Efecto del secado solar intermitente en la composición química del café

dc.contributor.advisorCiro Velásquez, Héctor José
dc.contributor.advisorChejne Janna, Farid
dc.contributor.authorLargo Avila, Esteban
dc.date.accessioned2021-05-07T21:38:48Z
dc.date.available2021-05-07T21:38:48Z
dc.date.issued2020-03-18
dc.description.abstractLa calidad del café evaluada a partir de su composición química, características físicas y organolépticas se ha convertido en un tema de investigación de importancia nacional e internacional para lograr una mejor comercialización del grano de café pergamino. Se realizó un estudio del efecto del secado solar intermitente (intermitencia provocada por el día y la noche) sobre algunos compuestos químicos de interés en la calidad del café. El efecto del secado se correlacionó con atributos sensoriales para la especie C. arabica variedades Caturra y Castillo®. En la primera etapa experimental se realizó un diseño factorial por bloques con variables independientes: 6 niveles para el proceso de secado (secado mecánico: 40 ° C y 50 ºC con caudal de aire de 60 y 100 m3∙min-1∙t-1cps; secado con exposición al sol directo y secado solar en marquesina) y 2 niveles para la variedad de café (Caturra y Castillo®). Los experimentos de secado con dos repeticiones se realizaron en 3 fincas del departamento de Antioquia. En la segunda etapa experimental se construyó una marquesina para realizar el secado solar de café variedad Castillo® con recomendaciones técnicas del Comité de Cafeteros de Antioquia. Las variables como temperatura, humedad relativa y radiación solar dentro de la Marquesina se registraron con un Datalogger. Las curvas de pérdida de peso del café durante el secado solar y mecánico se construyeron bajo el método Gravimet (Cenicafé). La concentración de varios ácidos grasos y sacarosa se midió con técnicas de HPLC y GC-MS, y se concluyó que el tiempo de secado al sol afecta la evolución de estos compuestos. En este sentido, los procesos de secado al sol durante un período de tiempo más prolongado, como los de los sistemas artesanales (marquesina) condicionados por las condiciones climáticas y sometidos a la energía solar, hacen que los ácidos grasos y la sacarosa en los granos de café disminuyan de manera más significativa. En este estudio, se desarrolló un modelo matemático 1D para predecir la evolución temporal de la pérdida de humedad durante el secado solar, y se validó con éxito con datos experimentales.spa
dc.description.abstractThe quality of coffee evaluated from its chemical composition, physical and organoleptic characteristics has become a research topic of national and international importance to achieve a better commercialization of parchment coffee bean. A study was carried out of the effect of intermittent solar drying (intermittence caused by day and night) on some chemical compounds of interest in the quality of coffee. The effect of drying was correlated with sensory attributes for the species C. arabica varieties Caturra and Castillo®. In the first experimental stage, a factorial design by blocks was carried out with independent variables: 6 levels for the drying process (mechanical drying: 40 °C and 50 ºC with air flow of 60 and 100 m3/min∙tonCPS; drying with exposure to direct sun and solar drying in marquesina) and 2 levels for a variety of coffee (Caturra and Castillo®). The drying experiments with two repetitions were carried out in 3 farms in the department of Antioquia. In the second experimental stage, a canopy was built to carry out the solar drying of Castillo® variety coffee with technical recommendations from the Comite de Cafeteros de Antioquia. Variables as temperature, relative humidity and solar radiation inside the Marquesina were recorded with a Datalogger. The coffee weight loss curves during solar and mechanical drying were constructed under the Gravimet method (Cenicafé). The concentration of several fatty acids and sucrose was measured with HPLC and GC-MS techniques, and it was concluded that the sun-drying time affects the evolution of these compounds. In this sense, sun-drying processes over a longer period of time, such as those in handcrafted systems (marquesina) conditioned by climate conditions and subjected to sunlight energy, cause the fatty acids and sucrose in the coffee grains to decrease more significantly. In this study, a 1D mathematical model was developed for predicting the time evolution of the moisture loss during solar drying and was successfully validated with experimental data.eng
dc.description.degreelevelDoctoradospa
dc.description.researchareaSistemas de energíaspa
dc.format.extent131 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional UNspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79488
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.referencesReferencias Introducción generalspa
dc.relation.referencesAlcázar, A., Fernandéz, P., Martín, M., Pablos, F., & González. (2003). Ion chromatographic determination of some organic acids, chloride and phosphate in coffee and tea. Talanta, 61(2), 95–101.spa
dc.relation.referencesAndrade, Ednilton T. De, Isabella A. Lemos, Camila De A. Dias, Paula De A. Rios, and Flavio M. Borém. 2019. “Mathematical modelling and immediate and latent quality of natural immature coffee under different drying conditions.” Engenharia Agrícola 39(5):630–38.spa
dc.relation.referencesAristizábal C y Duque H. (2005). Caracterización del proceso de beneficio de café en cinco departamentos cafeteros de Colombia. Cenicafé, 56(4); 299 – 318.spa
dc.relation.referencesArnold, U., Ludwig, E., Kiihn, R., & Mschwitzer, U. (1994). Original paper Analysis of free amino acids in green coffee beans. Lebensm Unters Forsch, 199, 22–25.spa
dc.relation.referencesASIC. 2014. (11 de septiembre de 2014). 25 conferencia sobre ciencia y café. Armenia, Quindio.spa
dc.relation.referencesAvelino, J., Barboza, B., Araya, J. C., Fonseca, C., Davrieux, F., Guyot, B., & Cilas, C. (2005). Effects of slope exposure, altitude and yield on coffee quality in two altitudeterroirs of Costa Rica, Orosi and Santa María de Dota. Journal of the Science of Food and Agriculture, 85(11), 1869–1876.spa
dc.relation.referencesBacon, C. “Confronting the Coffee Crisis: Can Fair Trade, Organic, and Specialty Coffees Reduce Small-Scale Farmer Vulnerability in Northern Nicaragua?”World Development 33,3(2005):497–511.spa
dc.relation.referencesBanco de la República - Colombia. (2018). BANREP. Recuperado el 20 junio de 2018, de PIB: http://www.banrep.gov.co/spa
dc.relation.referencesBelessiotis V and Delyannis E. (2011). Solar drying. Solar Energy, 85; 1665–1691.spa
dc.relation.referencesBelitz, D., Grosch, W., and Schieberle,P. (2009). Food Chem., ed. H.-D. Belitz, W. Grosch and P. Schieberle, Springer, Berlin, 4th edn, 2009, vol. 21, pp. 938–951.spa
dc.relation.referencesBertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012). Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575–83.spa
dc.relation.referencesBorém, F. M., Marques, E. R., & Alves, E. (2008). Ultrastructural analysis of drying damage in parchment Arabica coffee endosperm cells. Biosystems Engineering, 99(1), 62–66. https://doi.org/10.1016/j.biosystemseng.2007.09.027spa
dc.relation.referencesBorém, Flávio Meira, de Oliveira, P. D., Isquierdo, E. P., Giomo, G. da S., Saath, R., & Cardoso, R. A. (2013). Scanning electron microscopy of coffee beans subjected to different forms of processing and drying. Coffee Science, 8(2), 227–237. https://doi.org/10.25186/cs.v8i2.420spa
dc.relation.referencesBorém, Flávio Meira, Isquierdo, E. P., Oliveira, P. D., Ribeiro, F. C., Siqueira, V. C., & Taveira, J. H. da S. (2014). Effect of intermittent drying and storage on parchment coffee quality. Bioscience Journal, 30(5), 609–616.spa
dc.relation.referencesBotero, J., & Betancur, W. (2012). Buenas prácticas agrícolas en el beneficio del café en Colombia. Trabajo de grado para optar al título de Agrónomo. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente. Universidad Nacional de Colombia, Medellín. 85 p.spa
dc.relation.referencesBrooker, D. B., Bakker-Arkema, F.W. & Hall C. W. (1973). Drying Cereal Grain. The AVI Publishing Company. Westport, Connecticut. USA. 265 p.spa
dc.relation.referencesBurmester, K., Eggers, R. (2010). Heat and mass transfer during the coffee drying process. Journal of Food Engineering, 99, 430–436.spa
dc.relation.referencesCannon, R. J., Trinnaman, L., Grainger, B., & Trail, A. (2010). The key odorants of coffee from various geographical locations. In N. C. Da Costa, & R. J. Cannon (Eds.), Flavors in noncarbonated beverages, Vol. 1036. (pp. 77–90): American Chemical Society.spa
dc.relation.referencesCano, C. G., Vallejo, C., Caicedo, E., Amador, J. S., & Tique, E. Y. (2012). Borradores de Economía: El mercado mundial del café y su impacto en Colombia. Bogotá - Colombia. 57 p.spa
dc.relation.referencesCaporaso, N., Whitworth, M., Cui, C., & Fisk, I. (Junio de 2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Research International, 108, 628-640.spa
dc.relation.referencesCastillo ZJ. (1990). Mejoramiento genético del café en Colombia. (pp. 46 - 53). Presentado en 50 años de Cenicafé 1938-1958. Conferencias conmemorativas., Chinchiná, Cenicafé: CENTRO NACIONAL DE INVESTIGACIONES DE CAFÉ.spa
dc.relation.referencesCastoldi, G., & Castoldi, G. (2013). Pré-processamento e secagem de café. Revista Varia Scientia Agrárias, 3(2), 175–193.spa
dc.relation.referencesCenicafé. Centro Nacional de Investigaciones de Café. (2004). Beneficio del café II: Secado del café Pergamino. Recuperado de: http://www.cenicafe.org/es/publications/cartilla_21._Secado_del_cafe.pdfspa
dc.relation.referencesChacón, E. (2001). Evaluación de los sistemas tradicional y ecológico de beneficio húmedo de café. Trabajo de grado para optar al título de Ingeniero Agrónomo. Zamorano, Honduras. 52p.spa
dc.relation.referencesCheng, K., Dong, W., Long, Y., Zhao, J., Hu, R., Zhang, Y., & Zhu, K. (2019). Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans. Food Science and Nutrition, 7(3), 1084–1095. https://doi.org/10.1002/fsn3.948spa
dc.relation.referencesChung, T.J. (2010). Computational fluid dynamics. Cambridge University Press. New York, USA. 1058 p.spa
dc.relation.referencesCiro, H.J., Abud L. C. & Perez L.R. (2010). Numerical simulation of thin layer coffee drying by control volumes. Dyna; 77, (163): 270­278.spa
dc.relation.referencesCruz, D., Lopez, E., Pascual, L. F., & Battaglia, M. (2010). Guía técnica de construcción y funcionamiento de secadoras solares tipo domo. Journal of Agriculture and Environment for International Development, 104(3-4), 125–138.spa
dc.relation.referencesDamatta, F., Avila, R., & Cardoso, A. (Marzo de 2018). Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A Review. Agricultural and food chemistry.spa
dc.relation.referencesDe Almeida Dias, C., Tavares de Andrade, E., Àvila Lemos, I., Meira Borém, F., Nogueira Westerich, D., & Claudia Almeida da Silva, A. (2020). Mathematical modeling of dehydration resistance of pericarp tissues and endosperm in fruits of arabic coffee. Coffee Science, 15(1957), 1–9. https://doi.org/10.25186/.v15i.1670spa
dc.relation.referencesDe Paula Lima, J., & Farah, A. (2019). Chapter 23 Caffeine and Minor Methylxanthines in Coffee. In Coffee: Production, Quality and Chemistry (pp. 543–564). The Royal Society of Chemistry. https://doi.org/10.1039/9781782622437-00543spa
dc.relation.referencesDong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272(August 2018), 723–731. https://doi.org/10.1016/j.foodchem.2018.08.068spa
dc.relation.referencesDong, W., Cheng, K., Hu, R., Chu, Z., Zhao, J., & Long, Y. (2018). Effect of microwave vacuum drying on the drying characteristics, color, microstructure, and antioxidant activity of green coffee beans. Molecules, 23(5). https://doi.org/10.3390/molecules23051146spa
dc.relation.referencesDong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234, 121–130. https://doi.org/10.1016/j.foodchem.2017.04.156spa
dc.relation.referencesDussert, S., Davey, M. W., Laffargue, A., Doulbeau, S., Swennen, R., & Etienne, H. (2006). Oxidative stress, phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds. Physiologia Plantarum, 127(2), 192–204. https://doi.org/10.1111/j.1399-3054.2006.00666.xspa
dc.relation.referencesEkechukwu OV. (1999). Review of solar-energy drying systems I: an overview of drying principles and theory. Energy Conversion and Management, 40; 593–613.spa
dc.relation.referencesErbay Z and Icier F. (2009). A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50; 441–464.spa
dc.relation.referencesFagan, E. B., Souza, C. H. E., Pereira, N. M. B & Machado, V. J. (2011). Efeito do tempo de formação do grão de café (Coffea sp) na qualidade da bebida. Bioscience Journal, Uberlândia, v. 27, n. 5, p. 729-738.spa
dc.relation.referencesFarah A, Monteiro MC, Calado V, Franca AS and Trugo LC. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98; 373-380.spa
dc.relation.referencesFarah, A. (2012). Coffee constituents. Y.-F. Chu (Ed.), Coffee: Emerging health effects and disease prevention, Wiley-Blackwell, Oxford, pp. 21 –58.spa
dc.relation.referencesFarah, A., & Donangelo, C. M. (2006). Phenolic compounds in coffee. Braz. J. Plant Physiol, 18(1), 23–36.spa
dc.relation.referencesFarah, A., Monteiro, M. C., Calado, V., Franca, A. S., & Trugo, L. C. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98(2), 373–380.spa
dc.relation.referencesFerreira, C. (2014). Chapter 11. Microbial Activity during CoffFFee Fermentation. In R. Schwan & G. Fleet (Eds.), Cocoa and Coffee Fermentations (p. 633). CRC Press.spa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia - FNC. (2018). Informe Departamental de la Federación Nacional De Cafeteros. Medellin: Sistema de información cafetera.spa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia - FNC. (2013 a). Cafés especiales: que son. En: http://www.federaciondecafeteros.org/particulares/es/nuestro_cafe/cafes_especiales/que_sonspa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia - FNC. (2011). Nuestros cafés especiales. En: http://www.federaciondecafeteros.org/clientes/es/nuestra_propuesta_de_valor/portafolio_de_productos/nuestro_cafe_especialspa
dc.relation.referencesFonseca, S. F., Rodríguez, J. L. A., Fernández, V. R. F., Enríquez, J. P., & Yen, A. T. (2003). Estudio comparativo del secado solar de café en plazoletas tradicionales y ennegrecidas. Tecnología Química, 23(3), 48-54.spa
dc.relation.referencesGlobal Coffee Plataform. (2018). Análisis de la equidad de género en el sector de café en Colombia. Bogotá.spa
dc.relation.referencesGoneli A, Corrêa P, Oliveira G and Afonso P. (2013). Water sorption properties of coffee fruits pulped and green coffee. LWT - Food Science and Technology, 50; 386-391.spa
dc.relation.referencesGonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & Schorr-Galindo, S. (2007). Impact of “ecological” post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. Journal of Food Composition and Analysis, 20(3-4), 289–296.spa
dc.relation.referencesGonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & Schorr-Galindo, S. (2007). Impact of “ecological” post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. Journal of Food Composition and Analysis, 20(3-4), 289–296.spa
dc.relation.referencesGuerrero, J. (2007). Estudio de diagnóstico y diseño de beneficios húmedos de café. IICA Nicaragua - Promecafé.spa
dc.relation.referencesGutiérrez, J. M., & Copete, H. (2009). Hacia la Mejora del Secado Mecánico del Café en Colombia. Revista Tecnológicas, 23, 109–132.spa
dc.relation.referencesHaddis, A., & Devi, R. (2008). Effect of effluent generated from coffee processing plant on the water bodies and human health in its vicinity. Journal of Hazardous Materials, 152(1), 259–62.spa
dc.relation.referencesHall, C. W. 1957. Drying Farm Crops. AVI Publishing Company. Westport, Connecticut. USA. 336 p.spa
dc.relation.referencesHečimović, I., Belščak-Cvitanović, A., Horžić, D., & Komes, D. (2011). Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry, 129(3), 991 –1000.spa
dc.relation.referencesHernández W, Ruiz I, Salgado M, Rodríguez G and García M. (2008). Modeling heat and mass transfer during drying of green coffee beans using prolate spheroidal geometry. Journal of Food Engineering, 86; 1–9.spa
dc.relation.referencesHigdon, J. V, & Frei, B. (2006). Coffee and health: a review of recent human research. Critical Reviews in Food Science and Nutrition, 46(2), 101 –23.spa
dc.relation.referencesHolscher, W., & Steinhart, H. (1995). Aroma Compounds in Green Coffee. Developments in Food Science, 37, 785–803.spa
dc.relation.referencesHwang, C.-F., Chen, C.-C., & Ho, C.-T. (2012). Contribution of coffee proteins to roasted coffee volatiles in a model system. International Journal of Food Science & Technology, 47(10), 2117–2126.spa
dc.relation.referencesInternational Coffee Organization. (2018). http://www.ico.org/. Recuperado el Mayo de 2018, de http://www.ico.org/: http://www.ico.org/spa
dc.relation.referencesIsquierdo, E.P. (2011). Qualidade do café desmucilado submetido ao parcelamento da secagem. Coffee Science, Lavras, 6(1), 83-90.spa
dc.relation.referencesJoët, T., Laffargue, A., Descroix, F., Doulbeau, S., Bertrand, B., Kochko, A. De, & Dussert, S. (2010). Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chemistry, 118(3), 693–701.spa
dc.relation.referencesKleinwächter, M., & Selmar, D. (2010). Influence of drying on the content of sugars in wet processed green Arabica coffees. Food Chemistry, 119(2), 500–504. https://doi.org/10.1016/j.foodchem.2009.06.048spa
dc.relation.referencesKleinwächter, M., Bytof, G. & Selmar D. (2015). Coffee in health and disease prevention. Coffee Beans and Processing. Chapter 9. Academic Press. London, UK. 73 – 81 p.spa
dc.relation.referencesKramer, D., Breitenstein, B., Kleinwachter, M., & Selmar, D. (2010). Stress Metabolism in Green Coffee Beans (Coffea arabica L.): Expression of Dehydrins and Accumulation of GABA during Drying. Plant and Cell Physiology, 51(4), 546–553. https://doi.org/10.1093/pcp/pcq019spa
dc.relation.referencesKucuk H, Midilli A, Kilic A and Dincer I. (2014). A Review on Thin-Layer Drying-Curve Equations. Drying Technology, 32; 757–773.spa
dc.relation.referencesKulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., & Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry, 291(April), 49–58. https://doi.org/10.1016/j.foodchem.2019.03.152spa
dc.relation.referencesLarasati, D. A., Kalandro, G. D., Fibriani, I., Hadi, W., Herdiyanto, D. W., & Sarwono, C. S. (2019). Optimization of Coffee Bean Drying Using Hybrid Solar Systems and Wi-Fi Data Communication. Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 17, 29–32. https://doi.org/10.1109/ICECOS.2018.8605196spa
dc.relation.referencesLee K.G. & Shibamoto T. (2002). Toxicology and antioxidant activities of non-enzymatic browning reaction products: review. Food Rev Inter ;18: 151–75 p.spa
dc.relation.referencesLivramento, K. G. do, Borém, F. M., José, A. C., Santos, A. V., Livramento, D. E. do, Alves, J. D., & Paiva, L. V. (2017). Proteomic analysis of coffee grains exposed to different drying process. Food Chemistry, 221, 1874–1882. https://doi.org/10.1016/j.foodchem.2016.10.069spa
dc.relation.referencesLyman D, Benck R and Merle S. (2011). Difference Spectroscopy in the Analysis of the Effects of Coffee Cherry Processing Variables on the Flavor of Brewed Coffee. International Journal of Spectroscopy, 5p.spa
dc.relation.referencesMarín, C., & Puerta, G. I. (2008). Contenido de ácidos clorogénicos en granos de coffea arabica y c. canephora , según el desarrollo del fruto. Cenicafé, 59(1), 7–28.spa
dc.relation.referencesMatei, M. F., Seung-Hun, L., & Kuhnert, N. (2019). Chapter 24 Chlorogenic Acids. In Coffee: Production, Quality and Chemistry (pp. 565–583). The Royal Society of Chemistry. https://doi.org/10.1039/9781782622437-00565spa
dc.relation.referencesMendonça, J. C. F., Franca, A. S., & Oliveira, L. S. (2007). A comparative evaluation of methodologies for water content determination in green coffee. LWT - Food Science and Technology, 40(7), 1300–1303.spa
dc.relation.referencesMontoya-ortiz, G., Cristancho-ardila, M., & Moncada-botero, M. (2006). Análisis de secuencias de genes de coffee arabica var. caturra. Cenicafé, 79-87.spa
dc.relation.referencesMurkovic, M., & Derler, K. (2006). Analysis of amino acids and carbohydrates in green coffee. Journal of Biochemical and Biophysical Methods, 69(1 -2), 25–32.spa
dc.relation.referencesMurthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45-58.spa
dc.relation.referencesNilnont W, Thepa S, Janjai S, Kasayapananda, Thamrongmasb C Bala BK. (2012) Finite element simulation for coffee (Coffea arabica) drying Food and Bioproducts Processing 90 (2), 341–350.spa
dc.relation.referencesOliveros C, Ramirez C y Roa G. (2002). Construya el secador solar parabólico. Cenicafé. Avances Técnicos 305. 8pspa
dc.relation.referencesOliveros C, Ramirez C, Sanz J y Peñuela A. (2006) Secador solar de túnel para café pergamino. Cenicafé. Avance Técnico 353. 8p.spa
dc.relation.referencesOliveros, C. E., López, L., Buitrago, C. M., & Moreno, E. L. (2010). Determinación del Contenido de Humedad del Café Durante el Secado en Silos. Cenicafé, 61(2), 108–118.spa
dc.relation.referencesOliveros, C. E., Peñuela, A., & Jurado, J. M. (2009). Controle la humedad del café en el secado solar, utilizando el método gravimet. Avances Técnicos, Cenicafé, 387.spa
dc.relation.referencesOliveros-tascón, C. E., Sanz, J. R., Ramírez, C. A., & Peñuela, A. E. (2009). Aprovechamiento eficiente de la energía en el secado mecánico del café. Avances Técnicos, Cenicafé, 380(14).spa
dc.relation.referencesOnwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. https://doi.org/10.1111/1541-4337.12196spa
dc.relation.referencesPrada, Álvaro, Cynthia P. Vela, Gabriela Bardález, and Jorge Saavedra. 2019. “Efectividad de Un Proceso de Secado de Café Usando Secadores Solares Con Sistema de Flujo de Aire Continúo Impulsado Por Energía Fotovoltaica, En La Región San Martín, Perú.” Información Tecnológica 30(6):85–92.spa
dc.relation.referencesParra-Coronado, Alfonso, Roa-Mejia, Gonzalo, Oliveros-Tascón, Carlos E, Sanz-Uribe, Juan R. 2017. Optimización Operacional de Secadores Mecánicos Para Café Pergamino. edited by C. E. Cenicafé.spa
dc.relation.referencesParra-Coronado, A., Roa-Mejía, G., & Oliveros-Tascón, C. E. (2008b). SECAFÉ Parte I: modelamiento y simulación matemática en el secado mecánico de café pergamino. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(4), 415–427. https://doi.org/10.1590/s1415-43662008000400013spa
dc.relation.referencesParra-Coronado, A., Roa-Mejía, G., & Oliveros-Tascón, C. E. (2008a). SECAFÉ Part II: Recommendations for the efficient operation of mechanical dryers for parchment coffee. Revista Brasileira de Engenharia Agricola e Ambiental, 12(4), 428–434. https://doi.org/10.1590/S1415-43662008000400014spa
dc.relation.referencesPérez-Alegría, L. R., & Ciro-Velasquez, H. J. (2001). Mathematical simulation of parchment coffee drying in a deep bed with airflow reversal. Transactions of the American Society of Agricultural Engineers, 44(5), 1229–1234. https://doi.org/10.13031/2013.6415spa
dc.relation.referencesPhitakwinai, S., Thepa, S., & Nilnont, W. (2019). Thin-layer drying of parchment Arabica coffee by controlling temperature and relative humidity. Food Science and Nutrition, 7(9), 2921–2931. https://doi.org/10.1002/fsn3.1144spa
dc.relation.referencesPiccino S, Boulanger R, Descroix F and Cheong A. (2014). Aromatic composition and potent odorants of the “specialty coffee” brew “Bourbon Pointu” correlated to its three trade classifications. Food Research International, 61; 264–271.spa
dc.relation.referencesPirasteh G, Saidur R, Rahman S.M.A and Rahim N.A. (2014). A review on development of solar drying applications. Renewable and Sustainable Energy Reviews, 31; 133–148.spa
dc.relation.referencesPlataforma de Comercio Sostenible. Solidaridad. (2016). Comercio Sostenible. Recuperado en mayo de 2018, de http://comerciosostenible.org/esspa
dc.relation.referencesPrakash O and Kumar A. (2014). Solar greenhouse drying: A review. Renewable and Sustainable Energy Reviews, 29; 905–910.spa
dc.relation.referencesPreedy, V. R. (2014). Processing and Impact on Antioxidants in Beverages. Copyright, Elsevier Inc. The Boulevard, Langford Lane, Kidlington, Oxford, 320 p.spa
dc.relation.referencesPuerta, G. I. (2011). Composición química de una taza de café. Avances Técnicos, Cenicafé, 414.spa
dc.relation.referencesRamírez A, Salgado M, Rodríguez G, García M, Cherblanc F and Bénet J. (2013). Water transport in parchment and endosperm of coffee vean. Journal of Food Engineering, 114; 375–383.spa
dc.relation.referencesRattanamechaiskul, C., & Junka, N. (2020). Modeling of fragment formation of parchment coffee beans for rapid heat and mass transfer during fluidization drying. Journal of Food Processing and Preservation, April, 1–9. https://doi.org/10.1111/jfpp.14555spa
dc.relation.referencesReh, C., Gerber, a, Prodolliet, J., & Vuataz, G. (2006). Water content determination in green coffee – Method comparison to study specificity and accuracy. Food Chemistry, 96(3), 423–430.spa
dc.relation.referencesRoa, G., Oliveros, C. E., Alvarez, J., Ramírez, C. A., Sanz, J. R., Álvarez, J. R., & Rodríguez, N. (1999). Beneficio ecológico del café. Cenicafé. Federación Nacional de Cafeteros de Colombia. Chinchiná (Colombia), 1 -273.spa
dc.relation.referencesRoa-mejía, G., Oliveros-tascón, C. E., & Ramírez-g, C. A. (2000). Utilice la Energía Solar para Secar Correctamente el Café. Cenicafé Avances Técnicos 281, 281, 1–4.spa
dc.relation.referencesRoa, G., (2004). “El secado solar y mecánico del café pergamino en Colombia” Reunión Nacional de Especialistas en Beneficio de Café para Unificación de Criterios sobre el Beneficio Ecológico. Cenicafé, Chinchiná, noviembre 23-26.spa
dc.relation.referencesRodriguez, Y. F. B., Guzman, N. G., & Hernandez, J. G. (2020). Effect of the postharvest processing method on the biochemical composition and sensory analysis of arabica coffee. Engenharia Agrícola, 40(2), 177–183. https://doi.org/10.1590/1809-4430-eng.agric.v40n2p177-183/2020spa
dc.relation.referencesRodrigues, C. H., Meira, F., Angelo, M., & Carvalho, E. (2012). Qualidade do Café Secado em Terreiros com Difertes Pavimentaçoes e Espessuras de Camada. Coffee Science, Lavras, 7(3), 223–237.spa
dc.relation.referencesRodrigues, C. I., Maia, R., & Máguas, C. (2010). Comparing total Nitrogen and Crude Protein content of Green Coffee Beans from Different Geographical Origins. Coffee Science, Lavras, 5(3), 197–205.spa
dc.relation.referencesSelmar D, Bytof G, Kleinwächter M. Metabolic responses of coffee beans during processing and their impact on coffee flavour. In: Schwan RF, Fleet GH, editors. Cocoa and coffee fermentations. Fermented foods and beverages. CRC Press; 2014, in press.spa
dc.relation.referencesScholz, M. B. dos S., Prudencio, S. H., Kitzberger, C. S. G., & Silva, R. S. dos S. F. da. (2019). Physico-chemical characteristics and sensory attributes of coffee beans submitted to two post-harvest processes. Journal of Food Measurement and Characterization, 13(1), 831–839. https://doi.org/10.1007/s11694-018-9995-xspa
dc.relation.referencesSfredo M, Finzer J and Limaverde J. (2005). Heat and mass transfer in coffee fruits drying. Journal of Food Engineering, 70; 15–25.spa
dc.relation.referencesSharma A, Chen CR and Lan NV. (2009). Solar-energy drying systems: A review. Renewable and Sustainable Energy Reviews, 13; 1185-1210.spa
dc.relation.referencesShibamoto, T. (2015). Coffee in health and disease prevention. Volatile Chemicals from Thermal Degradation of Less Volatile Coffee Components. Chapter 14. Academic Press. London, UK. 129 – 135 p.spa
dc.relation.referencesSimões, J., Moreira, A., Passos, C., Nunes, F. M., Domingues, M. R., & Coimbra, M. (2019). CHAPTER 19. Polysaccharides and Other Carbohydrates: Production, Quality and Chemistry. In Coffee: Production, Quality and Chemistry (pp. 445–457). https://doi.org/10.1039/9781782622437-00445spa
dc.relation.referencesSpeer, K., & Kölling-speer, I. (2006). The lipid fraction of the coffee bean. Braz. J. Plant Physiol, 18(1965), 201 –216.spa
dc.relation.referencesSpecialty Coffee Association. (2017). http://scaa.org/index.php?goto=home. Recuperado el Mayo de 2018, de http://scaa.org/index.php?goto=home: http://scaa.org/index.php?goto=homespa
dc.relation.referencesSuherman, Suherman, Hasri Widuri, Shelyn Patricia, Evan Eduard Susanto, and Raafi Jaya Sutrisna. 2020. “Energy Analysis of a Hybrid Solar Dryer for Drying Coffee Beans.” International Journal of Renewable Energy Development 9(1):131–39.spa
dc.relation.referencesSunarharum, W. B., Williams, D. J., & Smyth, H. E. (2014). Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 62, 315–325.spa
dc.relation.referencesSuzihaque, M. U. H., and Robert Driscoll. 2016. “Effects of Solar Radiation, Buoyancy of Air Flow and Optimization Study of Coffee Drying in a Heat Recovery Dryer.” Procedia Engineering 148:812–22.spa
dc.relation.referencesTai, E.-S., Hsieh, P.-C., & Sheu, S.-C. (2014). Effect of Polygalacturonase and Feruloyl Esterase from Aspergillus tubingensis on Demucilage and Quality of Coffee Beans. Process Biochemistry.spa
dc.relation.referencesTeixiera, A., Brando, C., Thomaziello, R., and Teixeira, R. Espresso Coffee: The Science of Quality, ed. A. Illy and R. Viani, ElsevierAcademic Press, San Diego, 2nd edn, 2005, pp. 91–96.spa
dc.relation.referencesTello, J., Viguera, M., & Calvo, L. (2011). Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide. The Journal of Supercritical Fluids, 59, 53–60.spa
dc.relation.referencesToci, A., & Boldrin, M. (2017). Coffee beverages and their aroma compounds. En Natural and artificial flavoring agents and food dyes (págs. 397-425). London: Academic press.spa
dc.relation.referencesTogo M, T., Norbert, L., & Deacue, F. (Junio de 2018). What explains specialty coffee quality scores and prices: A case study from the cup of excellence program. Journal of Agricultura and Applied Economics, 1 - 20. Tsegaye, B., Mohammed, A., and Getachew, E. (2014). Impact of Sun Drying Methods and Layer Thickness on the Quality of Highland Arabica Coffee Varieties at Limmu, Southwestern Ethiopia. Journal of Horticulture, 01(03), 1–7. https://doi.org/10.4172/2376-0354.1000117spa
dc.relation.referencesTripathy P and Kumar S. (2009). A methodology for determination of temperature dependent mass transfer coefficients from drying kinetics: Application to solar drying. Journal of Food Engineering, 90; 212–218.spa
dc.relation.referencesTunde-Akintunde T.Y. (2011). Mathematic al modelin g of sun and solar drying of chilli pepper. Renewable Energy, 36: 2139-2145spa
dc.relation.referencesValencia, F. F. (2007). Cafés especiales. In Editorial Blanecolor Ltda (Ed.), Sistemas de producción de café en Colombia (primera ed., p. 295).spa
dc.relation.referencesVaradharaju, N., Karunanidhi, C. & Kailappan R. (2001). Coffee cherry drying: a two-layer model. Drying Technology, 19(3&4): 709–715.spa
dc.relation.referencesVijayaVenkataRaman S, Iniyan S and Goic R. (2012). A review of solar drying technologies. Renewable and Sustainable Energy Reviews, 16; 2652–2670.spa
dc.relation.referencesWagemaker, T. A. L., Carvalho, C. R. L., Maia, N. B., Baggio, S. R., & Guerreiro Filho, O. (2011). Sun protection factor, content and composition of lipid fraction of green coffee beans. Industrial Crops and Products, 33(2), 469–473.spa
dc.relation.referencesWei F, Furihata K, Koda M, Hu F, Kato R, Miyakawa T and Tanokura M. (2012). 13C NMR-Based Metabolomics for the Classification of Green Coffee Beans According to Variety and Origin. Journal of Agricultural and Food Chemistry, 60; 10118 −10125.spa
dc.relation.referencesWei, F., & Tanokura, M. (2015). Chapter 17 - Organic Compounds in Green Coffee Beans. In V. R. B. T.-C. in H. and D. P. Preedy (Ed.), Coffee: Production, Quality and Chemistry (pp. 149–162). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-409517-5.00017-6spa
dc.relation.referencesWorku, M., de Meulenaer, B., Duchateau, L., & Boeckx, P. (2018). Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Research International, 105(March 2017), 278–285. https://doi.org/10.1016/j.foodres.2017.11.016spa
dc.relation.referencesZambrano D, López U, Rodriguez V y Ramirez C. (2006). Paseras solares de bajo costo para secar café. Avances Tecnicos 345. 12p.spa
dc.relation.referencesZamora, A. (2017). Publican la primera secuencia genómica de la variedad comercial de café más cultivada en el mundo. Obtenido de http://fundacion-antama.org.spa
dc.relation.referencesReferencias Capítulos 2, 3 y 4spa
dc.relation.references[1] Federación nacional de cafeteros de Colombia, “Informe del gerente al 87 congreso nacional de cafeteros,” 2019. [Online]. Available: https://federaciondecafeteros.org/app/uploads/2019/12/Informe-del-Gerente-al-87-Congreso-Nacional-de-Cafeteros-2019.pdf.spa
dc.relation.references[2] L. Tuccio, P. Pinelli, A. Godina, J. M. Medina, and G. Agati, “The chemical composition and quality of the Parainema coffee cultivar under different shading conditions, as assessed by a leaf flavonol optical index,” Eur. Food Res. Technol., vol. 245, no. 8, pp. 1733–1741, 2019, doi: 10.1007/s00217-019-03285-1.spa
dc.relation.references[3] L. Bravo-Monroy, S. G. Potts, and J. Tzanopoulos, “Drivers influencing farmer decisions for adopting organic or conventional coffee management practices,” Food Policy, vol. 58, pp. 49–61, 2016, doi: 10.1016/j.foodpol.2015.11.003.spa
dc.relation.references[4] G. Puerta, “Influencia del proceso de beneficio en la calidad del cafe,” Cenicafe, vol. 50, no. 1, pp. 78–88, 1999.spa
dc.relation.references[5] L. T. Lim, M. Zwicker, and X. Wang, Coffee: One of the most consumed beverages in the world, Third Edit., vol. 4. Oxford: Elsevier, 2019.spa
dc.relation.references[6] F. M. Borém, E. R. Marques, and E. Alves, “Ultrastructural analysis of drying damage in parchment Arabica coffee endosperm cells,” Biosyst. Eng., vol. 99, no. 1, pp. 62–66, Jan. 2008, doi: 10.1016/j.biosystemseng.2007.09.027.spa
dc.relation.references[7] R. F. Schwan and G. H. Fleet, Cocoa and Coffee Fermentations. Taylor & Francis Group, 2014.spa
dc.relation.references[8] J. . Jurado, E. . Montoya, C. . Oliveros, and J. García, “Método para medir el contenido de humedad del café pergamino en el secado solar del café,” Rev. Cenicafé, vol. 60, no. 2, pp. 135–147, 2009.spa
dc.relation.references[9] R. Osorio Hernandez, L. M. Guerra-Garcia, I. de F. Ferreira-Tinôco, J. A. Osorio-Saraz, and I. D. Aristizábal-Torres, “Simulation of a thermal environment in two buildings for the wet processing of coffee,” DYNA, vol. 82, no. 194, pp. 214–220, Dec. 2015, doi: 10.15446/dyna.v82n194.49526.spa
dc.relation.references[10] FNC-Cenicafé, Manual del Cafetero Colombiano (Tomo III), no. 3. 2013.spa
dc.relation.references[11] G. I. Puerta, “Composición química de una taza de café,” Av. Técnicos, Cenicafé, vol. 414, 2011.spa
dc.relation.references[12] M. Murkovic and K. Derler, “Analysis of amino acids and carbohydrates in green coffee.,” J. Biochem. Biophys. Methods, vol. 69, no. 1–2, pp. 25–32, Nov. 2006.spa
dc.relation.references[13] M. Kleinwächter and D. Selmar, “Influence of drying on the content of sugars in wet processed green Arabica coffees,” Food Chem., vol. 119, no. 2, pp. 500–504, 2010, doi: 10.1016/j.foodchem.2009.06.048.spa
dc.relation.references[14] S. Knopp, G. Bytof, and D. Selmar, “Influence of processing on the content of sugars in green Arabica coffee beans,” Eur. Food Res. Technol., vol. 223, no. 2, pp. 195–201, Jun. 2006, doi: 10.1007/s00217-005-0172-1.spa
dc.relation.references[15] D. Selmar, “Influence of processing on the content of sugars in green Arabica coffee beans,” no. July, 2014, doi: 10.1007/s00217-005-0172-1.spa
dc.relation.references[16] D. Villarreal, L. Baena, and H. Posada, “Análisis de lípidos y ácidos grasos en café verde de líneas avanzadas de coffea arabica cultivadas en Colombia,” Cenicafé, vol. 63, no. 1, pp. 19–40, 2012.spa
dc.relation.references[17] T. Joët et al., “Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans,” Food Chem., vol. 118, no. 3, pp. 693–701, Feb. 2010, doi: 10.1016/j.foodchem.2009.05.048.spa
dc.relation.references[18] K. Speer and I. Kölling-Speer, “The lipid fraction of the coffee bean,” Brazilian Journal of Plant Physiology, vol. 18, no. 1. pp. 201–216, 2006, doi: 10.1590/S1677-04202006000100014.spa
dc.relation.references[19] N. Caporaso, M. B. Whitworth, S. Grebby, and I. D. Fisk, “Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging,” J. Food Eng., vol. 227, pp. 18–29, 2018, doi: 10.1016/j.jfoodeng.2018.01.009.spa
dc.relation.references[20] F. Borém, E. R. Marques, and E. Alves, “Ultrastructural analysis of drying damage in parchment Arabica coffee endosperm cells,” Biosyst. Eng., vol. 99, no. 1, pp. 62–66, Jan. 2008, doi: 10.1016/j.biosystemseng.2007.09.027.spa
dc.relation.references[21] C. I. Rodrigues, R. Maia, and C. Máguas, “Comparing total Nitrogen and Crude Protein content of Green Coffee Beans from Different Geographical Origins,” Coffee Sci. Lavras, vol. 5, no. 3, pp. 197–205, 2010.spa
dc.relation.references[22] K. G. do Livramento et al., “Proteomic analysis of coffee grains exposed to different drying process,” Food Chem., vol. 221, pp. 1874–1882, 2017, doi: 10.1016/j.foodchem.2016.10.069.spa
dc.relation.references[23] M. de S. G. Barbosa, M. B. dos S. Scholz, C. S. G. Kitzberger, and M. de T. Benassi, “Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews,” Food Chem., vol. 292, no. April, pp. 275–280, 2019, doi: 10.1016/j.foodchem.2019.04.072.spa
dc.relation.references[24] I. Hečimović, A. Belščak-Cvitanović, D. Horžić, and D. Komes, “Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting,” Food Chem., vol. 129, no. 3, pp. 991–1000, Dec. 2011.spa
dc.relation.references[25] J. Avelino et al., “Effects of slope exposure, altitude and yield on coffee quality in two altitudeterroirs of Costa Rica, Orosi and Santa María de Dota,” J. Sci. Food Agric., vol. 85, no. 11, pp. 1869–1876, Aug. 2005, doi: 10.1002/jsfa.2188.spa
dc.relation.references[26] B. Cheng, A. Furtado, H. E. Smyth, and R. J. Henry, “Influence of genotype and environment on coffee quality,” Trends Food Sci. Technol., vol. 57, pp. 20–30, 2016, doi: 10.1016/j.tifs.2016.09.003.spa
dc.relation.references[27] A. B. A. De Azevedo, T. G. Kieckbush, A. K. Tashima, and R. S. Mohamed, “Extraction of green coffee oil using supercritical carbon dioxide,” vol. 44, pp. 186–192, 2008, doi: 10.1016/j.supflu.2007.11.004.spa
dc.relation.references[28] M. C. Monteiro and A. Farah, “Chlorogenic acids in Brazilian Coffea arabica cultivars from various consecutive crops,” Food Chem., vol. 134, no. 1, pp. 611–614, 2012, doi: 10.1016/j.foodchem.2012.02.118.spa
dc.relation.references[29] W. Dong, R. Hu, Z. Chu, J. Zhao, and L. Tan, “Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans,” Food Chem., vol. 234, pp. 121–130, Nov. 2017, doi: 10.1016/j.foodchem.2017.04.156.spa
dc.relation.references[30] F. Kulapichitr, C. Borompichaichartkul, I. Suppavorasatit, and K. R. Cadwallader, “Impact of drying process on chemical composition and key aroma components of Arabica coffee,” Food Chem., vol. 291, no. April, pp. 49–58, 2019, doi: 10.1016/j.foodchem.2019.03.152.spa
dc.relation.references[31] A. Escarramán et al., “Determinación de los Atributos de Calidad del Café en Zonas Productoras de la República Dominicana,” Santo domingo, 2007.spa
dc.relation.references[32] A. E. Peñuela Martinez, J. P. Pábon Usaquén, and J. R. Sanz Uribe, “MÉTODO FERMAESTRO: Para determinar la finalización de la Fermentación del mucílago de café,” Cenicafé Av. Técnicos 431, pp. 1–8, 2013.spa
dc.relation.references[33] J. R. Parra-Coronado, Alfonso, Roa-Mejia, Gonzalo, Oliveros-Tascón, Carlos E, Sanz-Uribe, Optimización operacional de secadores mecánicos para café pergamino. 2017.spa
dc.relation.references[34] B. Bertrand, D. Villarreal, A. Laffargue, H. Posada, P. Lashermes, and S. Dussert, “Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins,” J. Agric. Food Chem., vol. 56, no. 6, pp. 2273–2280, 2008, doi: 10.1021/jf073314f.spa
dc.relation.references[35] W. J. Mullin and D. B. Emmons, “Determination of organic acids and sugars in cheese, milk and whey by high performance liquid chromatography,” Food Res. Int., vol. 30, no. 2, pp. 147–151, 1997, doi: 10.1016/S0963-9969(97)00026-4.spa
dc.relation.references[36] C. Liu, N. Yang, Q. Yang, C. Ayed, R. Linforth, and I. D. Fisk, “Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean,” Food Chem., vol. 281, no. November 2018, pp. 8–17, 2019, doi: 10.1016/j.foodchem.2018.12.080.spa
dc.relation.references[37] C. Marín and G. I. Puerta, “Contenido de Ácidos Clorogénicos en Granos de Coffea Arabica y C. Canephora, según el desarrollo del fruto,” Cenicafé, vol. 59, no. 1, pp. 7–28, 2008.spa
dc.relation.references[38] International Organization for Standardization, Coffee and coffee products. Determination of the Caffeine Content using High Performance Liquid Chromatography (HPLC)-Reference method, ISO. Geneve: ISO:20481, 2008.spa
dc.relation.references[39] Specialty Coffee Association, “Coffee Standards,” p. 14, 2018, [Online]. Available: https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/5bd985c1352f53cb4cc1be48/1540982325719/Coffee+Standards-Digital.pdf.spa
dc.relation.references[40] S. Lê, J. Josse, and F. Husson, “FactoMineR : An R Package for Multivariate Analysis,” J. Stat. Softw., vol. 25, no. 1, pp. 253–258, 2008, doi: 10.18637/jss.v025.i01.spa
dc.relation.references[41] R Development Core Team, R: a Language and Environment for Statistical Computing. 2004.spa
dc.relation.references[42] G. S. Duarte, A. A. Pereira, and A. Farah, “Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods,” Food Chem., vol. 118, no. 3, pp. 851–855, 2010, doi: 10.1016/j.foodchem.2009.05.042.spa
dc.relation.references[43] N. Caporaso, M. B. Whitworth, S. Grebby, and I. D. Fisk, “Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging,” Food Res. Int., vol. 106, no. September 2017, pp. 193–203, 2018, doi: 10.1016/j.foodres.2017.12.031.spa
dc.relation.references[44] C.-L. Ky, J. Louarn, S. Dussert, B. Guyot, S. Hamon, and M. Noirot, “Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions,” Food Chem., vol. 75, no. 2, pp. 223–230, Nov. 2001, doi: 10.1016/S0308-8146(01)00204-7.spa
dc.relation.references[45] S. Dussert, M. W. Davey, A. Laffargue, S. Doulbeau, R. Swennen, and H. Etienne, “Oxidative stress, phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds,” Physiol. Plant., vol. 127, no. 2, pp. 192–204, 2006, doi: 10.1111/j.1399-3054.2006.00666.x.spa
dc.relation.references[46] I. Tejero, A. González-Lafont, J. M. Lluch, and L. A. Eriksson, “Photo-oxidation of lipids by singlet oxygen: A theoretical study,” Chem. Phys. Lett., vol. 398, no. 4–6, pp. 336–342, 2004, doi: 10.1016/j.cplett.2004.09.093.spa
dc.relation.references[47] M. Y. Rendón, T. De Jesus Garcia Salva, and N. Bragagnolo, “Impact of chemical changes on the sensory characteristics of coffee beans during storage,” Food Chem., vol. 147, pp. 279–286, 2014, doi: 10.1016/j.foodchem.2013.09.123.spa
dc.relation.references[48] M. B. dos S. Scholz, S. H. Prudencio, C. S. G. Kitzberger, and R. S. dos S. F. da Silva, “Physico-chemical characteristics and sensory attributes of coffee beans submitted to two post-harvest processes,” J. Food Meas. Charact., vol. 13, no. 1, pp. 831–839, Mar. 2019, doi: 10.1007/s11694-018-9995-x.spa
dc.relation.references[49] D. J. Kwon et al., “Assessment of green coffee bean metabolites dependent on coffee quality using a 1H NMR-based metabolomics approach,” Food Res. Int., vol. 67, pp. 175–182, 2015, doi: 10.1016/j.foodres.2014.11.010.spa
dc.relation.references[50] D. Kramer, B. Breitenstein, M. Kleinwachter, and D. Selmar, “Stress Metabolism in Green Coffee Beans (Coffea arabica L.): Expression of Dehydrins and Accumulation of GABA during Drying,” Plant Cell Physiol., vol. 51, no. 4, pp. 546–553, Apr. 2010, doi: 10.1093/pcp/pcq019.spa
dc.relation.references[51] G. Bytof, S. E. Knopp, P. Schieberle, I. Teutsch, and D. Selmar, “Influence of processing on the generation of γ-aminobutyric acid in green coffee beans,” Eur. Food Res. Technol., vol. 220, no. 3–4, pp. 245–250, 2005, doi: 10.1007/s00217-004-1033-z.spa
dc.relation.references[52] K. Cheng et al., “Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans,” Food Sci. Nutr., vol. 7, no. 3, pp. 1084–1095, 2019, doi: 10.1002/fsn3.948.spa
dc.relation.references[53] R. J. Clarke and R. Macrae, COFFEE CHEMISTRY, vol. 1. Elsevier Science Publishers LTD, 1989.spa
dc.relation.references[54] D. Habtamu and A. Belay, “First order derivative spectra to determine caffeine and chlorogenic acids in defective and nondefective coffee beans,” Food Sci. Nutr., vol. 8, no. 9, pp. 4757–4762, 2020, doi: 10.1002/fsn3.1723.spa
dc.relation.references[55] K. Ramalakshmi, I. R. Kubra, and L. J. M. Rao, “Physicochemical Characteristics of Green Coffee: Comparison of Graded and Defective Beans,” J. Food Sci., vol. 72, no. 5, pp. S333–S337, Jun. 2007, doi: 10.1111/j.1750-3841.2007.00379.x.spa
dc.relation.references[56] W. Nilnont, S. Thepa, S. Janjai, N. Kasayapanand, C. Thamrongmas, and B. K. Bala, “Finite element simulation for coffee (Coffea arabica) drying,” Food Bioprod. Process., vol. 90, no. 2, pp. 341–350, 2012, doi: 10.1016/j.fbp.2011.06.007.spa
dc.relation.references[57] B. Bertrand, P. Vaast, Edgardo Alpizar, E. Hervé, D. Fabrice, and C. Pierre, “Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America,” Tree Physiol., vol. 26, no. 9, pp. 1239–1248, Sep. 2006.spa
dc.relation.references[58] G. Alvarado-Alvarado, E. Moreno-González, E. C. Montoya-Restrepo, and R. Alarcón-Suárez, “Calidad física y en taza de los componentes de la variedad Castillo y sus derivadas regionales,” Rev. Cenicafé, vol. 60, no. 3, pp. 210–228, 2009.spa
dc.relation.references[59] C. Silva, P. Correa, and J. Martins, “Qualidade da bebida do café (Coffea arabica L.) em função da proporção de frutos verdes e da temperatura do ar de secagem,” Rev. Bras. Armazenamento, vol. 23, no. 1, pp. 45–48, 1998.spa
dc.relation.references[60] E. P. Isquierdo, “Cinética de secagem de café natural e suas relações com a qualidade para diferentes temperaturas e umidades relativas do ar,” LAVRAS, Minas Gerais - BRASIL, 2011.spa
dc.relation.references[61] P. Carteri, “Alterações na qualidade do café cereja natural e despolpado submetidos a diferentes condições de secagem e armazenamento.,” LAVRAS, Minas Gerais - BRASIL, 2006.spa
dc.relation.references[62] J. Da Silva, “Aspectos fisiológicos e bioquímicos associados à qualidade da bebida de café submetido a diferentes métodos de processamento e secagem,” LAVRAS, Minas Gerais - BRASIL, 2009.spa
dc.relation.references[63] S. A. Abrahão, R. G. F. A. Pereira, S. M. da S. Duarte, A. R. Lima, D. J. Alvarenga, and E. B. Ferreira, “Compostos bioativos e atividade antioxidante do café (Coffea arabica L.),” Ciência e Agrotecnologia, vol. 34, no. 2, pp. 414–420, 2010, doi: 10.1590/s1413-70542010000200020.spa
dc.relation.references[64] D. E. Ribeiro, “Interação genótipo e ambiente na composição química e qualidade sensorial de cafés especiais em diferentes formas de processamento,” LAVRAS, Minas Gerais - BRASIL, 2013.spa
dc.relation.references[65] F. Federación Nacional de Cafeteros, “Estadísticas Cafeteras,” 2020. https://federaciondecafeteros.org/wp/estadisticas-cafeteras/ (accessed Feb. 08, 2000).spa
dc.relation.references[66] F. L. F. Silva et al., “The concentration of polyphenolic compounds and trace elements in the Coffea arabica leaves: Potential chemometric pattern recognition of coffee leaf rust resistance,” Food Res. Int., vol. 134, no. October 2019, p. 109221, 2020, doi: 10.1016/j.foodres.2020.109221.spa
dc.relation.references[67] S. Sittipod, E. Schwartz, L. Paravisini, and D. G. Peterson, “Identification of flavor modulating compounds that positively impact coffee quality,” Food Chem., vol. 301, no. March, 2019, doi: 10.1016/j.foodchem.2019.125250.spa
dc.relation.references[68] E. P. Isquierdo, F. M. Borém, E. T. De Andrade, J. L. G. Corrêa, P. D. De Oliveira, and G. E. Alves, “Drying kinetics and quality of natural coffee,” Trans. ASABE, vol. 56, no. 3, pp. 1003–1010, 2013, doi: 10.13031/trans.56.9794.spa
dc.relation.references[69] G. E. Alves, F. M. Borém, E. T. Andrade, É. P. Isquierdo, V. C. Siqueira, and C. D. A. Dias, “INFLUENCE OF DIFFERENT TEMPERATURES AND AIRFLOWS ON DRYING OF NATURAL AND PULPED COFFEE Coffea arabica L ., This study aimed to evaluate drying kinetics for natural and pulped coffee , using different temperatures and drying airflows . For the conduction ,” vol. 4430, pp. 192–200, 2020.spa
dc.relation.references[70] W. B. Sunarharum, D. J. Williams, and H. E. Smyth, “Complexity of coffee flavor: A compositional and sensory perspective,” Food Res. Int., vol. 62, pp. 315–325, 2014, doi: 10.1016/j.foodres.2014.02.030.spa
dc.relation.references[71] D. L. Kalschne, T. Biasuz, A. J. De Conti, M. C. Viegas, M. P. Corso, and M. de T. Benassi, “Sensory characterization and acceptance of coffee brews of C. arabica and C. canephora blended with steamed defective coffee,” Food Res. Int., vol. 124, no. March 2018, pp. 234–238, 2019, doi: 10.1016/j.foodres.2018.03.038.spa
dc.relation.references[72] A. Parra, G. Roa, and C. Oliveros, “SECAFÉ Parte I: modelamiento y simulación matemática en el secado mecánico de café pergamino,” Rev. Bras. Eng. Agrícola e Ambient., vol. 12, no. 4, pp. 415–427, 2008, doi: 10.1590/s1415-43662008000400013.spa
dc.relation.references[73] A. Parra-Coronado, G. Roa-Mejía, and C. E. Oliveros-Tascón, “SECAFÉ Part II: Recommendations for the efficient operation of mechanical dryers for parchment coffee,” Rev. Bras. Eng. Agric. e Ambient., vol. 12, no. 4, pp. 428–434, 2008, doi: 10.1590/S1415-43662008000400014.spa
dc.relation.references[74] S. Deeto, S. Thepa, V. Monyakul, and R. Songprakorp, “The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification,” Renew. Energy, vol. 115, pp. 954–968, 2018, doi: 10.1016/j.renene.2017.09.009.spa
dc.relation.references[75] Carlos E. Oliveros Tascón; Juan R. Sanz Uribe; Cesar A. Ramírez Gómez; Aída E. Peñuela Martínez, “Aprovechamiento eficiente de la energía en el secado mecánico del café,” Cenicafé Av. Técnicos 380, vol. 380, no. 14, p. 2, 2009, [Online]. Available: http://biblioteca.cenicafe.org/bitstream/10778/370/1/avt0380.pdf.spa
dc.relation.references[76] G. Roa-mejía, C. E. Oliveros-tascón, and C. A. Ramírez-g, “Utilice la Energía Solar para Secar Correctamente el Café,” Cenicafé Av. Técnicos 281, no. 281, pp. 1–4, 2000.spa
dc.relation.references[77] C. Oliveros, C. Ramírez, J. Sanz, and A. Peñuela, “Secador parabólico mejorado,” 2008. [Online]. Available: https://www.cenicafe.org/es/publications/avt0376.pdf.spa
dc.relation.references[78] M. GUTIERREZ, J. SANZ, C. OLIVEROS, and C. OROZCO, Ventiladores para secadores de café. 2012.spa
dc.relation.references[79] W. Dong, K. Cheng, R. Hu, Z. Chu, J. Zhao, and Y. Long, “Effect of microwave vacuum drying on the drying characteristics, color, microstructure, and antioxidant activity of green coffee beans,” Molecules, vol. 23, no. 5, 2018, doi: 10.3390/molecules23051146.spa
dc.relation.references[80] D. Beverly, P. J. Fryer, S. Bakalis, E. Lopez-Quiroga, and R. Farr, “Mathematical modelling of the steam stripping of aroma from roast and ground coffee,” Energy Procedia, vol. 161, pp. 157–164, 2019, doi: 10.1016/j.egypro.2019.02.075.spa
dc.relation.references[81] I. A. Kouadio, L. B. Koffi, J. G. Nemlin, and M. B. Dosso, “Effect of Robusta (Coffea canephora P.) coffee cherries quantity put out for sun drying on contamination by fungi and Ochratoxin A (OTA) under tropical humid zone (Côte d‘Ivoire),” Food Chem. Toxicol., vol. 50, no. 6, pp. 1969–1979, Jun. 2012, doi: 10.1016/j.fct.2012.03.042.spa
dc.relation.references[82] A. Hameed, S. A. Hussain, M. U. Ijaz, S. Ullah, I. Pasha, and H. A. R. Suleria, “Farm to Consumer: Factors Affecting the Organoleptic Characteristics of Coffee. II: Postharvest Processing Factors,” Compr. Rev. Food Sci. Food Saf., vol. 17, no. 5, pp. 1184–1237, 2018, doi: 10.1111/1541-4337.12365.spa
dc.relation.references[83] P. Poltronieri and F. Rossi, “Challenges in Specialty Coffee Processing and Quality Assurance,” Challenges, vol. 7, no. 2, p. 19, 2016, doi: 10.3390/challe7020019.spa
dc.relation.references[84] J. N. Hernandez-Aguilera et al., “Quality as a Driver of Sustainable Agricultural Value Chains: The Case of the Relationship Coffee Model,” Bus. Strateg. Environ., vol. 27, no. 2, pp. 179–198, Feb. 2018, doi: 10.1002/bse.2009.spa
dc.relation.references[85] C. Oliveros, A. Peñuela, and J. Jurado, “Controle la Humedad del Cafe en el Secado Solar, Utilizando el Metodo Gravimet,” Cenicafe Av. Técnicos 387, vol. 387, pp. 1–8, 2009, [Online]. Available: http://biblioteca.cenicafe.org/bitstream/10778/385/1/avt0387.pdf.spa
dc.relation.references[86] S. J. Zhang et al., “Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Processing of Coffea arabica,” Appl. Environ. Microbiol., vol. 85, no. 6, pp. 1–22, Feb. 2019, doi: 10.1128/AEM.02635-18.spa
dc.relation.references[87] S. J. Zhang et al., “Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing,” Front. Microbiol., vol. 10, no. November, pp. 1–24, Nov. 2019, doi: 10.3389/fmicb.2019.02621.spa
dc.relation.references[88] D. Selmar, G. Bytof, and S.-E. Knopp, “New Aspects of Coffee Processing: The Relation Between Seed Germination and Coffee Quality,” Dix-neuvième Colloq. Sci. Int. sur le Café, pp. 19–25, 2002.spa
dc.relation.references[89] S. Knopp, G. Bytof, and D. Selmar, “Influence of processing on the content of sugars in green Arabica coffee beans,” Eur. Food Res. Technol., vol. 223, no. 2, pp. 195–201, 2006, doi: 10.1007/s00217-005-0172-1.spa
dc.relation.references[90] D. Selmar, G. Bytof, and S.-E. Knopp, “The Storage of Green Coffee (Coffea arabica): Decrease of Viability and Changes of Potential Aroma Precursors,” Ann. Bot., vol. 101, no. 1, pp. 31–38, Jan. 2008, doi: 10.1093/aob/mcm277.spa
dc.relation.references[91] L. Manzocco and M. C. Nicoli, “Modeling the Effect of Water Activity and Storage Temperature on Chemical Stability of Coffee Brews,” J. Agric. Food Chem., vol. 55, no. 16, pp. 6521–6526, Aug. 2007, doi: 10.1021/jf070166k.spa
dc.relation.references[92] E. Iaccheri et al., “Different analytical approaches for the study of water features in green and roasted coffee beans,” J. Food Eng., vol. 146, pp. 28–35, 2015, doi: 10.1016/j.jfoodeng.2014.08.016.spa
dc.relation.references[93] D. B. Min and J. M. Boff, “Chemistry and reaction of singlet oxygen in foods,” Compr. Rev. Food Sci. Food Saf., vol. 1, no. 2, pp. 58–72, 2002, doi: 10.1111/j.1541-4337.2002.tb00007.x.spa
dc.relation.references[94] T. Ferreira, J. Shuler, R. Guimarães, and A. Farah, “CHAPTER 1 Introduction to Coffee Plant and Genetics,” in Coffee: Production, Quality and Chemistry, The Royal Society of Chemistry, 2019, pp. 1–25.spa
dc.relation.references[95] DANE, “Boletín Técnico PIB IV Trimestre 2019,” Bogotá - Colombia, 2020. [Online]. Available: https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_IVtrim19_producion_y_gasto.pdf.spa
dc.relation.references[96] O. Guerreiro and M. Perez, “CHAPTER 3 Breeding Strategies,” in Coffee: Production, Quality and Chemistry, The Royal Society of Chemistry, 2019, pp. 89–99.spa
dc.relation.references[97] F. Borém et al., “CHAPTER 16. Influence of Genetics, Environmental Aspects and Post-harvesting Processing on Coffee Cup Quality,” in Coffee, Cambridge: Royal Society of Chemistry, 2019, pp. 387–417.spa
dc.relation.references[98] C. Ramírez, C. Oliveros, and G. Roa, “Construya El Secador Solar Parabólico,” 2002. [Online]. Available: https://www.cenicafe.org/es/index.php/nuestras_publicaciones/avances_tecnicos/avance_tecnico_0305.spa
dc.relation.references[99] M. U. H. Suzihaque and R. Driscoll, “Effects of Solar Radiation, Buoyancy of Air Flow and Optimization Study of Coffee Drying in a Heat Recovery Dryer,” Procedia Eng., vol. 148, pp. 812–822, 2016, doi: 10.1016/j.proeng.2016.06.617.spa
dc.relation.references[100] G. V. de Melo et al., “Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review,” Food Chem., vol. 272, no. August 2018, pp. 441–452, Jan. 2019, doi: 10.1016/j.foodchem.2018.08.061.spa
dc.relation.references[101] R. F. Schwan, G. H. Fleet, and E. O. Afoakwa, “Cocoa and coffee fermentations.” 2015, [Online]. Available: http://www.crcnetbase.com/isbn/9781439847930.spa
dc.relation.references[102] E. P. Isquierdo, F. M. Borém, E. T. De Andrade, J. L. G. Corrêa, P. D. De Oliveira, and G. E. Alves, “Drying Kinetics and Quality of Natural Coffee,” Trans. ASABE, vol. 56, no. 3, pp. 995–1001, Jul. 2013, doi: 10.13031/trans.56.9794.spa
dc.relation.references[103] A. Ramírez-Martínez, M. A. Salgado-Cervantes, G. C. Rodríguez-Jimenes, M. A. García-Alvarado, F. Cherblanc, and J. C. Bénet, “Water transport in parchment and endosperm of coffee bean,” J. Food Eng., vol. 114, no. 3, pp. 375–383, Feb. 2013, doi: 10.1016/j.jfoodeng.2012.08.028.spa
dc.relation.references[104] W. Hernández, I. Ruiz, M. Salgado, G. Rodríguez, and M. García, “Modeling heat and mass transfer during drying of green coffee beans using prolate spheroidal geometry,” J. Food Eng., vol. 86, no. 1, pp. 1–9, 2008, doi: 10.1016/j.jfoodeng.2007.08.025.spa
dc.relation.references[105] H. Ciro, L. Abud, and L. Pérez, “Numerical simulation of thin layer coffee drying by control volumes,” Dyna, vol. 163, pp. 270–278, 2010.spa
dc.relation.references[106] J. Bathiebo, M. Daguenet, B. Zeghmati, and C. M’Bow, “Numerical study of natural convection drying of coffee grains contained in a vertical channel with constant heat flux on walls,” Int. J. Ambient Energy, vol. 24, no. 4, pp. 171–188, Oct. 2003, doi: 10.1080/01430750.2003.9674921.spa
dc.relation.references[107] A. Putranto, X. D. Chen, Z. Xiao, and P. A. Webley, “Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA),” J. Food Eng., vol. 105, no. 4, pp. 638–646, 2011, doi: 10.1016/j.jfoodeng.2011.03.036.spa
dc.relation.references[108] K. Burmester and R. Eggers, “Heat and mass transfer during the coffee drying process,” J. Food Eng., vol. 99, no. 4, pp. 430–436, 2010, doi: 10.1016/j.jfoodeng.2009.12.021.spa
dc.relation.references[109] Č. Mizera, D. Herák, P. Hrabě, A. Kabutey, M. Wasserbauer, and H. Pouzarová, “Describing of drying curves of green coffee beans using mathematical model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, p. 012075, Oct. 2018, doi: 10.1088/1757-899X/420/1/012075.spa
dc.relation.references[110] S. Suherman, H. Widuri, S. Patricia, E. E. Susanto, and R. J. Sutrisna, “Energy Analysis of a Hybrid Solar Dryer for Drying Coffee Beans,” Int. J. Renew. Energy Dev., vol. 9, no. 1, pp. 131–139, Feb. 2020, doi: 10.14710/ijred.9.1.131-139.spa
dc.relation.references[111] S. Vélez-Piedrahita, H. J. Ciro-Velásquez, J. A. Osorio-Saraz, and E. Largo-Avila, “Study of the Effect of the Geometry of a Typical Solar Dryer for Coffee Using CFD Abstract,” Rev. Ing. Univ. Medellín, vol. 18, no. 35, pp. 149–161, Dec. 2019, doi: 10.22395/rium.v18n35a9.spa
dc.relation.references[112] E. Menya and A. Komakech, “Investigating the effect of different loading densities on selected properties of dried coffee using a GHE dryer,” Agric. Eng. Int. CIGR J., vol. 15, no. 3, pp. 231–237, 2013.spa
dc.relation.references[113] B. Briceño, J. Castillo, R. Carrión, and D. Díaz, “Propuesta de implantación de invernadero de secado de café con cubierta parabólica y estructura modular adaptada,” Ingenius, no. 24, pp. 36–48, Jun. 2020, doi: 10.17163/ings.n24.2020.04.spa
dc.relation.references[114] M. Kumar, S. K. Sansaniwal, and P. Khatak, “Progress in solar dryers for drying various commodities,” Renew. Sustain. Energy Rev., vol. 55, pp. 346–360, 2016, doi: 10.1016/j.rser.2015.10.158.spa
dc.relation.references[115] M. F. Lemos et al., “Chemical and sensory profile of new genotypes of Brazilian Coffea canephora,” Food Chem., vol. 310, no. October 2019, p. 125850, Apr. 2020, doi: 10.1016/j.foodchem.2019.125850.spa
dc.relation.references[116] L. L. Pereira et al., “New propositions about coffee wet processing: Chemical and sensory perspectives,” Food Chem., vol. 310, no. October 2019, p. 125943, 2020, doi: 10.1016/j.foodchem.2019.125943.spa
dc.relation.references[117] W. Dong et al., “Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS,” Food Chem., vol. 272, no. August 2018, pp. 723–731, 2019, doi: 10.1016/j.foodchem.2018.08.068.spa
dc.relation.references[118] G. Tong, D. M. Christopher, and B. Li, “Numerical modelling of temperature variations in a Chinese solar greenhouse,” Comput. Electron. Agric., vol. 68, no. 1, pp. 129–139, Aug. 2009, doi: 10.1016/j.compag.2009.05.004.spa
dc.relation.references[119] V. P. Sethi, K. Sumathy, C. Lee, and D. S. Pal, “Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies,” Sol. Energy, vol. 96, pp. 56–82, Oct. 2013, doi: 10.1016/j.solener.2013.06.034.spa
dc.relation.references[120] T. Tunde, “Mathematical modeling of sun and solar drying of chilli pepper,” Renew. Energy, vol. 36, no. 8, pp. 2139–2145, 2011, doi: 10.1016/j.renene.2011.01.017.spa
dc.relation.references[121] I. T. Togrul and D. Pehlivan, “Mathematical modelling of solar drying of apricots in thin layers,” J. Food Eng., vol. 55, no. 3, pp. 209–216, 2002, doi: 10.1016/S0260-8774(02)00065-1.spa
dc.relation.references[122] I. N. Ramos, T. R. S. Brandão, and C. L. M. Silva, “Simulation of solar drying of grapes using an integrated heat and mass transfer model,” Renew. Energy, vol. 81, pp. 896–902, Sep. 2015, doi: 10.1016/j.renene.2015.04.011.spa
dc.relation.references[123] S. Vijayan, T. V Arjunan, and A. Kumar, “Fundamental Concepts of Drying BT - Solar Drying Technology: Concept, Design, Testing, Modeling, Economics, and Environment,” O. Prakash and A. Kumar, Eds. Singapore: Springer Singapore, 2017, pp. 3–38.spa
dc.relation.references[124] Z. Erbay and F. Icier, “A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results,” Crit. Rev. Food Sci. Nutr., vol. 50, no. 5, pp. 441–464, May 2010, doi: 10.1080/10408390802437063.spa
dc.relation.references[125] S. Phitakwinai, S. Thepa, and W. Nilnont, “Thin-layer drying of parchment Arabica coffee by controlling temperature and relative humidity,” Food Sci. Nutr., vol. 7, no. 9, pp. 2921–2931, 2019, doi: 10.1002/fsn3.1144.spa
dc.relation.references[126] L. R. Pérez, H. J. Ciro, and L. C. Abud, “Physical and thermal properties of parchment coffee bean,” Trans. Am. Soc. Agric. Eng., vol. 44, no. 6, pp. 1721–1726, 2001, doi: 10.13031/2013.6983.spa
dc.relation.references[127] C. J. Geankoplis, Transport Processes and Unit Operations. Allyn and Bacon, 1978.spa
dc.relation.references[128] I. Campbell Scientific, “CR1000 Measurement and Control System.” Campbell Scientific, Logan, Utah, p. 678, 2015, [Online]. Available: https://shop.profec-ventus.com/images/Datasheets/Data_loggers/SCI/CR1000/cr1000-manual-2015.pdf.spa
dc.relation.references[129] C. Oliveros, J. Sanz, C. Ramírez, and A. Peñuela, “Secador solar de túnel para café pergamino,” 2006.spa
dc.relation.references[130] T. A. L. Wagemaker, C. R. L. Carvalho, N. B. Maia, S. R. Baggio, and O. Guerreiro Filho, “Sun protection factor, content and composition of lipid fraction of green coffee beans,” Ind. Crops Prod., vol. 33, no. 2, pp. 469–473, 2011, doi: 10.1016/j.indcrop.2010.10.026.spa
dc.relation.references[131] A. Farah, M. C. Monteiro, V. Calado, A. S. Franca, and L. C. Trugo, “Correlation between cup quality and chemical attributes of Brazilian coffee,” Food Chem., vol. 98, no. 2, pp. 373–380, 2006, doi: 10.1016/j.foodchem.2005.07.032.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembSecado solar - Modelos matemáticos
dc.subject.lembPropiedades fisicoquimicas
dc.subject.proposalSecado solarspa
dc.subject.proposalMarquesinaspa
dc.subject.proposalCaféspa
dc.subject.proposalCinéticaspa
dc.subject.proposalComposición químicaspa
dc.subject.proposalSolar dryingeng
dc.subject.proposalMarquesinaeng
dc.subject.proposalCoffeeeng
dc.subject.proposalKineticseng
dc.subject.proposalChemical compoundseng
dc.subject.proposalCafé variedad Castillo®spa
dc.titleEfecto del secado solar intermitente en la composición química del caféspa
dc.title.translatedIntermittent solar drying effect on the chemical composition of coffeeeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71795389.2020.pdf
Tamaño:
3.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ingeniería - Sistemas energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: