Analysis of crossover designs with repeated measurements using generalized estimating equations

dc.contributor.advisorMelo Martínez, Oscar Orlando
dc.contributor.advisorMartínez Niño, Carlos Alberto
dc.contributor.authorCruz Gutiérrez, Nelson Alirio
dc.contributor.cvlacCruz, Nelson Alirio [0001562620]spa
dc.contributor.googlescholarCruz Gutierrez, N.A. [N.A. Cruz]spa
dc.contributor.orcidCruz, N.A. [0000000273705111]spa
dc.contributor.researchgroupEstadística Aplicada en Investigación Experimental, Industria y Biotecnologíaspa
dc.date.accessioned2023-07-27T20:37:51Z
dc.date.available2023-07-27T20:37:51Z
dc.date.issued2023-07-25
dc.descriptionilustraciones, gráficasspa
dc.description.abstractExperimental crossover designs are widely used in medicine, agriculture, and other areas of the biological sciences. Due to the characteristics of the crossover design, each experimental unit has longitudinal observations and the presence of drag effects on the response variable. Furthermore, in many scenarios it is not possible to have a washout period between applications of different treatments, which creates problems in estimating treatment effects without a proper model specification. As a solution to this problem, this thesis deals with crossover designs without a washout period and with repeated measures. First, a methodology is developed for the analysis of crossover designs when the response variable is a Poisson count. For the estimation, generalized estimation equations are used assuming that there is no washout period and that the experimental unit was observed once per period. Furthermore, this methodology is easily extended to any response variable that belongs to the exponential family. Then, the above methodology is extended to crossover designs with repeated measures within each period, that is, when an experimental unit is observed more than once in each period. For this model, a family of correlation structures that takes into account the particularities of the design, that is, the correlation between and within the periods, is built. Finally, an extension of the generalized estimating equations is developed. It includes a parametric component to model treatment effects and a nonparametric component to model time effects and carry-over effects. The non-parametric component is estimated from splines inserted into the generalized estimation equations. Additionally, the codes for the application of the methodology in any crossover design in the R statistical software are given. The advantages of the proposed methodology are evidenced through simulation exercises and, theoretically, by exploring the asymptotic properties of the estimators obtained. The performance of the methodology is also compared with the usual methodologies on some real data from crossover designs. The methodology built in this thesis allows to analyze any crossover design as long as the observed response variable belongs to the exponential family, regardless of whether there is a washout period or not. It also allows modeling repeated measurements within each period and broadens the correlation structures used in the generalized estimation equations.eng
dc.description.abstractLos diseños experimentales crossover se usan ampliamente en medicina, agricultura y otras áreas de las ciencias biológicas. Por las características del diseño crossover, cada unidad experimental tiene observaciones longitudinales y presencia de efectos de arrastre en la variable respuesta. Además, en muchos escenarios no es posible dejar un período de lavado entre aplicaciones de diferentes tratamientos, lo que genera problemas al estimar los efectos del tratamiento sin una especificación adecuada del modelo. Como solución a lo anterior, esta tesis trata sobre diseños crossover sin período de lavado y con medidas repetidas. En primer lugar, se desarrolla una metodología para el análisis de diseños crossover cuando la variable de respuesta es un conteo de Poisson. Para la estimación se utilizan ecuaciones de estimación generalizadas asumiendo que no existe período de lavado y que la unidad experimental fue observada una vez por período. Además, esta metodología es fácilmente extensible a cualquier variable de respuesta que pertenezca a la familia exponencial. En un segundo lugar, la metodología anterior se extiende a diseños cruzados con medidas repetidas dentro de cada período, es decir, cuando una unidad experimental es observada más de una vez en cada período. Para este modelo se construye una familia de estructuras de correlación que toman en cuenta las particularidades del diseño, es decir, la correlación entre y dentro de los periodos. En tercer lugar, se proporciona una extensión de las ecuaciones de estimación generalizadas que incluye un componente paramétrico para modelar los efectos del tratamiento y un componente no paramétrico para modelar los efectos del tiempo y los efectos carry-over. El componente no paramétrico se estima a partir de Splines insertados en las ecuaciones de estimación generalizadas. Adicionalmente, se dan los códigos para la aplicación de la metodología en cualquier diseño crossover en el software estadístico R. Las ventajas de la metodología propuesta se evidencian en ejercicios de simulación y explorando teóricamente las propiedades asintóticas de los estimadores obtenidos. También se compara el rendimiento de la metodología con las metodologías habituales sobre algunos datos reales de diseños cruzados. La metodología construida en esta tesis permite analizar cualquier diseño crossover siempre que la variable respuesta observada pertenezca a la familia exponencial, sin importar si hay periodo de lavado o no. Además, permite modelar medidas repetidas dentro de cada periodo y amplía las estructuras de correlación dentro de las ecuaciones de estimación generalizadas. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Estadísticaspa
dc.format.extentxix, 147 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84334
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.referencesAgresti, A. (2002). Categorical Data Analysis Second Edition. Wiley Series in Probability and Statistics, New Jersey.spa
dc.relation.referencesAmatya, A. and Demirtas, H. (2017). PoisNor: An R package for generation of multivariate data with Poisson and normal marginals. Communications in Statistics-Simulation and Computation, 46(3):2241–2253.spa
dc.relation.referencesBailey, R. A., Cameron, P. J., Filipiak, K., Kunert, J., and Markiewicz, A. (2017). On optimality and construction of circular repeated-measurements designs. Statistica Sinica, 27:1–22.spa
dc.relation.referencesBasu, S. and Santra, S. (2010). A joint model for incomplete data in crossover trials. Journal of Statistical Planning and Inference, 140(10):2839–2845.spa
dc.relation.referencesBiabani, M., Farrell, M., Zoghi, M., Egan, G., and Jaberzadeh, S. (2018). Crossover design in transcranial direct current stimulation studies on motor learning: potential pitfalls and difficulties in interpretation of findings. Reviews in the Neurosciences, 29(4):463–473spa
dc.relation.referencesBoik, R. J. (1991). Scheff´es mixed model for multivariate repeated measures: a relative efficiency evaluation. Communications in Statistics-Theory and Methods, 20(4):1233–1255.spa
dc.relation.referencesBunch, J. R. and Hopcroft, J. E. (1974). Triangular factorization and inversion by fast matrix multiplication. Mathematics of Computation, 28(125):231–236.spa
dc.relation.referencesCarey., V. J. (2019). gee: Generalized Estimation Equation Solver. R package version 4.13-20.spa
dc.relation.referencesChalikias, M. and Kounias, S. (2012). Extension and necessity of Cheng and Wu conditions. Journal of Statistical Planning and Inference, 142(7):1794–1800.spa
dc.relation.referencesChalikias, M. S. (2017). Two treatment repeated measurement designs with uncorrelated observations: A compact review. Journal of Advanced Statistics, 2(1):27.spa
dc.relation.referencesChard, A. N., Trinies, V., Edmonds, C. J., Sogore, A., and Freeman, M. C. (2019). The impact of water consumption on hydration and cognition among schoolchildren: Methods and results from a crossover trial in rural Mali. PloS one, 14(1):e0210568.spa
dc.relation.referencesChasiotis, V. (2021). On optimality and construction of two-treatment circular cross-over designs. Communications in Statistics-Theory and Methods, 10(1):1–10.spa
dc.relation.referencesChasiotis, V. and Kounias, S. (2021). Optimal two treatment circular repeated measurements designs up to four periods. Communications in Statistics-Theory and Methods, 50(20):4867–4878.spa
dc.relation.referencesCordeiro, G. M. (2004). On Pearson’s residuals in generalized linear models. Statistics & Probability letters, 66(3):213–219.spa
dc.relation.referencesCordeiro, G. M. and McCullagh, P. (1991). Bias correction in generalized linear models. Journal of the Royal Statistical Society: Series B (Methodological), 53(3):629–643.spa
dc.relation.referencesCox, D. R. and Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological), 30(2):248–265.spa
dc.relation.referencesCruz, N. A., L´opez P´erez, L. A., and Melo, O. O. (2023a). Analysis of cross-over experiments with count data in the presence of carry-over effects. Statistica Neerlandica.spa
dc.relation.referencesCruz, N. A., Melo, O. O., and Martinez, C. A. (2023b). A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures. Statistical Papers.spa
dc.relation.referencesCruz, N. A., Melo, O. O., and Martinez, C. A. (2023c). Semiparametric generalized estimating equations for repeated measurements in cross-over designs. Statistical Methods in Medical Research, 32(5):1033–1050. PMID: 36919447.spa
dc.relation.referencesCurtin, F. (2017). Meta-analysis combining parallel and crossover trials using generalised estimating equation method. Research Synthesis Methods, 8(3):312–320.spa
dc.relation.referencesDa Silva, A. A., do Carmo, J. M., Li, X.,Wang, Z., Mouton, A. J., and Hall, J. E. (2020). Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Canadian Journal of Cardiology, 36(5):671–682.spa
dc.relation.referencesDavies, R. (1980). Algorithm as 155: The distribution of a linear combination of chi-2 random variables. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(3):323–333.spa
dc.relation.referencesDavis, C. S. (2002). Statistical Methods for the Analysis of Repeated Measurements. Springer, San Diego.spa
dc.relation.referencesDiaz, F. J., Berg, M. J., Krebill, R., Welty, T., Gidal, B. E., Alloway, R., and Privitera, M. (2013). Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, twoformulation and six-period, three-sequence, three-formulation designs. Clinical pharmacokinetics, 52(12):1033–1043.spa
dc.relation.referencesDubois, A., Lavielle, M., Gsteiger, S., Pigeolet, E., and Mentr´e, F. (2011). Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm. Statistics in medicine, 30(21):2582–2600.spa
dc.relation.referencesDuchesne, P. and Micheaux, L. (2010). Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods. Computational Statistics and Data Analysis, 54:858–862.spa
dc.relation.referencesFanelli, E., Di Monaco, S., Pappaccogli, M., Eula, E., Fasano, C., Bertello, C., Veglio, F., and Rabbia, F. (2021). Comparison of nurse attended and unattended automated office blood pressure with conventional measurement techniques in clinical practice. Journal of Human Hypertension, 36(9):01–06.spa
dc.relation.referencesFarebrother, R. (1984). Algorithm AS 204: The distribution of a positive linear combination of chi- squared random variables. Journal of the Royal Statistical Society, Series C (Applied Statistics), 33(3):332–339.spa
dc.relation.referencesForbes, A. B., Akram, M., Pilcher, D., Cooper, J., and Bellomo, R. (2015). Cluster randomised crossover trials with binary data and unbalanced cluster sizes: Application to studies of near-universal interventions in intensive care. Clinical Trials, 12(1):34–44.spa
dc.relation.referencesGrayling, M. J., Mander, A. P., and Wason, J. M. (2018). Blinded and unblinded sample size reestimation in crossover trials balanced for period. Biometrical Journal, 60(5):917–933.spa
dc.relation.referencesHao, C., von Rosen, D., and von Rosen, T. (2015). Explicit influence analysis in twotreatment balanced crossover models. Mathematical Methods of Statistics, 24(1):16–36.spa
dc.relation.referencesHardin, J. W. and Hilbe, J. (2003). Generalized Estimating Equations. Chapman & Hall, Boca Raton.spa
dc.relation.referencesHarville, D. A. (1997). Matrix algebra from a statistician’s perspective, volume 1. Springer, New York.spa
dc.relation.referencesHe, X., Zhu, Z.-Y., and Fung, W.-K. (2002). Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika, 89(3):579–590.spa
dc.relation.referencesHinkelmann, K. and Kempthorne, O. (2005). Design and Analysis of Experiments, volume Volume 2 of Wiley series in probability and mathematical statistics. Applied probability and statistics. Wiley, New York.spa
dc.relation.referencesImhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48:419–426.spa
dc.relation.referencesJaime, G. (2019). Uso de un residuo de papel como suplemento para vacas lecheras. Tesis de maestr´ıa, Universidad Nacional de Colombia, Sede Bogota.spa
dc.relation.referencesJankar, J. and Mandal, A. (2021). Optimal crossover designs for generalized linear models: An application to work environment experiment. Statistics and Applications, 19(1):319– 336.spa
dc.relation.referencesJankar, J., Mandal, A., and Yang, J. (2020). Optimal crossover designs for generalized linear models. Journal of Statistical Theory and Practice, 14(2):1–27.spa
dc.relation.referencesJones, B. and Kenward, M. G. (2015). Design and Analysis of Cross-Over Trials Third Edition. Chapman & Hall/CRC, Boca Raton.spa
dc.relation.referencesJorgensen, B. (1997). The Theory of Dispersion Models. Chapman & Hall, London.spa
dc.relation.referencesJosephy, H., Vansteelandt, S., Vanderhasselt, M.-A., and Loeys, T. (2015). Within-subject mediation analysis in AB/BA crossover designs. The international journal of biostatistics, 11(1):1–22.spa
dc.relation.referencesKenward, M. G. and Jones, B. (1987). A log-linear model for binary cross-over data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 36:192–204.spa
dc.relation.referencesKenward, M. G. and Roger, J. H. (2009). The use of baseline covariates in crossover studies. Biostatistics, 11(1):1–17.spa
dc.relation.referencesKitchenham, B., Madeyski, L., Curtin, F., et al. (2018). Corrections to effect size variances for continuous outcomes of cross-over clinical trials. Statistics in medicine, 37(2):320–323.spa
dc.relation.referencesKokonendji, C., Dossou-Gbete, S., and Demetrio, C. (2004). Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Dem´etrio. Statistics and Operations Research Transactions, 28:201–214.spa
dc.relation.referencesKrzy´sko, M. and Skorzybut, M. (2009). Discriminant analysis of multivariate repeated measures data with a kronecker product structured covariance matrices. Statistical papers, 50(4):817–835.spa
dc.relation.referencesLancaster, H. (1965). The helmert matrices. The American Mathematical Monthly, 72(1):4– 12.spa
dc.relation.referencesLayard, M. and Arvesen, J. (1978). Analysis of Poisson data in crossover experimental designs. Biometrics, pages 421–428.spa
dc.relation.referencesLehmann, E. L. and Casella, G. (2006). Theory of point estimation. Springer Science & Business Media.spa
dc.relation.referencesLeorato, S. and Mezzetti, M. (2016). Spatial panel data model with error dependence: A bayesian separable covariance approach. Bayesian Analysis, 11(4):1035–1069.spa
dc.relation.referencesLi, F., Forbes, A. B., Turner, E. L., and Preisser, J. S. (2018). Power and sample size requirements for gee analyses of cluster randomized crossover trials. Statistics in Medicinespa
dc.relation.referencesLi, F., Forbes, A. B., Turner, E. L., and Preisser, J. S. (2019). Power and sample size requirements for gee analyses of cluster randomized crossover trials. Statistics in medicine, 38(4):636–649.spa
dc.relation.referencesLiang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1):13–22.spa
dc.relation.referencesLin, X. and Carroll, R. J. (2001). Semiparametric regression for clustered data using generalized estimating equations. Journal of the American Statistical Association, 96(455):1045– 1056.spa
dc.relation.referencesLindsey, J. and Jones, B. (1997). Treatment–patient interactions for diagnostics of cross-over trials. Statistics in medicine, 16(17):1955–1964.spa
dc.relation.referencesLiu, F. and Li, Q. (2016). A bayesian model for joint analysis of multivariate repeated measures and time to event data in crossover trials. Statistical Methods in Medical Research, 25(5):2180–2192.spa
dc.relation.referencesLiu, H., Tang, Y., and Zhang, H. (2009). A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Computational Statistics and Data Analysis, 53:853–856.spa
dc.relation.referencesLongford, N. (1998). Count data and treatment heterogeneity in 2× 2 crossover trials. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(2):217–229.spa
dc.relation.referencesLui, K.-J. (2015). Test equality between three treatments under an incomplete block crossover design. Journal of biopharmaceutical statistics, 25(4):795–811.spa
dc.relation.referencesLui, K.-J. (2016). Notes on estimation in Poisson frequency data under an incomplete block crossover design. Statistical Methodology, 32:53–62.spa
dc.relation.referencesMadeyski, L. and Kitchenham, B. (2018). Effect sizes and their variance for AB/BA crossover design studies. Empirical Software Engineering, 23(4):1982–2017.spa
dc.relation.referencesMathai, A. M. (1982). Storage capacity of a dam with Gamma type inputs. Annals of the Institute of Statistical Mathematics, 34(3)A:591–597.spa
dc.relation.referencesMcDaniel, L. S., Henderson, N. C., and Rathouz, P. J. (2013). Fast pure R implementation of GEE: application of the Matrix package. The R Journal, 5:181–187.spa
dc.relation.referencesMelo, O., L´opez, L., and Melo, S. (2007). Dise˜no de experimentos, M´etodos y aplicaciones. Universidad Nacional de Colombia, Sede Bogot´a, Bogot´a.spa
dc.relation.referencesMoschopoulos, P. G. and Canada, W. B. (1984). The distribution function of a linear combination of chi-squares. Computers and Mathematics with Applications, 10:383–386.spa
dc.relation.referencesNing, B., Wang, X., Yu, Y., Waqar, A. B., Yu, Q., Koike, T., Shiomi, M., Liu, E., Wang, Y., and Fan, J. (2015). High-fructose and high-fat diet-induced insulin resistance enhances atherosclerosis in watanabe heritable hyperlipidemic rabbits. Nutrition & metabolism, 12(1):1–11.spa
dc.relation.referencesOh, H. S., Ko, S.-g., and Oh, M.-S. (2003). A bayesian approach to assessing population bioequivalence in a 2 2 2 crossover design. Journal of Applied Statistics, 30(8):881–891.spa
dc.relation.referencesPan, W. (2001a). Akaike’s information criterion in generalized estimating equations. Biometrics, 57:120–125.spa
dc.relation.referencesPan, W. (2001b). On the robust variance estimator in generalised estimating equations. Biometrika, 88(3):901–906.spa
dc.relation.referencesPatterson, H. D. (1951). Change-over trials. Journal of the Royal Statistical Society. Series B (Methodological), 13:256–271.spa
dc.relation.referencesPitchforth, J., Nelson-White, E., van den Helder, M., and Oosting, W. (2020). The work environment pilot: An experiment to determine the optimal office design for a technology company. PloS one, 15(5):e0232943.spa
dc.relation.referencesR Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.spa
dc.relation.referencesR Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.spa
dc.relation.referencesRatkowsky, D., Alldredge, R., and Evans, M. (1992). Cross-over Experiments. Statistics A Series of Textbooks and Monographs, Washington.spa
dc.relation.referencesRosenkranz, G. K. (2015). Analysis of cross-over studies with missing data. Statistical methods in medical research, 24(4):420–433.spa
dc.relation.referencesRotnitzky, A. and Jewell, N. (1990). Hypothesis testing of regression parameters in semiparametric generalized linear models for clustered data. Biometrika, 77:485–497.spa
dc.relation.referencesRoy, A. and Khattree, R. (2005). On implementation of a test for kronecker product covariance structure for multivariate repeated measures data. Statistical Methodology, 2(4):297– 306.spa
dc.relation.referencesShkedy, Z., Molenberghs, G., Craenendonck, H. V., Steckler, T., and Bijnens, L. (2005). A hierarchical Binomial-Poisson model for the analysis of a crossover design for correlated binary data when the number of trials is dose-dependent. Journal of biopharmaceutical statistics, 15(2):225–239.spa
dc.relation.referencesSpeckman, P. (1988). Kernel smoothing in partial linear models. Journal of the Royal Statistical Society: Series B (Methodological), 50(3):413–436.spa
dc.relation.referencesSrivastava, M. S., von Rosen, T., and Von Rosen, D. (2008). Models with a kronecker product covariance structure: estimation and testing. Mathematical Methods of Statistics, 17(4):357–370spa
dc.relation.referencesStergiou, G. S., Zourbaki, A. S., Skeva, I. I., and Mountokalakis, T. D. (1998). White coat effect detected using self-monitoring of blood pressure at home: comparison with ambulatory blood pressure. American Journal of Hypertension, 11(7):820–827.spa
dc.relation.referencesStoklosa, J. and Warton, D. I. (2018). A generalized estimating equation approach to multivariate adaptive regression splines. Journal of Computational and Graphical Statistics, 27(1):245–253.spa
dc.relation.referencesTsuyuguchi, A. B., Paula, G. A., and Barros, M. (2020). Analysis of correlated Birnbaum– Saunders data based on estimating equations. TEST, 29(3):661–681.spa
dc.relation.referencesVegas, S., Apa, C., and Juristo, N. (2016). Crossover designs in software engineering experiments: Benefits and perils. IEEE Transactions on Software Engineering, 42(2):120–135.spa
dc.relation.referencesWang, X. and Chinchilli, V. M. (2021). Analysis of crossover designs with nonignorable dropout. Statistics in Medicine, 40(1):64–84.spa
dc.relation.referencesWild, C. and Yee, T. (1996). Additive extensions to generalized estimating equation methods. Journal of the Royal Statistical Society: Series B (Methodological), 58(4):711–725.spa
dc.relation.referencesYang, L. and Niu, X.-F. (2021). Semi-parametric models for longitudinal data analysis. Journal of Finance and Economics, 9(3):93–105.spa
dc.relation.referencesYu, L. and Peace, K. E. (2012). Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model. Computational Statistics & Data Analysis, 56(9):2675–2687.spa
dc.relation.referencesZhang, H., Yu, Q., Feng, C., Gunzler, D., Wu, P., and Tu, X. (2012). A new look at the difference between the gee and the glmm when modeling longitudinal count responses. Journal of Applied Statistics, 39(9):2067–2079.spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembAnálisis funcionalspa
dc.subject.lembFunctional analysiseng
dc.subject.lembTeoría de la estimaciónspa
dc.subject.lembEstimation theoryeng
dc.subject.proposalCarry-over effecteng
dc.subject.proposalCrossover designeng
dc.subject.proposalGeneralized estimating equationseng
dc.subject.proposalPoisson distributioneng
dc.subject.proposalOverdispersion count dataeng
dc.subject.proposalKronecker correlationeng
dc.subject.proposalSplines estimationeng
dc.subject.proposalEfecto de arrastrespa
dc.subject.proposalDiseño cruzadospa
dc.subject.proposalEcuaciones de estimación generalizadasspa
dc.subject.proposalDistribución de Poissonspa
dc.subject.proposalDatos de conteo de sobredispersiónspa
dc.subject.proposalCorrelación de Kroneckerspa
dc.titleAnalysis of crossover designs with repeated measurements using generalized estimating equationseng
dc.title.translatedAnálisis de diseños crossover con medidas repetidas usando ecuaciones de estimación generalizadasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1072719347.2023.pdf
Tamaño:
1.88 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: