Oliveira, S. S., Portes- Junior, J. A., Mourão, R. H. V, Lima-dos-Santos, I., Sano-Martins, I. S., Chalkidis, H. M., Valente, R. H., & Moura-da-Silva, A. M. (2013). Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex. PLoS Neglected Tropical Diseases, 7(9), e2442. https://doi.org/10.1371/journal.pntd.0002442spa
dc.relation.referencesSpearman, C. (1908). The method of ‘right and wrong cases’ (‘constant stimuli’) without Gauss’s formulae. British Journal of Psychology, 1904-1920, 2(3), 227–242. https://doi.org/https://doi.org/10.1111/j.2044-8295.1908.tb00176.xspa
dc.relation.referencesStefanelli, V. L., & Barker, T. H. (2015). The evolution of fibrin-specific targeting strategies. Journal of Materials Chemistry B, 3(7), 1177–1186. https://doi.org/10.1039/c4tb01769bspa
dc.relation.referencesStocker, K., Fischer, H., & Meier, J. (1982). Thrombin-like snake venom proteinases. Toxicon : Official Journal of the International Society on Toxinology, 20(1), 265–273. https://doi.org/10.1016/0041-0101(82)90225-2spa
dc.relation.referencesSung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660spa
dc.relation.referencesSwenson, S. D., Stack, S., & Markland Jr, F. (2021). Thrombin-Like Serine Proteinases in Reptile Venoms. In S. Mackessy (Ed.), Handbook of Venoms and Toxins of Reptiles (2nd ed., pp. 370–381). CRC Press.spa
dc.relation.referencesSzabó, I., Bock, J., Grassmé, H., Soddemann, M., Wilker, B., Lang, F., Zoratti, M., & Gulbins, E. (2008). Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 14861–14866. https://doi.org/10.1073/pnas.0804236105spa
dc.relation.referencesTasima, L. J., Serino-Silva, C., Hatakeyama, D. M., Nishiduka, E. S., Tashima, A. K., Sant’Anna, S. S., Grego, K. F., De Morais-Zani, K., & Tanaka-Azevedo, A. M. (2020). Crotamine in Crotalus durissus: Distribution according to subspecies and geographic origin, in captivity or nature. Journal of Venomous Animals and Toxins Including Tropical Diseases, 26(April 2020), 1–14. https://doi.org/10.1590/1678-9199-jvatitd-2019-0053spa
dc.relation.referencesTeisseyre, A., Palko-Labuz, A., Sroda-Pomianek, K., & Michalak, K. (2019). Voltage- Gated Potassium Channel Kv1.3 as a Target in Therapy of Cancer. Frontiers in Oncology, 9(September), 1–16. https://doi.org/10.3389/fonc.2019.00933spa
dc.relation.referencesTheakston, R. D. G., Warrell, D. A., & Griffiths, E. (2003). Report of a WHO workshop on the standardization and control of antivenoms. Toxicon, 41, 541–557.spa
dc.relation.referencesToscano, M. A., Ilarregui, J. M., Bianco, G. A., Campagna, L., Croci, D. O., Salatino, M., & Rabinovich, G. A. (2007). Dissecting the pathophysiologic role of endogenous lectins: Glycan-binding proteins with cytokine-like activity? Cytokine & Growth Factor Reviews, 18(1), 57–71. https://doi.org/https://doi.org/10.1016/j.cytogfr.2007.01.006spa
dc.relation.referencesToyama, M. H., Carneiro, E. M., Marangoni, S., Barbosa, R. L., Corso, G., & Boschero, A. C. (2000). Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets. Biochimica et Biophysica Acta - General Subjects, 1474(1), 56–60. https://doi.org/10.1016/S0304- 4165(99)00211-1spa
dc.relation.referencesTsaneva, M., & Van Damme, E. J. M. (2020). 130 years of Plant Lectin Research. Glycoconjugate Journal, 37(5), 533–551. https://doi.org/10.1007/s10719-020-09942- yspa
dc.relation.referencesTurner, K. L., & Sontheimer, H. (2014). Cl- and K+ channels and their role in primary brain tumour biology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1638), 20130095. https://doi.org/10.1098/rstb.2013.0095spa
dc.relation.referencesUetz, P., Freed, P., Aguilar, R., Reyes, F., & Hošek, J. (2023). The Reptile Database. Micrurus.spa
dc.relation.referencesUetz, P., & Hallermann, J. (2016). Crotalus durissus LINNAEUS, 1758. The Reptile Database. http://reptile-database.reptarium.czspa
dc.relation.referencesUfartes, R., Schneider, T., Mortensen, L. S., de Juan Romero, C., Hentrich, K., Knoetgen, H., Beilinson, V., Moebius, W., Tarabykin, V., Alves, F., Pardo, L. A., Rawlins, J. N. P., & Stuehmer, W. (2013). Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice. Human Molecular Genetics, 22(11), 2247–2262. https://doi.org/10.1093/hmg/ddt076spa
dc.relation.referencesUllah, A., & Masood, R. (2020). The Sequence and Three-Dimensional Structure Characterization of Snake Venom Phospholipases B. Frontiers in Molecular Biosciences, 7, 175. https://doi.org/10.3389/fmolb.2020.00175spa
dc.relation.referencesUNDP. (2013). Country Profile: Human Development Indicators. United Nations Development Programme (UNDP). http://hdr.undp.org/en/data/profiles/spa
dc.relation.referencesUrieles, K. (2020). Informe del Evento: Accidente Ofídico, Colombia, 2020. Report. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ACCIDENTE OFÍDICO_2020.pdfspa
dc.relation.referencesUrrego, D., Tomczak, A. P., Zahed, F., Stühmer, W., & Pardo, L. A. (2014). Potassium channels in cell cycle and cell proliferation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1638), 20130094. https://doi.org/10.1098/rstb.2013.0094spa
dc.relation.referencesUrs, N., Yariswamy, M., Joshi, V., Nataraju, A., Gowda, T., & Vishwanath, B. (2014). Implications of phytochemicals in snakebite management: Present status and future prospective. Toxin Reviews, 33(3), 60–83. https://doi.org/10.3109/15569543.2013.854255spa
dc.relation.referencesValenta, J. (2010a). Envenoming and Snakebite Treatment in Specific Snake Group. In J. Valenta (Ed.), Zoological basis (pp. 152–157). Nova Science Publishers.spa
dc.relation.referencesValenta, J. (2010b). Zoological basis. In Venomous snakes - Envenoming, therapy (2nd ed.). Nova Science.spa
dc.relation.referencesvan Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/https://doi.org/10.1016/j.jmb.2015.09.014spa
dc.relation.referencesVargaftig, B. B., Joseph, D., Wal, F., Marlas, G., Chignard, M., & Chevance, L. G. (1983). Convulxin-induced activation of intact and of thrombin-degranulated rabbit platelets: specific crossed desensitisation with collagen. European Journal of Pharmacology, 92(1–2), 57–68. https://doi.org/10.1016/0014-2999(83)90108-5spa
dc.relation.referencesVargas, L. J., Quintana, J. C., Pereañez, J., Núñez, V., Sanz, L., & Calvete, J. (2013). Cloning and characterization of an antibacterial l-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon, 64, 1–11.spa
dc.relation.referencesVetter, R. S., & Schmidt, J. O. (2006). Semantics of toxinology. Toxicon, 48(1), 1–3.spa
dc.relation.referencesViala, V. L., Hildebrand, D., Fucase, T. M., Sciani, J. M., Prezotto-Neto, J. P., Riedner, M., Sanches, L., Nishimura, P. J., Oguiura, N., Pimenta, D. C., Schlüter, H., Betzel, C., Arni, R. K., & Spencer, P. J. (2015). Proteomic analysis of the rare Uracoan rattlesnake Crotalus vegrandis venom: Evidence of a broad arsenal of toxins. Toxicon, 107, 234–251. https://doi.org/10.1016/j.toxicon.2015.09.023spa
dc.relation.referencesVivas-Ruiz, D. E., Gonzalez-Kozlova, E. E., Delgadillo, J., Palermo, P. M., Sandoval, G. A., Lazo, F., Rodríguez, E., Chávez-Olórtegui, C., Yarlequé, A., & Sanchez, E. F. (2019). Biochemical and molecular characterization of the hyaluronidase from Bothrops atrox Peruvian snake venom. Biochimie, 162, 33–45. https://doi.org/https://doi.org/10.1016/j.biochi.2019.03.022spa
dc.relation.referencesWaghmare, A. B., Salvi, N. C., Deopurkar, R. L., Shenoy, P. A., & Sonpetkar, J. M. (2014). Evaluation of health status of horses immunized with snake venom and montanide adjuvants, IMS 3012 (nanoparticle), ISA 206 and ISA 35 (emulsion based) during polyvalent snake antivenom production: Hematological and biochemical assessment. Toxicon, 82, 83–92. https://doi.org/10.1016/j.toxicon.2014.02.012spa
dc.relation.referencesWalker, J. R., Nagar, B., Young, N. M., Hirama, T., & Rini, J. M. (2004). X-ray Crystal Structure of a Galactose-Specific C-Type Lectin Possessing a Novel Decameric Quaternary Structure. Biochemistry, 43(13), 3783–3792.spa
dc.relation.referencesWalteros, D., Paredes, A., & León, L. (2017). Accidente ofídico. In Protocolo de vigilancia en salud pública. Instituto Nacional de Salud. https://www.ins.gov.co/buscador- eventos/Lineamientos/PRO Accidente ofidico_.pdfspa
dc.relation.referencesWang, X. W., Zhao, X. F., & Wang, J. X. (2014). C-type lectin binds to β-integrin to promote hemocytic phagocytosis in an invertebrate. Journal of Biological Chemistry, 289(4), 2405–2414.spa
dc.relation.referencesWarrell, D. A. (2010). Snake bite. Lancet (London, England), 375(9708), 77–88. https://doi.org/10.1016/S0140-6736(09)61754-2spa
dc.relation.referencesWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427spa
dc.relation.referencesWHO. (1981). Progress in the characterization of venoms and standardization of antivenoms. WHO Offset Pubication.spa
dc.relation.referencesWHO. (2010). WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. In WHO (Ed.), World Health Organization (Vol. 204, Issue 1). World Health Organization Press. https://doi.org/10.1051/jbio/2009043spa
dc.relation.referencesWHO. (2017). Annex 5. Guidelines for the production, control and regulation of snake antivenom immunoglobulins Replacement of Annex 2 of WHO Technical Report Series, No. 964. WHO Technical Report Series, 197–388.spa
dc.relation.referencesWorld Health Organization. (2023). Cáncer. https://www.who.int/es/news-room/fact- sheets/detail/cancerspa
dc.relation.referencesWormald, M. R., & Dwek, R. A. (1999). Glycoproteins: glycan presentation and protein- fold stability. Structure (London, England : 1993), 7(7), R155-60. https://doi.org/10.1016/s0969-2126(99)80095-1spa
dc.relation.referencesWu, A. M. (2003). Carbohydrate structural units in glycoproteins and polysaccharides as important ligands for Gal and GalNAc reactive lectins. Journal of Biomedical Science, 10(6 Pt 2), 676–688. https://doi.org/10.1159/000073954spa
dc.relation.referencesWu, W., Guan, X., Kuang, P., Jiang, S., Yang, J., Sui, N., Chen, A., Kuang, P., & Zhang, X. (2001). Effect of batroxobin on expression of neural cell adhesion molecule in temporal infarction rats and spatial learning and memory disorder. Journal of Traditional Chinese Medicine = Chung i Tsa Chih Ying Wen Pan, 21(4), 294–298.spa
dc.relation.referencesWu, W., Kuang, P., & Li, Z. (2001). Effect of batroxobin on neuronal apoptosis during focal cerebral ischemia and reperfusion in rats. Journal of Traditional Chinese Medicine = Chung i Tsa Chih Ying Wen Pan, 21(2), 136–140.spa
dc.relation.referencesXia, X., You, M., Rao, X.-J., & Yu, X.-Q. (2018). Insect C-type lectins in innate immunity. Developmental and Comparative Immunology, 83, 70–79. https://doi.org/10.1016/j.dci.2017.11.020spa
dc.relation.referencesYang, K. B., Zhao, S. G., Liu, Y. H., Hu, E. X., & Liu, B. X. (2009). Tetraethylammonium inhibits glioma cells via increasing production of intracellular reactive oxygen species. Chemotherapy, 55(5), 372–380. https://doi.org/10.1159/000235730spa
dc.relation.referencesYe, Y., & Godzik, A. (2003). Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics, 19(suppl_2), ii246–ii255. https://doi.org/10.1093/bioinformatics/btg1086spa
dc.relation.referencesYin, L.-T., Fu, Y.-J., Xu, Q.-L., Yang, J., Liu, Z.-L., Liang, A.-H., Fan, X.-J., & Xu, C.-G. (2007). Potential biochemical therapy of glioma cancer. Biochemical and Biophysical Research Communications, 362(2), 225–229. https://doi.org/10.1016/j.bbrc.2007.07.167spa
dc.relation.referencesYonamine, C M, Prieto-da-Silva, A. R. B., Magalhães, G. S., Rádis-Baptista, G., Morganti, L., Ambiel, F. C., Chura-Chambi, R. M., Yamane, T., & Camillo, M. A. P. (2009). Cloning of serine protease cDNAs from Crotalus durissus terrificus venom gland and expression of a functional Gyroxin homologue in COS-7 cells. Toxicon : Official Journal of the International Society on Toxinology, 54(2), 110–120. https://doi.org/10.1016/j.toxicon.2009.03.022spa
dc.relation.referencesYonamine, Camila M, Kondo, M. Y., Nering, M. B., Gouvêa, I. E., Okamoto, D., Andrade, D., Alberto da Silva, J. A., Prieto da Silva, Á. R., Yamane, T., Juliano, M. A., Juliano, L., Lapa, A. J., Hayashi, M. A., & Teresa Lima-Landman, M. R. (2014). Enzyme specificity and effects of gyroxin, a serine protease from the venom of the South American rattlesnake Crotalus durissus terrificus, on protease-activated receptors. Toxicon, 79, 64–71.spa
dc.relation.referencesYoshida-Kanashiro, E., Navarrete, L. F., & Rodríguez-Acosta, A. (2003). On the unusual hemorrhagic and necrotic activities caused by the rattlesnake (Crotalus durissus cumanensis) in a Venezuelan patient. Revista Cubana de Medicina Tropical, 55(1), 38–40.spa
dc.relation.referencesYount, N. Y., Kupferwasser, D., Spisni, A., Dutz, S. M., Ramjan, Z. H., Sharma, S., Waring, A. J., & Yeaman, M. R. (2009). Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proceedings of the National Academy of Sciences, 106(35), 14972–14977. https://doi.org/10.1073/pnas.0904465106spa
dc.relation.referencesZakraoui, O., Marcinkiewicz, C., Aloui, Z., Othman, H., Grépin, R., Haoues, M., Essafi, M., Srairi-Abid, N., Gasmi, A., Karoui, H., Pagès, G., & Essafi-Benkhadir, K. (2017). Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression. Molecular Carcinogenesis, 56, 18–35.spa
dc.relation.referencesZanetta, J. P. (1998). Structure and functions of lectins in the central and peripheral nervous system. Acta Anatomica, 161(1–4), 180–195. https://doi.org/10.1159/000046457spa
dc.relation.referencesZaqueo, K. D., Kayano, A. M., Domingos, T. F. S., Moura, L. A., Fuly, A. L., da Silva, S. L., Acosta, G., Oliveira, E., Albericio, F., Zanchi, F. B., Zuliani, J. P., Calderon, L. A., Stábeli, R. G., & Soares, A. M. (2016). BbrzSP-32, the first serine protease isolated from Bothrops brazili venom: Purification and characterization. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 195, 15–25. https://doi.org/10.1016/j.cbpa.2016.01.021spa
dc.relation.referencesZelensky, A. N., & Gready, J. E. (2005). The C-type lectin-like domain superfamily. The FEBS Journal, 272(24), 6179–6217. https://doi.org/https://doi.org/10.1111/j.1742- 4658.2005.05031.xspa
dc.relation.referencesZeng, R., Xu, Q., Shao, X. X., Wang, K. Y., & Xia, Q. C. (1999). Characterization and analysis of a novel glycoprotein from snake venom using liquid chromatography- electrospray mass spectrometry and Edman degradation. European Journal of Biochemistry, 266(2), 352–358. https://doi.org/10.1046/j.1432-1327.1999.00859.xspa
dc.relation.referencesZha, H. G., Lee, W. H., & Zhang, Y. (2001). Cloning of cDNAs encoding C-type lectins from Elapidae snakes Bungarus fasciatus and Bungarus multicinctus. Toxicon : Official Journal of the International Society on Toxinology, 39(12), 1887–1892. https://doi.org/10.1016/s0041-0101(01)00172-6spa
dc.relation.referencesZhang, K., & Chen, J. F. (2012). The regulation of integrin function by divalent cations. Cell Adhesion and Migration, 61, 20–29.spa
dc.relation.referencesZhang, S., Sherwood, R. W., Yang, Y., Fish, T., Chen, W., McCardle, J. A., Jones, R. M., Yusibov, V., May, E. R., Rose, J. K. C., & Thannhauser, T. W. (2012). Comparative characterization of the glycosylation profiles of an influenza hemagglutinin produced in plant and insect hosts. Proteomics, 12(8), 1269–1288. https://doi.org/10.1002/pmic.201100474spa
dc.relation.referencesZhang, Y. (2015). Why do we study animal toxins? Dong Wu Xue Yan Jiu = Zoological Research, 36(4), 183–222. https://doi.org/10.13918/j.issn.2095-8137.2015.4.183spa
dc.relation.referencesZhou, X., Zheng, W., Li, Y., Pearce, R., Zhang, C., Bell, E. W., Zhang, G., & Zhang, Y. (2022). I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction. Nature Protocols, 17(10), 2326–2353. https://doi.org/10.1038/s41596-022-00728-0spa
dc.relation.referencesZuccoli, G. S., Martins-de-Souza, D., Guest, P. C., Rehen, S. K., & Nascimento, J. M. (2017). Combining Patient-Reprogrammed Neural Cells and Proteomics as a Model to Study Psychiatric Disorders. Advances in Experimental Medicine and Biology, 974, 279–287. https://doi.org/10.1007/978-3-319-52479-5_26spa
dc.relation.referencesZuliani, J. P., Paloschi, M. V., Pontes, A. S., Boeno, C. N., Lopes, J. A., Setubal, S. S., Zanchi, F. B., & Soares, A. M. (2021). Reptile Venom L-Amino Acid Oxidases – Structure and Function. In S. Mackessy (Ed.), Handbook of Venoms and Toxins of Reptiles (Vol. 2, pp. 413–430). CRC Press. https://doi.org/10.1201/9780429054204- 31spa
dc.relation.referencesZybailov, B., Mosley, A. L., Sardiu, M. E., Coleman, M. K., Florens, L., & Washburn, M. P. (2006). Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. Journal of Proteome Research, 5(9), 2339–2347. https://doi.org/10.1021/pr060161nspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembSerpientes venenosasspa
dc.subject.lembSnake venomeng
dc.subject.lembVenenosspa
dc.subject.lembPoisonseng
dc.subject.proposalCrotalus durissus cumanensisspa
dc.subject.proposalVenenospa
dc.subject.proposalLectinas tipo Cspa
dc.subject.proposalCrotaminaspa
dc.subject.proposalCitotoxicidadspa
dc.subject.proposalVenomeng
dc.subject.proposalC-type lectinseng
dc.subject.proposalCrotamineeng
dc.subject.proposalCytotoxicityeng
dc.titleCaracterización bioquímica, funcional y biológica del veneno de Crotalus durissus cumanensis colombianaspa
dc.title.translatedBiochemical, functional and biological characterization of the Colombian Crotalus durissus cumanensis venomeng
dc.title.translatedCaractérisation biochimique, fonctionnelle et biologique du venin colombien de Crotalus durissus cumanensisfra
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
53121493.2024.pdf
Tamaño:
50.58 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: