Integración de los parámetros fisicoquímicos de nanofluidos poliméricos basados en puntos cuánticos de carbono (CQDs) para la predicción de viscosidad utilizando modelos de aprendizaje de máquinas
| dc.contributor.advisor | Branch Bedoya, John Willian | |
| dc.contributor.advisor | Cortés Correa, Farid Bernardo | |
| dc.contributor.advisor | Franco Ariza, Camilo Andrés | |
| dc.contributor.author | Rios Muñoz, As Augusto | |
| dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001896879 | spa |
| dc.contributor.orcid | Rios Muñoz, As Augusto [0009-0005-1674-1828] | spa |
| dc.contributor.researchgroup | Fenómenos de Superficie Michael Polanyi | spa |
| dc.contributor.researchgroup | Gidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial | spa |
| dc.date.accessioned | 2025-02-21T12:46:17Z | |
| dc.date.available | 2025-02-21T12:46:17Z | |
| dc.date.issued | 2025-02-21 | |
| dc.description | Ilustraciones, gráficos | spa |
| dc.description.abstract | Los procesos de recobro mejorado en Colombia toman relevancia para mantener la soberanía energética del país a través de la implementación de nuevas tecnologías. Este trabajo permitió identificar las variables relevantes para la evaluación de nanofluidos poliméricos basados en puntos cuánticos de carbono (CQDs) y poliacrilamida parcialmente hidrolizada (HPAM) para implementar modelos de aprendizaje de máquinas que logren predecir la viscosidad de la solución resultante como estrategia de monitoreo. El conjunto de datos fue generado experimentalmente bajo diferentes condiciones de salinidad, tiempo de añejamiento, orden de adición, tipo de CQD y tasa de corte como predictoras de viscosidad, manteniendo la temperatura, concentración de CQD y polímero fijas. La implementación de cuatro (4) modelos de aprendizaje supervisado de regresión, permitió establecer la capacidad predictiva de los modelos ante un conjunto de datos altamente desbalanceado y de baja correlación lineal entre las variables siendo el de bosques aleatorios el modelo con mejor desempeño con un R2 cercano al 87%. Los resultados experimentales permitieron establecer nuevos acercamientos para investigar el efecto sinérgico CQD-HPAM en procesos de inyección de polímeros para recobro mejorado utilizando modelos de aprendizaje de máquinas como una estrategia efectiva para generalizar el comportamiento de estos sistemas físicos. (Tomado de la fuente) | spa |
| dc.description.abstract | Enhanced recovery processes in Colombia are relevant in maintaining the country's energy sovereignty through implementing innovative technologies. This work allowed us to identify the relevant variables for the evaluation of polymeric nanofluids based on carbon quantum dots (CQDs) and partially hydrolyzed polyacrylamide (HPAM) to implement machine learning models that can predict the viscosity of the resulting solution as a monitoring strategy. The data set was generated experimentally under different salinity conditions, aging time, addition order, CQD type, and shear rate as viscosity predictors, keeping the temperature, polymer, and CQD concentration fixed. The implementation of 4 regression models allowed the establishment of the predictive capacity of the methods in the face of a highly unbalanced dataset and low linear correlation between the variables, with the random forest model being the algorithm with the best performance with an R2 near 87%. The experiment highlighted novel approaches to investigate the CQD-HPAM synergistic effect in polymer injection processes for enhanced oil recovery using machine learning techniques as an effective tool to generalize the behavior of these physical systems. | eng |
| dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ingeniería - Analítica | spa |
| dc.description.sponsorship | Fondo Francisco José de Caldas, MINCIENCIAS y la Agencia Nacional de Hidrocarburos (ANH) a través del contrato No. 112721-282-2023 (Proyecto 1118-1035-9300) con la Universidad Nacional de Colombia – Sede Medellín y PAREX RESOURCES COLOMBIA AG SUCURSAL | spa |
| dc.format.extent | 64 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87522 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.faculty | Facultad de Minas | spa |
| dc.publisher.place | Medellín, Colombia | spa |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
| dc.relation.indexed | LaReferencia | spa |
| dc.relation.references | R. C. Paniagua, Duarte, A., "Generación eléctrica en Colombia y su transición hacia Fuentes Renovables No Convencionales " Corficolombiana, https://investigaciones.corfi.com/renta-variable/informe-especial/generacion-electrica-en-colombia-y-su-transicion-hacia-fuentes-renovables-no-convencionales/informe_7962602021 | spa |
| dc.relation.references | T. Castillo, Garcia, F., Mosquera, L., Rivadeneira, T., Segura, K., Yujato, M., "Panorama Energético de America Latina y El Caribe," Organización Latinoamericana de Energía, olade.org2021 | spa |
| dc.relation.references | UPME, "Proyección de la Demanda de Energía Electrica, Gas Natural y Combustibles Líquidos 2022-2036," UPME2021 | spa |
| dc.relation.references | L. Quiroga, "¿Qué es el recobro mejorado? La tecnología para 'raspar la olla' del petróleo," in EL TIEMPO ed. https://www.eltiempo.com/economia/sectores/petroleo-que-es-recobro-mejorado-la-tecnologia-mencionada-por-minminas-722449: EL TIEMPO 2022. | spa |
| dc.relation.references | A. López, "Así rasparán la olla para 100 mil barriles más de petróleo," in El Colombiano, ed. https://www.elcolombiano.com/negocios/asi-rasparan-la-olla-para-100-mil-barriles-mas-de-petroleo-EJ19543869: El Colombiano, 2022. | spa |
| dc.relation.references | B. A. Suleimanov, F. S. Ismayilov, O. A. Dyshin, and E. F. Veliyev, "Selection methodology for screening evaluation of EOR methods," Petroleum Science and Technology, vol. 34, pp. 961-970, 2016 | spa |
| dc.relation.references | M. Gutiérrez, R. Castro, L. Corredor, F. Fernández, J. Zapata, J. Jimenez, et al., "Chemical Enhanced Oil Recovery Experiences in Colombia: Field Pilots Review," in SPE Improved Oil Recovery Conference?, 2024, p. D031S019R003 | spa |
| dc.relation.references | Ø. Dugstad, S. Viig, B. Krognes, R. Kleven, and O. Huseby, "Tracer monitoring of enhanced oil recovery projects," in EPJ Web of Conferences, 2013, p. 02002 | spa |
| dc.relation.references | C. A. Franco, C. H. Candela, J. Gallego, J. Marin, L. E. Patiño, N. Ospina, et al., "Easy and rapid synthesis of carbon quantum dots from Mortino (Vaccinium Meridionale Swartz) extract for use as green tracers in the oil and gas industry: Lab-to-field trial development in Colombia," Industrial & Engineering Chemistry Research, vol. 59, pp. 11359-11369, 2020. | spa |
| dc.relation.references | M. Amiri, M. Fatemi, and E. B. Delijani, "Effect of brine salinity and hydrolyzed polyacrylamide concentration on the Oil/Brine and Brine/Rock Interactions: Implications on enhanced oil recovery by hybrid low salinity polymer flooding in sandstones," Fuel, vol. 324, p. 124630, 2022. | spa |
| dc.relation.references | S. Jouenne, "Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability," Journal of Petroleum Science and Engineering, vol. 195, p. 107545, 2020. | spa |
| dc.relation.references | S. Kumar, R. Tiwari, M. Husein, N. Kumar, and U. Yadav, "Enhancing the performance of HPAM polymer flooding using nano CuO/nanoclay blend," Processes, vol. 8, p. 907, 2020. | spa |
| dc.relation.references | R. Seright and D. Wang, "Polymer flooding: Current status and future directions," Petroleum Science, vol. 20, pp. 910-921, 2023 | spa |
| dc.relation.references | G. Yao, J. Zhao, M. A. Haruna, and D. Wen, "Molecular dynamics insight into viscosity reduction of hydrolysed polyacrylamide by using carbon quantum dots," RSC advances, vol. 11, pp. 26037-26048, 2021 | spa |
| dc.relation.references | M. A. Haruna, Z. Hu, H. Gao, J. Gardy, S. M. Magami, and D. Wen, "Influence of carbon quantum dots on the viscosity reduction of polyacrylamide solution," Fuel, vol. 248, pp. 205-214, 2019 | spa |
| dc.relation.references | M. Zhao, Y. Li, C. Dai, Y. Chen, Z. Yang, K. Liu, et al., "Development of Novel Silicon Quantum Dots and Their Potential in Improving the Enhanced Oil Recovery of HPAM," Langmuir, vol. 40, pp. 3181-3189, 2024 | spa |
| dc.relation.references | M. Abdullah, M. Delshad, K. Sepehrnoori, M. Balhoff, J. Foster, and M. Al-Murayri, "Physics-Based and Data-Driven Polymer Rheology Model," SPE Journal, vol. 28, pp. 1857-1879, 2023 | spa |
| dc.relation.references | E. Pérez, D. Alviso, E. Manrique, and G. Artana, "Estimation of the rheological curve of HPAM solutions from measurements using the Brookfield viscometer," Journal of Petroleum Science and Engineering, vol. 216, p. 110793, 2022. | spa |
| dc.relation.references | M. Zeynalli, E. W. Al-Shalabi, and W. AlAmeri, "An Extended Viscoelastic Model for predicting polymer apparent viscosity at different shear rates," in SPE Annual Technical Conference and Exhibition?, 2021, p. D011S019R005. | spa |
| dc.relation.references | V. Karpan, S. Al Farsi, H. Al Sulaimani, D. Al Mahrouqi, R. Al Mjeni, and D. van Batenburg, "Introducing data-driven virtual viscosity measurements," in Abu Dhabi International Petroleum Exhibition and Conference, 2022, p. D031S071R001. | spa |
| dc.relation.references | N. Lashari, T. Ganat, D. Otchere, S. Kalam, and I. Ali, "Navigating viscosity of GO-SiO2/HPAM composite using response surface methodology and supervised machine learning models," Journal of Petroleum Science and Engineering, vol. 205, p. 108800, 2021 | spa |
| dc.relation.references | R. Maillon, P. Ghosh, and C. Wilson, "Predicting EOR Polymer Viscosity with Varying Molecular Weight and Chemistry Using Machine Learning," in Abu Dhabi International Petroleum Exhibition and Conference, 2023, p. D031S090R002 | spa |
| dc.relation.references | M. Shakeel, P. Pourafshary, M. R. Hashmet, and R. Muneer, "Application of machine learning techniques to predict viscosity of polymer solutions for enhanced oil recovery," Energy Systems, pp. 1-24, 2023 | spa |
| dc.relation.references | B. R. Cancela, L. C. M. Palermo, P. F. de Oliveira, and C. R. Mansur, "Rheological study of polymeric fluids based on HPAM and fillers for application in EOR," Fuel, vol. 330, p. 125647, 2022 | spa |
| dc.relation.references | A. A. R. Lady J. Giraldo, "Evaluation of addition of Carbon Quantum Dots (CQDs) on Polymeric solution for EOR processes: Effect of CQD type and Ion content on brine," presented at the X SUMMER SCHOOL: MEETING SOUTH-SOUTH-NORTH. SUBSURFACE RESOURCES IN THE CONTEXT OF THE ENERGY TRANSITION, Universidad Nacional de Colombia, Medellín, Facultad de Minas, 2024. | spa |
| dc.relation.references | A. A. R. Lady J. Giraldo, Esteban A. Taborda, Farid B. Cortés, Camilo A. Franco, "EVALUACIÓN DE LA ADICIÓN DE PUNTOS CUANTICOS DE CARBONO (CQDs) EN SOLUCIONES POLIMERICAS PARA PROCESOS DE RECOBRO MEJORADO (EOR): EFECTO DEL TIPO DE CQD Y CONTENIDO DE IONES EN SALMUERA," presented at the XXI CONGRESO COLOMBIANO DEL PETROLEO, GAS Y ENERGÍA: Impulsando el Progreso con Energía e Innovación, Barranquilla, Colombia, 2024. | spa |
| dc.relation.references | J. F. Gallego, L. J. Giraldo, H. I. Quintero, H. A. García, K. Zapata, S. Heidari, et al., "Effect of monovalent/divalent ions and SiO2-based nanocomposite dosage on thermochemical stability of HPAM polymeric solutions," Petroleum, 2024 | spa |
| dc.relation.references | Q. Ma, P. J. Shuler, C. W. Aften, and Y. Tang, "Theoretical studies of hydrolysis and stability of polyacrylamide polymers," Polymer degradation and stability, vol. 121, pp. 69-77, 2015. | spa |
| dc.relation.references | A. M. Firozjaii and H. R. Saghafi, "Review on chemical enhanced oil recovery using polymer flooding: Fundamentals, experimental and numerical simulation," Petroleum, vol. 6, pp. 115-122, 2020 | spa |
| dc.relation.references | G. Rotko, E. Knapik, M. Piotrowski, and M. Marszałek, "Oilfield Brine as a Source of Water and Valuable Raw Materials—Proof of Concept on a Laboratory Scale," Water, vol. 16, p. 1461, 2024 | spa |
| dc.relation.references | W. Luo, S. Xu, and F. Torabi*, "Chemical degradation of HPAM by oxidization in produced water: experimental study," in SPE Health, Safety, Security, Environment, & Social Responsibility Conference-North America, 2013, pp. SPE-163751-MS | spa |
| dc.relation.references | K. G. Salem, A. M. Salem, M. A. Tantawy, A. A. Gawish, S. Gomaa, and A. El-hoshoudy, "A Comprehensive Investigation of Nanocomposite Polymer Flooding at Reservoir Conditions: New Insights into Enhanced Oil Recovery," Journal of Polymers and the Environment, pp. 1-21, 2024 | spa |
| dc.relation.references | D. Tayyib, A. Al-Qasim, S. Kokal, and O. Huseby, "Overview of tracer applications in oil and gas industry," in SPE Kuwait oil and gas show and conference, 2019, p. D023S006R004 | spa |
| dc.relation.references | A. K. Patidar, D. Joshi, U. Dristant, and T. Choudhury, "A review of tracer testing techniques in porous media specially attributed to the oil and gas industry," Journal of Petroleum Exploration and Production Technology, vol. 12, pp. 3339-3356, 2022 | spa |
| dc.relation.references | C. Carpenter, "Use of partitioning tracers to estimate oil-saturation distribution," Journal of Petroleum Technology, vol. 68, pp. 72-73, 2016 | spa |
| dc.relation.references | S. Rosales, K. Zapata, F. B. Cortes, B. Rojano, C. Diaz, C. Cortes, et al., "Simultaneous Detection of Carbon Quantum Dots as Tracers for Interwell Connectivity Evaluation in a Pattern with Two Injection Wells," Nanomaterials, vol. 14, p. 789, 2024. | spa |
| dc.relation.references | R. Das, R. Bandyopadhyay, and P. Pramanik, "Carbon quantum dots from natural resource: A review," Materials today chemistry, vol. 8, pp. 96-109, 2018 | spa |
| dc.relation.references | J. Durrani, "Explainer: why have quantum dots won the 2023 Nobel prize?," in Chemistry World, ed. https://www.chemistryworld.com/news/explainer-why-have-quantum-dots-won-the-2023-nobel-prize/4018168.article: Royal Society of Chemistry 2023 | spa |
| dc.relation.references | M. Razavifar, A. Khoshsima, M. Riazi, J. J. Sheng, and E. Esmaeilnezhad, "Recent developments, challenges, and prospects of carbon dots (CDs) for fluid flow investigation in porous media," Petroleum Research, 2024 | spa |
| dc.relation.references | X. Zhao, S. Chen, L. Zhang, H. Su, Y. Wu, and H. Ren, "Influence of carbon quantum dots on foam stability: a molecular dynamics study," in Journal of Physics: Conference Series, 2024, p. 012043 | spa |
| dc.relation.references | L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, et al., "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions," Journal of big Data, vol. 8, pp. 1-74, 2021 | spa |
| dc.relation.references | J. Jobson and J. Jobson, "Multiple linear regression," Applied multivariate data analysis: regression and experimental design, pp. 219-398, 1991. | spa |
| dc.relation.references | V. Vapnik, The nature of statistical learning theory: Springer science & business media, 2013 | spa |
| dc.relation.references | M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, "Support vector machines," IEEE Intelligent Systems and their applications, vol. 13, pp. 18-28, 1998 | spa |
| dc.relation.references | G. Gordon, "Support vector machines and kernel methods," Online]. Dosegljiv: https://www. cs. cmu. edu/~ ggordon/SVMs/new-svms-andkernels. pdf [Dostopano 28. 6. 2016], 2004 | spa |
| dc.relation.references | Y.-Y. Song and L. Ying, "Decision tree methods: applications for classification and prediction," Shanghai archives of psychiatry, vol. 27, p. 130, 2015 | spa |
| dc.relation.references | O. C. Njoku, "Decision trees and their application for classification and regression problems," 2019 | spa |
| dc.relation.references | L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001. | spa |
| dc.relation.references | G. Biau and E. Scornet, "A random forest guided tour," Test, vol. 25, pp. 197-227, 2016 | spa |
| dc.relation.references | S. J. Rigatti, "Random forest," Journal of Insurance Medicine, vol. 47, pp. 31-39, 2017 | spa |
| dc.relation.references | T. Erfando, G. Siregar, Y. F. Alli, and Y. B. Wangge, "Hydrolyzed Polyacrylamide Screening for EOR in an Indonesia Mature Oil Field," Trends in Sciences, vol. 19, pp. 3461-3461, 2022 | spa |
| dc.relation.references | H. A. Yousefvand and A. Jafari, "Stability and flooding analysis of nanosilica/NaCl/HPAM/SDS solution for enhanced heavy oil recovery," Journal of Petroleum Science and Engineering, vol. 162, pp. 283-291, 2018 | spa |
| dc.relation.references | B. Choi, M. S. Jeong, and K. S. Lee, "Temperature-dependent viscosity model of HPAM polymer through high-temperature reservoirs," Polymer degradation and stability, vol. 110, pp. 225-231, 2014 | spa |
| dc.relation.references | T. Duriez, S. L. Brunton, and B. R. Noack, Machine learning control-taming nonlinear dynamics and turbulence vol. 116: Springer, 2017 | spa |
| dc.relation.references | A. R. Shaik, W. AlAmeri, A. AlSumaiti, M. Muhammad, and N. C. Thomas, "Application of supervised machine learning technique to investigate the effect of brine hardness on polymer bulk rheology," in Abu Dhabi International Petroleum Exhibition and Conference, 2019, p. D022S149R001 | spa |
| dc.relation.references | N. Basha, R. Arcucci, P. Angeli, C. Anastasiou, T. Abadie, C. Q. Casas, et al., "Machine learning and physics-driven modelling and simulation of multiphase systems," International Journal of Multiphase Flow, vol. 179, p. 104936, 2024 | spa |
| dc.relation.references | M. Lellep, J. Prexl, B. Eckhardt, and M. Linkmann, "Interpreted machine learning in fluid dynamics: explaining relaminarisation events in wall-bounded shear flows," Journal of Fluid Mechanics, vol. 942, p. A2, 2022 | spa |
| dc.relation.references | S. Rushd, U. Gazder, H. J. Qureshi, and M. Arifuzzaman, "Advanced machine learning applications to viscous oil-water multi-phase flow," Applied Sciences, vol. 12, p. 4871, 2022 | spa |
| dc.relation.references | B. D. Wood, X. He, and S. V. Apte, "Modeling turbulent flows in porous media," Annual Review of Fluid Mechanics, vol. 52, pp. 171-203, 2020 | spa |
| dc.relation.references | J. Zhang, U. Braga-Neto, and E. Gildin, "Physics-Informed Neural Networks for Multiphase Flow in Porous Media Considering Dual Shocks and Interphase Solubility," Energy & Fuels, 2024 | spa |
| dc.relation.references | L.-T. Zhu, X.-Z. Chen, B. Ouyang, W.-C. Yan, H. Lei, Z. Chen, et al., "Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors," Industrial & Engineering Chemistry Research, vol. 61, pp. 9901-9949, 2022 | spa |
| dc.relation.references | H. Khakurel, M. Taufique, A. Roy, G. Balasubramanian, G. Ouyang, J. Cui, et al., "Machine learning assisted prediction of the Young’s modulus of compositionally complex alloys," Scientific reports, vol. 11, p. 17149, 2021 | spa |
| dc.relation.references | K. M. Kim, P. Hurley, and J. P. Duarte, "Physics-informed machine learning-aided framework for prediction of minimum film boiling temperature," International Journal of Heat and Mass Transfer, vol. 191, p. 122839, 2022 | spa |
| dc.relation.references | J. Li, M. Zhou, H. H. Wu, L. Wang, J. Zhang, N. Wu, et al., "Machine Learning‐Assisted Property Prediction of Solid‐State Electrolyte," Advanced Energy Materials, p. 2304480, 2024 | spa |
| dc.relation.references | H. A. Ritacco, "Foam-Assisted Oil Recovery: A Physics-Based Perspective," Current Opinion in Colloid & Interface Science, p. 101809, 2024 | spa |
| dc.relation.references | T. W. Thibodeaux, Image-based Modeling of Flow through Porous Media: Development of Multiscale Techniques for the Pore Level: Louisiana State University and Agricultural & Mechanical College, 2018 | spa |
| dc.relation.references | R. S. Seright, A. Campbell, P. Mozley, and P. Han, "Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations," SPE journal, vol. 15, pp. 341-348, 2010 | spa |
| dc.relation.references | R. Nisbet, J. Elder, and G. D. Miner, Handbook of statistical analysis and data mining applications: Academic press, 2009 | spa |
| dc.relation.references | J. J. Berman, Data simplification: taming information with open source tools: Morgan Kaufmann, 2016 | spa |
| dc.relation.references | A. Jierula, S. Wang, T.-M. Oh, and P. Wang, "Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data," Applied Sciences, vol. 11, p. 2314, 2021. | spa |
| dc.relation.references | D. Chicco, M. J. Warrens, and G. Jurman, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation," Peerj computer science, vol. 7, p. e623, 2021 | spa |
| dc.relation.references | E. E. Ateia, O. Rabie, and A. T. Mohamed, "Assessment of the correlation between optical properties and CQD preparation approaches," The European Physical Journal Plus, vol. 139, p. 24, 2024 | spa |
| dc.relation.references | M. D. Malitha, M. T. H. Molla, M. A. Bashar, D. Chandra, and M. S. Ahsan, "Fabrication of a reusable carbon quantum dots (CQDs) modified nanocomposite with enhanced visible light photocatalytic activity," Scientific Reports, vol. 14, p. 17976, 2024 | spa |
| dc.relation.references | L. Cheng, Y. Qin, Y. Su, Y. Pan, Y. Wang, R. Liao, et al., "Development of a high-strength and adhesive polyacrylamide gel for well plugging," ACS omega, vol. 7, pp. 6151-6159, 2022 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.armarc | Nanofluidos | |
| dc.subject.armarc | Carbono - Puntos cuánticos | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
| dc.subject.lemb | Viscosidad | |
| dc.subject.lemb | Polimeros | |
| dc.subject.lemb | Recobro del petróleo | |
| dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
| dc.subject.proposal | Recobro mejorado | spa |
| dc.subject.proposal | Nanofluidos poliméricos | spa |
| dc.subject.proposal | Predicción de viscosidad | spa |
| dc.subject.proposal | Aprendizaje de máquinas | spa |
| dc.subject.proposal | Puntos cuánticos de carbono | spa |
| dc.subject.proposal | Enhanced oil recovery | eng |
| dc.subject.proposal | Polymer nanofluids | eng |
| dc.subject.proposal | Viscosity prediction | eng |
| dc.subject.proposal | Machine learning | eng |
| dc.subject.proposal | Carbon quantum dots | eng |
| dc.title | Integración de los parámetros fisicoquímicos de nanofluidos poliméricos basados en puntos cuánticos de carbono (CQDs) para la predicción de viscosidad utilizando modelos de aprendizaje de máquinas | spa |
| dc.title.translated | Integration of physicochemical parameters of polymeric nanofluids based on carbon quantum dots (CQDs) for viscosity prediction using machine learning models | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
| dcterms.audience.professionaldevelopment | Responsables políticos | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
| oaire.awardtitle | contrato No. 112721-282-2023 (Proyecto 1118-1035-9300) | spa |
| oaire.fundername | Fondo Francisco José de Caldas | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1037663382.2025.pdf
- Tamaño:
- 2.62 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

