Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica

dc.contributor.advisorBernal Granados, Gabriel Andrés
dc.contributor.advisorMolina Herrera, Maritzabel
dc.contributor.authorAcevedo Moreno, Yesid Fabian
dc.date.accessioned2023-06-13T16:46:05Z
dc.date.available2023-06-13T16:46:05Z
dc.date.issued2023
dc.descriptionilustracionesspa
dc.description.abstractEn el presente trabajo se propone una metodología elaborada con base en la recopilación de técnicas existentes, que permite determinar el desempeño sísmico de edificaciones en términos de daño y probabilidad de colapso, con aplicabilidad en estructuras de pórticos resistentes a momentos en concreto reforzado. El procedimiento parte de representar a la acción sísmica mediante acelerogramas sintéticos simulados empleando un método estocástico de falla finita, que son utilizados para evaluar la respuesta cronológica no lineal de las edificaciones requerida en el cálculo del daño sísmico total, estimado por medio de la ponderación de un índice de daño local de tipo acumulativo. Con este trabajo se busca verificar el cumplimiento del objetivo implícito de desempeño del reglamento NSR-10, establecido como la protección a la vida de los ocupantes, proyectada a través de la prevención del colapso estructural. (Texto tomado de la fuente)spa
dc.description.abstractIn the present work, a methodology elaborated based on the compilation of existing techniques is proposed, which allows determining the seismic performance of buildings in terms of damage and probability of collapse, with applicability in frame structures resistant to moments in reinforced concrete. The procedure starts from representing the seismic action through simulated synthetic accelerograms using a finite failure stochastic method, which are used to evaluate the non-linear chronological response of the buildings required in the calculation of the total seismic damage, estimated by means of the weighting of a cumulative local damage index. This work seeks to verify compliance with the implicit performance objective of the NSR-10 regulation, established as the protection of the life of the occupants, projected through the prevention of structural collapse.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaAnálisis estructuralspa
dc.format.extentxiv, 260 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84004
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesABAQUS Inc. (2007). ABAQUS Analysis User’s Manual.spa
dc.relation.referencesACI. (2008). Requisitos de reglamento para concreto estructural (ACI 318S-08) y comentario. In American Concrete Institute.spa
dc.relation.referencesAIS. (2010). Reglamento Colombiano de construcción Sismo Resistente (NSR-10).spa
dc.relation.referencesAki, K., & Richards, P. G. (2002). Quantitative seismology, Second Ed. University Science Books.spa
dc.relation.referencesAnderson, J. G., & Hought, S. E. (1984). A model for the shape of Fourier Amplitude Spectrum of Acceleration at High Frequencies. Bull. Seismol. Soc. Am. 74, 1969-1993.spa
dc.relation.referencesAng, A. H.-S., Kim, W. J., & Kim, S. B. (1933). Damage estimation of existing bridge structures.spa
dc.relation.referencesASCE, A. S. of C. E., & SEI, S. E. I. (2010). Minimum Design Loads for Buildings and Other Structures, ISBN 978-0-7844-1085-1.spa
dc.relation.referencesASCE/SEI 41-13. (2014). Seismic evaluation and retrofit of existing building. American Society of Civil Engineers, Structural Engineering Institute.spa
dc.relation.referencesATC. (1996). Seismic evaluation and retrofit of concrete buildings. Technical report. ATC-40.spa
dc.relation.referencesBernal, G. A. (2014). Strong Motion Analyst. Programa de computador para el procesamiento de información sismológica.spa
dc.relation.referencesBernal, G. A., & Cardona, O. D. (2017). Modelo de atenuación sísmica de fuente híbrida para Colombia. VIII Congreso Nacional de Ingeniería Sísmica.spa
dc.relation.referencesBernal, G. A., Zuloaga, D., & Cardona, O. D. (2017). Modelo probabilista de respuesta sísmica de los suelos de Bogotá. VII Congreso Nacional de Ingeniería Sísmica, Barranquilla.spa
dc.relation.referencesBernal, G., & Cardona, O. D. (2019). Ajuste de un Modelo de Espectro de Fuente y sus Aplicaciones en la Modelación de la Amenaza Sísmica y el Campo Cercano en Colombia. IX Congreso Nacional de Ingeniería Sísmica.spa
dc.relation.referencesBertero, V. (2019). Performance-based seismic engineering: A critical review of proposed guidelines. Seismic Design Methodologies for the next Generation of Codes, 1–31.spa
dc.relation.referencesBlume, J. A., & Newmark, N. M. (1961). Design of multistorey reinforced concrete building of earthquake motions. Portland Cement Association, Chicago.spa
dc.relation.referencesBonett Díaz, R. L. (2003). Vulnerabilidad y riesgo sísmico de edificios. Aplicación a entornos urbanos de zonas de amenaza alta y moderada. Universidad Politécnica de Cataluña.spa
dc.relation.referencesBoore, D. M. (1983). Stochastic simulation of high - frequency ground motions based on seismological models of the radiated spectra. Bull. Seism. Soc. Am. 73.spa
dc.relation.referencesBoore, D. M. (2003). Simulation of ground motion using the stochastic method. Applied Geophysics 160, 635-676.spa
dc.relation.referencesBoore, D. M., & Boatwright, J. (1984). Average Body-wave Radiation Coefficients. Bull. Seismol. Soc. Am. 71, 959-971.spa
dc.relation.referencesBozorgnia, Y., & Bertero, V. V. (2006). Earthquake engineering: from engineering seismology to performance - based engineering. Taylor & Francis e-Library. International Code Council (ICC).spa
dc.relation.referencesBracci, J. M., Reinhorn, A. M., Mander, J. B., & Kunnath, S. K. (1989). Deterministic model for seismic damage of RC structures.spa
dc.relation.referencesBrune, J. N. (1970). Tectonic Stress and the Spectra of Seismic Shear Waves from Earth-quakes. J. Geophys. Res. 75, 4997-5009.spa
dc.relation.referencesChadwell C, & Imbsen R. (2004). XTRACT: A tool for axial force-ultimate curvature interactions. In Structures.spa
dc.relation.referencesChai, Y. H., Romstad, K. M., & Bird, S. M. (1995). Energy-Based Linear Damage Model for High-Intensity Seismic Loading. Journal of Structural Engineering, 121(5), 857–864.spa
dc.relation.referencesChan, W. L. (1955). The ultimate strength and deformation of plastic hinges in reinforced concrete frameworks. Magazine of Concrete Research, 7(21), 121–132.spa
dc.relation.referencesChen, C., & Ricles, J. (2008). Development of direct integration algorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics, 134(8), 676–583.spa
dc.relation.referencesChen, LZ., Lu, XL., Jiang, HJ., & Zheng, JB. (2009). Experimental investigation of damage behavior of RC frame members including non-seismically designed columns. Earthquake Engineering Vibration, 8(2), 301–311.spa
dc.relation.referencesChung, J., & Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation. Journal of Applied Mechanics, 60, 371–374.spa
dc.relation.referencesChung, Y. S., Meyer, C., & Shinozuka, M. (1988). A new damage model for reinforced concrete structures. Proceedings of Ninth World Conference on Earthquake Engineering, 205–210.spa
dc.relation.referencesClough, R. W., & Johnston, S. B. (1966). Effect of stiffness degradation on earthquake ductility requirements. In Proceedings of the Japan Earthquake Engineering Symposium.spa
dc.relation.referencesComputers & Structures Inc. (2017). SAP 2000 (No. 20). Programa de análisis estructural. C.S.I. Educational Services.spa
dc.relation.referencesCornell, C. A., & Vanmarcke, E. (1969). The major influences on seismic risk. Proc. 4th CWEE: Vol. Vol. I.spa
dc.relation.referencesFajfar, P., & Gaspersic, P. (1996). The n2 method for the seismic damage analysis of rc buildings. Earthquake Engineering and Structural Dynamics, 25, 31–46.spa
dc.relation.referencesFEMA 273, & FEMA 274. (1996). NEHRP Guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency (FEMA), Washington, D.C.spa
dc.relation.referencesFOPAE. (2010). Zonificación de la respuesta sísmica de Bogotá para el diseño Sismo Resistente de edificaciones.spa
dc.relation.referencesFreeman, S. A. (1975). Evaluation of existing buildings for seismic risk - A case study of puget sound naval shipyard. Proceedings of the U.S. National Conference on Earthquake Engineers, EERI, (pp. 113-122).spa
dc.relation.referencesGallego, M., & Sarria, A. (2015). El concreto y los terremotos. Conceptos, comportamientos, patología y rehabilitación (Segunda Edición). Asocreto. Asociación Colombiana de Productores de Concreto.spa
dc.relation.referencesHaskell, N. A. (1953). The dispersion of surface waves in multilayered media. In Bulletin of the Seismological Society of America. Vol 43, pp. 17-34.spa
dc.relation.referencesHilber, H. M., Hughes, T. J. R., & Taylor, R. L. (1977). Improved numerical dissipation for time integration algorithms in structural mechanics. Earthquake Engineering and Structural Dynamics, 5, 283–292.spa
dc.relation.referencesIshibashi, I., & Zhang, X. (1993). Unified dynamic shear moduli and damping ratios of sand and clay. In Japanese Society of Soil Mechanics and Foundation Engineering. Vol 33, N° 1, pp. 182-191.spa
dc.relation.referencesJiang, H. J., Chen, L. Z., & Chen, Q. (2011). Seismic damage assessment and performance levels of reinforced concrete members. Procedia Engineering, 14, 939–945.spa
dc.relation.referencesKent, D. C., & Park, R. (1971). Flexural members with confined concrete. Proceedings ASCE, 97(ST7), 1969–1990.spa
dc.relation.referencesKnopoff, L. (1964). “Q.” Review of Geophysics, Vol. 2, 625–660.spa
dc.relation.referencesKomeili, M., & Tesfamariam, S. (2012). Performance-based earthquake engineering design of reinforced concrete structures using black-box optimisation. International Journal of Materials and Structural Integrity, Vol. 6, No. 1.spa
dc.relation.referencesKramer, S. L. (1996). Geotechnical Earthquake Engineering (W. J. Hall, Ed.). University of Washington.spa
dc.relation.referencesKunnath, S. K., Reinhorn, A. M., & Abel, J. F. (1991). A computational tool for evaluation of seismic performance of reinforced concrete buildings. Computer Structures, 41(1), 157–173.spa
dc.relation.referencesKunnath, S. K., Reinhorn, A. M., & Lobo, R. F. (1992). IDARC Version 3.0: A program for the inelastic damage analysis of reinforced concrete structures. In Department of Civil engineering. State University of New York at Buffalo and Department of Civil and Environmental engineering. University of Central Florida. National center for earthquake engineering research.spa
dc.relation.referencesMander, J., Priestley, M., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering.spa
dc.relation.referencesMehanny, S. S., & Deierlein, G. G. (2001). Seismic Damage and Collapse Assessment of Composite Moment Frames. Journal of Structural Engineering, 127(9), 1045–1053.spa
dc.relation.referencesMoehle, J. (2015). Seismic Design of Reinforced Concrete Buildings (Versión 1). McGraw Hill Education.spa
dc.relation.referencesNewmark, N. M. (1959). A method of computation for structural dynamics. Journal of Engineering Mechanics, 85, 67–94.spa
dc.relation.referencesOrdaz, M., Aguilar, A., & Arboleda, J. (2007). CRISIS2007: Program for computing seismic hazard [Computer software].]. Instituto de ingeniería. Universidad Nacional Autónoma de México.spa
dc.relation.referencesOrdaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., & D’Amico, V. (2017). R-CRISIS. Program and platform for computing seismic hazard.spa
dc.relation.referencesOtani, S. (1974). Inelastic analysis of R/C frame structures. Journal of Structural Division, ASCE, 100(ST7), 1433–1449.spa
dc.relation.referencesOtarola, C. Leonardo. (2015). Generación de acelerogramas artificiales usando un método estocástico de falla finita, aplicado a terremotos de subducción. Universidad de Chile.spa
dc.relation.referencesPark, R., & Paulay, T. (1994). Estructuras de concreto reforzado. LIMUSA. Noriega editores.spa
dc.relation.referencesPark, Y., & Ang, A. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering. 111(4), Pp. 722-739.spa
dc.relation.referencesPark, Y. J., Ang, A. H.-S., & Wenn, Y. K. (1987). Damage limiting aseismic design of buildings. Earthquake Spectra, 3(1), 1–26.spa
dc.relation.referencesPEER. (2004). PEER structural performance database. Disponible en: http://nisee.berkey.edu/spd/.spa
dc.relation.referencesPriestley, M. J. N., & Park, R. (1987). Strength and Ductility of Concrete Bridge Columns under Seismic Loading. ACI Structural Journal, 84(1), 61–76.spa
dc.relation.referencesRoy, H. E. H., & Sozen, M. A. (1964). Ductility of concrete. Proceedings of the International Symposium on Flexural Mechanics of Reinforced Concrete, ASCE-ACI, 213–224.spa
dc.relation.referencesSalgado, M., Ordaz, M., Singh, K. S., Cardona, O. D., Reinoso, E., Aguado, A., Zuloaga, D., Huerta, B., & Bernal, G. (2018). Homogeneous and Continuous Probabilistic Seismic Hazard Model for Latin America and The Caribbean. 16th European Conference on Earthquake Engineering. Tessalonniki.spa
dc.relation.referencesSargin, M., Ghosh, S. K., & Handa, V. K. (1971). Effects of lateral reinforcement upon the strength and deformation properties of concrete. Magazine of Concrete Research, 23(75–76), 99–110.spa
dc.relation.referencesSEAOC. (1995). Framework for Performance Based Design.spa
dc.relation.referencesSeed, H. B., & Idriss, M. I. (1970). Soil moduli and damping factor for dynamic response analysis.spa
dc.relation.referencesSheikh, S. A., & Uzumeri, S. M. (1980). Strength and ductility of confined concrete columns. Proceedings ASCE, 106(ST5), 1079–1102.spa
dc.relation.referencesSingh, S. K., Bazan, E., & Esteva, L. (1980). Expected earthquake magnitude from a fault. Bulletin of the seismological Society of America. 70, 903-914.spa
dc.relation.referencesSingh, S. K., Ordaz, M., Anderson, J. G., Rodríguez, M., Quaas, R., Mena, E., Ottaviani, M., & Almora, D. (1989). Analysis of near source strong ground motion recordings along the Mexican subduction zone. Bull. Seism. Soc. Am., 70, 903–914.spa
dc.relation.referencesSoliman, M. T. M., & Yu, C. W. (1967). The flexural stress-strain relationship of concrete confined by rectangular transverse reinforcement. Magazine of Concrete Research, 19(61), 223–238.spa
dc.relation.referencesStone, W. C., & Taylor, A. W. (1993). Seismic performance of circular bridge columns designed in accordance with AASHTO/CALTRANS standards.spa
dc.relation.referencesSu, J., Liu, B., Xing, G., Ma, Y., & Huang, J. (2019). Seismic damage and collapse assessment of reinforced concrete frame structures using a component - classification weighted algorithm. Hindawi. Mathematical Problems in Engineering.spa
dc.relation.referencesTakeda, T., Sozen, M. A., & Nielsen, N. N. (1970). R/C response to simulated earthquakes. Journal of Structural Division, ASCE., 96 (ST12), 2557–2573.spa
dc.relation.referencesThompson, W. T. (1950). Transmission of elastic waves through a stratified solid. Journal of Applied Physics, 21, 89–93.spa
dc.relation.referencesUniversidad de Los Andes. (2004). Microzonificación sísmica y estudios generales de riesgo en las ciudades de Palmira, Tuluá y Buga. In Centro de estudios sobre desastres y riesgos - CEDERI, Centro de Investigación en Materiales y Obras Civiles - CIMOC.spa
dc.relation.referencesValdebenito, G. (2009). Passive Seismic Protection of Cable-Stayed Bridges Applying Viscous Dampers under Strong Motion. Universidad Politécnica de Catalunya.spa
dc.relation.referencesVerdugo, R. (2014). Apuntes Charla Respuesta sísmica en superficie - efecto sitio. 27 de Agosto de 2014 En UTFSM.spa
dc.relation.referencesVulinovic, M., Milicevic, I., & Ignjatovic, I. (2019). The design of local ductility for reinforced concrete elements by Eurocode 8. Confinement effectiveness factor. Society for Materials and Structures Testing of Serbia. Journal for Research in the Field of Materials and Structures, 3(ISSN 2334-0229), 3–17.spa
dc.relation.referencesWilson, E. L. (1968). A computer program for the dynamic stress analysis of underground structures. SEAM Report 68-1.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembIngeniería sísmicaspa
dc.subject.lembEarthquake engineeringeng
dc.subject.lembDiseño sismorresistentespa
dc.subject.lembEarthquake resistant designeng
dc.subject.lembPrevención y protección ante los sismosspa
dc.subject.lembEarthquakes - prevention and protectioneng
dc.subject.proposalDesempeño sísmicospa
dc.subject.proposalAcelerogramas sintéticosspa
dc.subject.proposalDaño sísmicospa
dc.subject.proposalColapsospa
dc.subject.proposalSeismic performanceeng
dc.subject.proposalSynthetic accelerogramseng
dc.subject.proposalSeismic damageeng
dc.subject.proposalCollapseeng
dc.titleDesempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmicaspa
dc.title.translatedPerformance of buildings in reinforced concrete frames based on their non-linear dynamic response, before representative synthetic accelerograms of the seismic threateng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1116789378.2023.pdf
Tamaño:
16.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: