Evaluación del cianuro total de hojas de yuca (Manihot esculenta) y propuesta de métodos de eliminación en diferentes variedades de Colombia 2023

dc.contributor.advisorLópez Carrascal, Camilo Ernestospa
dc.contributor.advisorSoto Sedano, Johana Carolinaspa
dc.contributor.advisorChaves Silva, Diana Carolinaspa
dc.contributor.authorMahecha Rojas, Iván Mauriciospa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001806225spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=dtaaKU4AAAAJ&hl=esspa
dc.contributor.orcid0000-0002-9722-7556spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Ivan-Mahecha-Rojasspa
dc.contributor.researchgroupToxicología Analíticaspa
dc.contributor.researchgroupManihot Biotecspa
dc.coverage.countryColombiaspa
dc.coverage.temporal2023
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.date.accessioned2024-05-23T20:09:43Z
dc.date.available2024-05-23T20:09:43Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa linamarina es un glucósido cianogénico presente en la yuca (Manihot esculenta C) cuya descomposición mediante reacciones de hidrólisis enzimática libera ácido cianhídrico como mecanismo de defensa de la planta. Se sabe que el consumo de las raíces tuberosas de la yuca en Colombia es abundante, así como su producción y versatilidad en cuanto a su cultivo. Sin embargo, a nivel nutricional este alimento solo aporta en su mayoría carbohidratos a diferencia de las hojas que tienen un gran aporte en proteínas y minerales, pero su contenido en linamarina es considerablemente mayor que el presente en las raíces. En el marco de esta investigación, se llevó a cabo un análisis experimental mediante una metodología netamente descriptiva con el objetivo de investigar la concentración de ácido cianhídrico (HCN) en las hojas de yuca de diversas variedades. Se emplearon técnicas de análisis colorimétrico y espectrofotométrico (UV-VIS), adaptando y optimizando metodologías estandarizadas para la identificación y cuantificación de HCN donde se observaron valores en un rango comprendido entre 97 a 3936 mg HCN/kg de muestra seca (ppm). Adicionalmente, este estudio consideró la eliminación del HCN en la hoja con el propósito de fomentar y añadir valor a nivel agroalimentario a este importante material, por lo que se propusieron y efectuaron dos métodos capaces de ser reproducibles a nivel doméstico evidenciando una remoción del contenido de HCN entre el 60 y el 91% de las hojas. (Texto tomado de la fuente).spa
dc.description.abstractLinamarin is a cyanogenic glycoside present in cassava (Manihot esculenta C), whose enzymatic hydrolysis releases hydrogen cyanide as a defense mechanism in the plant. It is well-established that cassava tuber consumption is prevalent in Colombia due to its abundant production and versatility in cultivation. However, nutritionally, this food primarily contributes carbohydrates, in contrast to the leaves which offer substantial protein and mineral content. Notably, the linamarin content in leaves is considerably higher than that found in the roots. Within the framework of this research, an experimental analysis was conducted using a purely descriptive methodology to explore the concentration of hydrogen cyanide (HCN) in cassava leaves of various varieties. Colorimetric and spectrophotometric (UV-VIS) analysis techniques were employed, adapting and optimizing standardized methodologies for the identification and quantification of HCN. Results revealed concentrations ranging from 97 to 3936 mg HCN/kg of dry basis (ppm). Additionally, this study considered the removal of HCN from the leaves with the aim of promoting and adding value at the agri-food level to this significant material. To achieve this, two reproducible methods were proposed and implemented at the domestic level, demonstrating a removal of HCN content ranging from 60% to 91% in the analyzed leaves.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Toxicologíaspa
dc.description.researchareaToxicología analíticaspa
dc.format.extentxviii, 113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86150
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Toxicologíaspa
dc.relation.referencesAguilar, E., Rodríguez, A., Saborío, D., Morales, J., Chacón, M., Rodríguez, L., Acuña, P., Torres, S., & Gómez, Y. (2017). Manual del cultivo de Yuca. http://www.mag.go.cr/bibliotecavirtual/F01-10918.pdfspa
dc.relation.referencesAnjani, N., Hamzah, B., & Abram, H. (2021). Analysis of Cyanide Contents in Cassava Leaves (Manihot esculenta Crantz) Based on Boiling Time with Formation of Hydrindantin Complex by Using UV-Vis Spectrophotometry. Jurnal Akademika Kimia, 10(1), 49–52. https://doi.org/10.22487/J24775185.2021.V10.I1.PP49-52spa
dc.relation.referencesAppenteng, K., Krueger, R., Johnson, C., Ingold, H., Bell, R., Thomas, L., & Greenlief, C. (2021). Cyanogenic Glycoside Analysis in American Elderberry. Molecules 2021, Vol. 26, Page 1384, 26(5), 1384. https://doi.org/10.3390/MOLECULES26051384spa
dc.relation.referencesArias, J., Ramos, L., Acosta, L., Camacho, H., & Marín, Z. (2005). Diversidad de yucas (Manihot esculenta Crantz) entre los Ticuna: Riqueza cultural y genética de un producto tradicional.spa
dc.relation.referencesAristizábal, J., & Sánchez, T. (2007). Guía técnica para producción y análisis de almidón de yuca. Boletín de servicios agrícolas de la FAO - 163, 153. https://doi.org/10.4060/CC2323ENspa
dc.relation.referencesArrázola, G. (2002). Análisis de glucósidos cianogénicos en variedades de almendro : implicaciones en la mejora genética Tesis Doctoral [Universidad de Alicante]. En Universidad de Alicante. http://hdl.handle.net/10045/3219spa
dc.relation.referencesArrázola, G., Grané, N., Martin, M. L., & Dicenta, F. (2013). Determinación de los compuestos cianogénicos amigdalina y prunasina en semillas de almendras mediante cromatografía líquida de alta resolución. Química Aplicada y Analítica Rev. Colomb. Quim, 42(1), 23–30.spa
dc.relation.referencesArrázola, G., Sánchez, R., Dicenta, F., & Grané, N. (2012). Art Content of the cyanogenic glucoside amygdalin in almondRG. Agronomía Colombiana, 30, 6. https://www.researchgate.net/publication/333982839spa
dc.relation.referencesBaird, B., Eaton, D., & Rice, W. (2017). Standard Methods for the examination of water and wastewater. En American Public Health Association (23a ed.).spa
dc.relation.referencesBelcher, R. (1969). Gilbert H. , Quantitative Chemical Analysis, 2nd Edn. Analytica Chimica Acta, 45(1). https://doi.org/10.1016/s0003-2670(00)89411-8spa
dc.relation.referencesBjarnholt, N., & Møller, B. (2008). Hydroxynitrile glucosides. En Phytochemistry (Vol. 69, Número 10, pp. 1947–1961). Pergamon. https://doi.org/10.1016/j.phytochem.2008.04.018spa
dc.relation.referencesBradbury, J., Bradbury, G., & Egan, V. (1994). Comparison Of Methods Of Analysis Of Cyanogens in Cassava. Acta Horticulturae, 375, 87–96. https://doi.org/10.17660/ACTAHORTIC.1994.375.6spa
dc.relation.referencesBradbury, J. , & Denton, C. (2014). Mild method for removal of cyanogens from cassava leaves with retention of vitamins and protein. Food Chemistry, 158, 417–420. https://doi.org/10.1016/J.FOODCHEM.2014.02.132spa
dc.relation.referencesBrimer, L., Abrahamsson, M., Mlingi, N., & Rosling, H. (1998). A modified microdiffusion assay with solid-state detection for the determination of total cyanogens (CNp) in cassava flour. Comparison to the method of O’Brien et al. (1991). Food Chemistry, 62(2), 239–242. https://doi.org/10.1016/S0308-8146(97)00152-0spa
dc.relation.referencesBromer, W., Egge, H., Eiter, K., Eyjólfsson, R., Gross, D., Hikino, H., Hikino, Y., Jackson, B. G., Morin, R. B., Pike, J. E., Warnhoff, E. W., Wiegandt, H., & Wong, E. (1970). Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products (W. Herz, H. Grisebach, & A. I. Scott, Eds.; Vol. 28). Springer Vienna. https://doi.org/10.1007/978-3-7091-7123-3spa
dc.relation.referencesCasanto, E. (2001). Variedades de la Yuca Entre los Ashánincas (M. Pinto, Ed.; Vol. 1). Universidad Nacional Mayor de San Marcos.spa
dc.relation.referencesCeballos, H., & Ospina, B. (2003). La yuca en el Tercer Milenio. En CIAT: CLAYUCA: Ministerio de Agricultura y Desarrollo Rural, FENAVI (Primera Edición). Centro Internacional de Agricultura Tropical.spa
dc.relation.referencesChaiareekitwat, S., Latif, S., Mahayothee, B., Khuwijitjaru, P., Nagle, M., Amawan, S., & Müller, J. (2022). Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves (Manihot esculenta Crantz) as influenced by cultivar, plant age, and leaf position. Food Chemistry, 372, 131173. https://doi.org/10.1016/J.FOODCHEM.2021.131173spa
dc.relation.referencesChaouali, N., Gana, I., Dorra, A., Khelifi, F., Nouioui, A., Masri, W., Belwaer, I., Ghorbel, H., & Hedhili, A. (2013). Potential Toxic Levels of Cyanide in Almonds (Prunus amygdalus), Apricot Kernels (Prunus armeniaca), and Almond Syrup. 2013. https://doi.org/10.1155/2013/610648spa
dc.relation.referencesCodex Alimentarius. (1995). General Standard for Contaminants and Toxins in Food And Feed CXS 193-1995. Food and Agriculture Organization of the United Nations.spa
dc.relation.referencesConn, E. (1980). Cyanogenic Compounds. En Ann. Rev. Plant Physiol (Vol. 31). www.annualreviews.orgspa
dc.relation.referencesConn, E., Knowles, J., Ingvorsen, K., Godtfredsen, E., Tsuchiya, T., Wyatt .M Linton, A., Halkier, A., Scheller, V., Moller, L., Poulton, E., Manning, K., Hughes, A., Sharif, L., Dunn, A., Oxtoby, E., Nahrstedt, A., Jones, A., Brimer, L., Westley, J., … Lieberei, R. (1988a). Ciba Foundation Symposium 140 - Cyanide Compounds in Biology (D. Evered & S. Harnett, Eds.). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470513712spa
dc.relation.referencesCooke, R. (1978). An enzymatic assay for the total cyanide content of cassava (manihot esculenta crantz). Journal of the Science of Food and Agriculture, 29(4). https://doi.org/10.1002/jsfa.2740290408spa
dc.relation.referencesCooke, R. (1979). Enzymatic assay for determining the cyanide content of cassava and cassava products. CIAT’Sspa
dc.relation.referencesCornara, L., Xiao, J., & Burlando, B. (2016). Therapeutic Potential of Temperate Forage Legumes: A Review. Critical reviews in food science and nutrition, 56 Suppl 1, S149–S161. https://doi.org/10.1080/10408398.2015.1038378spa
dc.relation.referencesDa Ponte, J. (2006). Cartilha da manipueira: uso do composto como insumo agrícola (Tercera Edición). Banco do Nordeste do Brasil.spa
dc.relation.referencesdel Cueto, J., Møller, L., Dicenta, F., & Sánchez-Pérez, R. (2018). β-Glucosidase activity in almond seeds. Plant Physiology and Biochemistry, 126, 163–172. https://doi.org/10.1016/j.plaphy.2017.12.028spa
dc.relation.referencesDeng, P., Cui, B., Zhu, H., Phommakoun, B., Zhang, D., Li, Y., Zhao, F., & Zhao, Z. (2021). Accumulation Pattern of Amygdalin and Prunasin and Its Correlation with Fruit and Kernel Agronomic Characteristics during Apricot (Prunus armeniaca L.) Kernel Development. Foods 2021, Vol. 10, Page 397, 10(2), 397. https://doi.org/10.3390/FOODS10020397spa
dc.relation.referencesDíaz, P., & López, C. (2021). Yuca: Pan y Carne, Una Alternativa Potencial para Hacer Frente al Hambre Oculta. Acta Biológica Colombiana, 26(2), 235–246. https://doi.org/10.15446/abc.v26n2.84569spa
dc.relation.referencesDunstan, W. R., Henry, T. A., & Auld, S. J. M. (1906). Cyanogenesis in Plants. Part IV.--The Occurrence of Phaseolunatin in Common Flax (Linum usitatissimum). Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 78(523), 145– 152. http://www.jstor.org/stable/80155spa
dc.relation.referencesDzombak, A., Ghosh, S., & Wong, M. (2005). Cyanide in Water and Soil. Eds.; Primera Edición. CRC Press. https://doi.org/10.1201/9781420032079spa
dc.relation.referencesEksittikul, T., & Chulavatnatol, M. (1988). Characterization of cyanogenic β-glucosidase (Linamarase) from cassava (Manihot esculenta Crantz). Archives of Biochemistry and Biophysics, 266(1). https://doi.org/10.1016/0003-9861(88)90257-3spa
dc.relation.referencesEssers, A., Bosveld, M., Van Grift, D., & Voragen, J. (1993). Studies on the quantification of specific cyanogens in cassava products and introduction of a new chromogen. Journal of the Science of Food and Agriculture, 63(3). https://doi.org/10.1002/jsfa.2740630305spa
dc.relation.referencesGanjewala, D., Kumar, S., Devi, A., & Ambika, K. (2010). Advances in cyanogenic glycosides biosynthesis and analyses in plants: A review. Szegediensis, Acta Biologica, 54(1), 1–14. http://www.sci.u-szeged.hu/ABSspa
dc.relation.referencesGleadow, M., Bjarnholt, N., Jorgensen, K., Fox, J., & Miller, R. (2011). Cyanogenic glycosides (pp. 283–310). Stadium Press LLC. https://www.researchgate.net/publication/223138629_CYANOGENIC_GLYCOSIDESspa
dc.relation.referencesGleadow, M., & Møller, L. (2014). Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annual review of plant biology, 65, 155–185. https://doi.org/10.1146/ANNUREVARPLANT-050213-040027spa
dc.relation.referencesGliorio, G. (2020). Metodo di Liebig-Denigés: Argentometria | “Ripetiamo Insieme: ACF1, #9.1”. https://www.youtube.com/watch?v=-Mcwt97X3NI&list=LL&index=7&t=185sspa
dc.relation.referencesGómez, G., & Valdivieso, M. (1985). Cassava foliage: Chemical composition, cyanide content and effect of drying on cyanide elimination. Journal of the Science of Food and Agriculture, 36(6), 433–441. https://doi.org/10.1002/JSFA.2740360602spa
dc.relation.referencesGomez, A., Berkoff, C., Gill, K., Iavarone, T., Lieberman, E., Ma, M., Schultink, A., Karavolias, G., Wyman, K., Chauhan, D., Taylor, J., Staskawicz, J., Cho, J., Rokhsar, S., & Lyons, B. (2022). CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production. Frontiers in Plant Science, 13, 079254. https://doi.org/10.3389/FPLS.2022.1079254/BIBTEXspa
dc.relation.referencesGundersen, E., Christiansen, C., Jørgensen, K., & Lübeck, M. (2022). Production of leaf protein concentrates from cassava: Protein distribution and anti-nutritional factors in biorefining fractions. Journal of Cleaner Production, 379, 134730. https://doi.org/10.1016/J.JCLEPRO.2022.134730spa
dc.relation.referencesHalter, G., Chen, D., Hild, N., Mora, A., Stoessel, R., Koehler, M., Grass, N., & Stark, J. (2013). Induced cyanogenesis from hydroxynitrile lyase and mandelonitrile on wheat with polylactic acid multilayer-coating produces self-defending seeds. Journal of Materials Chemistry A, 2(3), 853–858. https://doi.org/10.1039/C3TA14249Cspa
dc.relation.referencesHarenčár, Ľ., Ražná, K., & Nôžková, J. (2021). Cyanogenic Glycosides - Their Role and Potential in Plant Food Resources. Journal of microbiology, biotechnology and food sciences, 11(3), e4771–e4771. https://doi.org/10.15414/JMBFS.4771spa
dc.relation.referencesHawashi, M., Sitania, C., Caesy, C., Aparamarta, W., Widjaja, T., & Gunawan, S. (2019). Kinetic data of extraction of cyanide during the soaking process of cassava leaves. Data in Brief, 25,104279. https://doi.org/10.1016/J.DIB.2019.104279spa
dc.relation.referencesHillocks, J., & Thresh, M. (2002). Cassava: biology, production and utilization. Wallingford (United Kingdom) CABI. https://doi.org/10.3/JQUERY-UI.JSspa
dc.relation.referencesHinostroza, F., Mendoza, M., Navarrete, M., & Muñoz, X. (2014). Cultivo de yuca en el Ecuador (436). Portoviejo, EC: INIAP, Estación Experimental Portoviejo, Programa Horticultura-Yuca, 2014. http://repositorio.iniap.gob.ec/handle/41000/5214spa
dc.relation.referencesHue, K., Van, D. T., Ledin, I., Wredle, E., & Spörndly, E. (2012). Effect of Harvesting Frequency, Variety and Leaf Maturity on Nutrient Composition, Hydrogen Cyanide Content and Cassava Foliage Yield. Asian-Australasian Journal of Animal Sciences, 25(12), 1691–1700. https://doi.org/10.5713/AJAS.2012.12052spa
dc.relation.referencesICSC 0492 - Cianuro De Hidrógeno, Licuado. (s/f). Recuperado el 18 de noviembre de 2022, de https://www.ilo.org/dyn/icsc/showcard.display?p_lang=es&p_card_id=0492&p_version=2spa
dc.relation.referencesIkediobi, O., Onyia, G., & Eluwah, E. (1980). A Rapid and Inexpensive Enzymatic Assay for Total Cyanide in Cassava (Manihot esculenta Crantz) and Cassava Products. Agricultural and Biological Chemistry, 44(12). https://doi.org/10.1271/bbb1961.44.2803spa
dc.relation.referencesJansen Van Rijssen, W., Morris, J., & Eloff, N. (2013). Food safety: Importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz). Journal of Agricultural and Food Chemistry, 61(35), 8333–8339. https://doi.org/10.1021/JF401153X/ASSET/IMAGES/LARGE/JF-2013-01153X_0002.JPEGspa
dc.relation.referencesJuma, S., Mukami, A., Mweu, C., Ngugi, P., & Mbinda, W. (2022). Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. Frontiers in Plant Science, 13, 1009860. https://doi.org/10.3389/FPLS.2022.1009860/BIBTEXspa
dc.relation.referencesKEGG DOSA Os04t0474900-01. (s/f). Recuperado el 6 de septiembre de 2023, de https://www.genome.jp/dbget-bin/get_linkdb?-t+compound+dosa:Os04t0474900-01spa
dc.relation.referencesKongsawadworakul, P., Viboonjun, U., Romruensukharom, P., Chantuma, P., Ruderman, S., & Chrestin, H. (2009). The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield. Phytochemistry, 70(6), 730–739. https://doi.org/10.1016/J.PHYTOCHEM.2009.03.020spa
dc.relation.referencesKotopka, J., & Smolke, C. D. (2019). Production of the cyanogenic glycoside dhurrin in yeast. Metabolic Engineering Communications, 9, e00092. https://doi.org/10.1016/J.MEC.2019.E00092spa
dc.relation.referencesLatif, S., & Müller, J. (2015). Potential of cassava leaves in human nutrition: A review. Trends in Food Science & Technology, 44(2), 147–158. https://doi.org/10.1016/J.TIFS.2015.04.006spa
dc.relation.referencesLatif, S., Zimmermann, S., Barati, Z., & Müller, J. (2019). Detoxification of Cassava Leaves by Thermal, Sodium Bicarbonate, Enzymatic, and Ultrasonic Treatments. Journal of Food Science, 84(7), 1986–1991. https://doi.org/10.1111/1750-3841.14658spa
dc.relation.referencesLebot, V. (2008). Tropical root and tuber crops: Cassava, sweet potato, yams, aroids. En Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams, Aroids. https://doi.org/10.1079/9781845934248.0000spa
dc.relation.referencesLlorens, J. (2004). Enfermedades neurológicas asociadas al consumo de variedades de mandioca con alto contenido en gluconitrilos. Endocrinología y Nutrición, 51(7), 418–425. https://doi.org/10.1016/S1575-0922(04)74638-0spa
dc.relation.referencesMahecha, I., & Gavilán, C. (2021). Evaluación de hidrólisis enzimática en la semilla del durazno (Prunus Persica) para la producción de ácido cianhídrico y benzaldehído [Fundación Universidad de América]. https://repository.uamerica.edu.co/handle/20.500.11839/8658spa
dc.relation.referencesMarcía, J., Gil, Á., Varela, F., Henríquez, M., Sosa, L., Pérez, S. F., & Ruíz, S. J. (2022). Cassava detoxification and ereba preparation: contribution to strengthening the food security and sovereignty of the Garífuna people in Honduras. Bionatura, 7(3). https://doi.org/10.21931/RB/2022.07.03.14spa
dc.relation.referencesMcmahon, J., Sayre, R., & Zidenga, T. (2022). Cyanogenesis in cassava and its molecular manipulation for crop improvement. Journal of Experimental Botany, 73(7), 1853–1867. https://doi.org/10.1093/jxb/erab545spa
dc.relation.referencesMilena, S., Gutiérrez, D., Aragón, G., Escobar, A., Ortiz, D., Sánchez, T., Imbachí, P., & Pachón, H. (2011). Evaluación De La Composición Nutricional, Antinutricional y Biodisponibilidad in Vitro de Diferentes Extractos Foliares. Revista chilena de nutrición, 38(2), 168–176. https://doi.org/10.4067/S0717-75182011000200007spa
dc.relation.referencesMinagricultura. (2021). Cadena Productiva de la Yuca. https://sioc.minagricultura.gov.co/Yuca/Documentos/2021-03- 31%20Cifras%20Sectoriales%20yuca.pdfspa
dc.relation.referencesMontagnac, J.., Davis, C. , & Tanumihardjo, S. (2009). Processing techniques to reduce toxicity and antinutrients of Cassava for use as a staple food. Comprehensive Reviews in Food Science and Food Safety, 8(1). https://doi.org/10.1111/j.1541-4337.2008.00064.xspa
dc.relation.referencesMoo, J., Azorín, P., Ramírez, N., & Moreno, P. (2020). State of the production and consumption of pesticides in Mexico | Estado de la producción y consumo de plaguicidas en México. Tropical and Subtropical Agroecosystems, 23(2), 1DUMMUYspa
dc.relation.referencesMorant, V., Jørgensen, K., Jørgensen, C., Paquette, M., Sánchez, R., Møller, L., & Bak, S. (2008). β-Glucosidases as detonators of plant chemical defense. En Phytochemistry (Vol. 69, Número 9, pp. 1795–1813). Phytochemistry. https://doi.org/10.1016/j.phytochem.2008.03.006spa
dc.relation.referencesNyirenda, K. (2020). Toxicity Potential of Cyanogenic Glycosides in Edible Plants. Medical Toxicology. https://doi.org/10.5772/INTECHOPEN.91408spa
dc.relation.referencesNzwalo, H., & Cliff, J. (2011). Konzo: from poverty, cassava, and cyanogen intake to toxiconutritional neurological disease. PLoS neglected tropical diseases, 5(6). https://doi.org/10.1371/JOURNAL.PNTD.0001051spa
dc.relation.referencesOgbonna, C., Braatz de Andrade, R., Rabbi, Y., Mueller, A., Jorge de Oliveira, E., & Bauchet, J. (2021). Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root. The Plant Journal, 105(3), 754–770. https://doi.org/10.1111/TPJ.15071spa
dc.relation.referencesOspina, M. (2018). Evaluación de propiedades nutricionales y de calidad comercial en siete centros de diversidad de yuca con genotipificación para contenido de cianuro. https://repositorio.unal.edu.co/handle/unal/63355spa
dc.relation.referencesOspina, M., Pizarro, M., Tran, T., Ricci, J., Belalcazar, J., Luna, L., Londoño, F., Salazar, S., Ceballos, H., Dufour, D., & Becerra Lopez-Lavalle, L. A. (2021). Cyanogenic, carotenoids and protein composition in leaves and roots across seven diverse population found in the world cassava germplasm collection at CIAT, Colombia. International Journal of Food Science and Technology, 56(3). https://doi.org/10.1111/ijfs.14888 Parra Olarte, J. L. (2019). Subsector Productivo de la Yuca. https://sioc.minagricultura.gov.co/Yuca/Documentos/2019-06- 30%20Cifras%20Sectoriales.pdfspa
dc.relation.referencesParra, L. (2019). Subsector Productivo de la Yuca. https://sioc.minagricultura.gov.co/Yuca/Documentos/2019-06- 30%20Cifras%20Sectoriales.pdfspa
dc.relation.referencesPičmanová, M., Neilson, H., Motawia, S., Olsen, E., Agerbirk, N., Gray, J., Flitsch, S., Meier, S., Silvestro, D., Jørgensen, K., Sánchez, R., Møller, L., & Bjarnholt, N. (2015). A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal, 469(3), 375–389. https://doi.org/10.1042/BJ20150390spa
dc.relation.referencesPoulton, J. (1990). Cyanogenesis in Plants. Biological Reviews, 5(2), 126–141. https://doi.org/10.1111/j.1469-185X.1930.tb00896.xspa
dc.relation.referencesQuiroga, P. (2009). Revisión de la toxicocinética y la toxicodinamia del ácido cianhídrico y los cianuros. https://www.researchgate.net/publication/262441449spa
dc.relation.referencesRamírez, V. (2011). Toxicidad del cianuro. Investigación bibliográfica de sus efectos en animales y en el hombre. Anales de la Facultad de Medicina, 71(1). https://doi.org/10.15381/anales.v71i1.74spa
dc.relation.referencesRijssen, W., Morris, J., & Eloff, N. (2013). Food safety: Importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz). Journal of Agricultural and Food Chemistry, 61(35), 8333–8339. https://doi.org/10.1021/JF401153X/ASSET/IMAGES/LARGE/JF-2013-01153X_0002.JPEGspa
dc.relation.referencesRivadeneyra, E., Rosas, C., Vázquez, A., Díaz, R., & Rodríguez, L. (2019). Efecto de la acetona cianohidrina, un derivado de la yuca, sobre la actividad motora y la función renal y hepática en ratas Wistar. Neurología, 34(5), 300–308. https://doi.org/10.1016/J.NRL.2017.01.004spa
dc.relation.referencesRodas, I. (2000). Ingenio yuquero en el Cauca: estudio de factibilidad. Centro Internacional de Agricultura Tropical . https://hdl.handle.net/10568/54087spa
dc.relation.referencesRodríguez, R., & Suárez, B. (2021). Analysis of Cyanogenic Compounds Derived from Mandelonitrile by Ultrasound-Assisted Extraction and High-Performance Liquid Chromatography in Rosaceae and Sambucus Families. Molecules (Basel, Switzerland), 26(24). https://doi.org/10.3390/molecules26247563spa
dc.relation.referencesSchmidt, F., Cho, S., Olsen, C., Yang, S., Møller, B., & Jørgensen, K. (2018). Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava. Plant Direct, 2(2). https://doi.org/10.1002/pld3.38spa
dc.relation.referencesSchrenk, D., Bignami, M., Bodin, L., Chipman, K., del Mazo, J., Grasl, B., Hogstrand, C., Hoogenboom, L, Leblanc, C., Nebbia, S., Nielsen, E., Ntzani, E., Petersen, A., Sand, S., Vleminckx, C., Wallace, H., Benford, D., Brimer, L., Mancini, R., … Schwerdtle, T. (2019). Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels. EFSA Journal, 17(4), e05662. https://doi.org/10.2903/J.EFSA.2019.5662spa
dc.relation.referencesSenning, A. (2007). Elsevier’s dictionary of chemoetymology : the whies and whences of chemical nomenclature and terminology. 433. https://books.google.com/books?id=Fl4sdCYrq3cC&pg=PA344spa
dc.relation.referencesSun, Z., Zhang, K., Chen, C., Wu, Y., Tang, Y., Georgiev, M. I., Zhang, X., Lin, M., & Zhou, M. (2018). Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Applied Microbiology and Biotechnology, 102(1), 9–16. https://doi.org/10.1007/S00253-017-8559-Z/METRICSspa
dc.relation.referencesTanaka, T., Kimura, K., Kan, K., Katori, Y., Michishita, K., Nakano, H., & Sasamoto, T. (2020). Quantification of amygdalin, prunasin, total cyanide and free cyanide in powdered loquat seeds. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 1–7. https://doi.org/10.1080/19440049.2020.1778186spa
dc.relation.referencesThodberg, S., Sørensen, M., Bellucci, M., Crocoll, C., Bendtsen, A. K., Nelson, D. R., Motawia, M. S., Møller, B. L., & Neilson, E. H. J. (2020). A flavin-dependent monooxygenase catalyzes the initial step in cyanogenic glycoside synthesis in ferns. Communications Biology 2020 3:1, 3(1), 1–11. https://doi.org/10.1038/s42003-020-01224-5spa
dc.relation.referencesTorkaman, P., Veiga, M., de Andrade, P., Oliveira, A., Motta, S., Jesús, L., & Lavkulich, M. (2021). Leaching gold with cassava: An option to eliminate mercury use in artisanal gold mining. Journal of Cleaner Production, 311, 127531. https://doi.org/10.1016/J.JCLEPRO.2021.127531spa
dc.relation.referencesUmuhozariho, M., Shayo, N., Msuya, J., & Sallah, P. (2014). Cyanide and selected nutrients content of different preparations of leaves from three cassava species. African Journal of Food Science, 8(3), 122–129. https://doi.org/10.5897/AJFS2013.1100spa
dc.relation.referencesVetter, J. (2017). Plant Cyanogenic Glycosides (pp. 287–317). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6464-4_19spa
dc.relation.referencesVillada, W. (2010). Determinación experimental de las condiciones de operación para el proceso de hidrólisis enzimática de almidón de yuca nativa de la región amazónica en la ciudad de Leticia [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/7496spa
dc.relation.referencesWink, M. (2010). Biochemistry of Plant Secondary Metabolism: Second Edition. En Biochemistry of Plant Secondary Metabolism: Second Edition (Vol. 40). https://doi.org/10.1002/9781444320503spa
dc.relation.referencesYeoh, H., Tatsuma, T., & Oyama, N. (1998). Monitoring the cyanogenic potential of cassava: the trend towards biosensor development. TrAC Trends in Analytical Chemistry, 17(4), 234–240. https://doi.org/10.1016/S0165-9936(98)00009-0spa
dc.relation.referencesZagrobelny, M., Bak, S., & Møller, B. L. (2008). Cyanogenesis in plants and arthropods. En Phytochemistry (Vol. 69, Número 7, pp. 1457–1468). Pergamon. https://doi.org/10.1016/j.phytochem.2008.02.019spa
dc.relation.referencesZagrobelny, M., Bak, S., Rasmussen, V., Jørgensen, B., Naumann, M., & Møller, L. (2004). Cyanogenic glucosides and plant-insect interactions. Phytochemistry, 65(3), 293–306. https://doi.org/10.1016/J.PHYTOCHEM.2003.10.016spa
dc.relation.referencesZagrobelny, M., de Castro, P., Møller, B. L., & Bak, S. (2018). Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. Insects 2018, Vol. 9, Page 51, 9(2), 51. https://doi.org/10.3390/INSECTS9020051spa
dc.relation.referencesZagrobelny, M., & Møller, L. (2011). Cyanogenic glucosides in the biological warfare between plants and insects: The Burnet moth-Birdsfoot trefoil model system. Phytochemistry, 72(13), 1585–1592. https://doi.org/10.1016/J.PHYTOCHEM.2011.02.023spa
dc.relation.referencesZhong, Y., Xu, T., Ji, S., Wu, X., Zhao, T., Li, S., Zhang, P., Li, K., & Lu, B. (2021). Effect of ultrasonic pretreatment on eliminating cyanogenic glycosides and hydrogen cyanide in cassava. Ultrasonics Sonochemistry, 78, 105742. https://doi.org/10.1016/J.ULTSONCH.2021.105742spa
dc.relation.referencesZuk, M., Pelc, K., Szperlik, J., Sawula, A., & Szopa, J. (2020). Metabolism of the Cyanogenic Glucosides in Developing Flax: Metabolic Analysis, and Expression Pattern of Genes. Metabolites 2020, Vol. 10, Page 288, 10(7), 288. https://doi.org/10.3390/METABO10070288spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocPlantas tóxicasspa
dc.subject.agrovocpoisonous plantseng
dc.subject.agrovocEnsayos de toxicidadspa
dc.subject.agrovoctoxicity testseng
dc.subject.agrovocDesintoxicaciónspa
dc.subject.agrovocdetoxificationeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalÁcido cianhídricospa
dc.subject.proposalEliminaciónspa
dc.subject.proposalEspectrofotometría UV-VISspa
dc.subject.proposalHojas de yucaspa
dc.subject.proposalLinamarinaspa
dc.subject.proposalManihot esculentaother
dc.subject.proposalToxicidadspa
dc.subject.proposalCassava leaveseng
dc.subject.proposalEliminationeng
dc.subject.proposalHydrocyanic acideng
dc.subject.proposalLinamarineng
dc.subject.proposalSpectrophotometry UV-VISeng
dc.subject.proposalToxicityeng
dc.titleEvaluación del cianuro total de hojas de yuca (Manihot esculenta) y propuesta de métodos de eliminación en diferentes variedades de Colombia 2023spa
dc.title.translatedEvaluation of total cyanide in cassava (Manihot esculenta) leaves and proposal of elimination methods in different Colombian varieties 2023eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio preliminar del potencial de hojas de yuca como fuente alternativa nutricional e identificación de genes blanco para el mejoramiento de la resistencia a la bacteriosis y contenido nutricionalspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015477828.2024.pdf
Tamaño:
3.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Toxicología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: