En 5 día(s), 15 hora(s) y 17 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Integración de los parámetros fisicoquímicos de nanofluidos poliméricos basados en puntos cuánticos de carbono (CQDs) para la predicción de viscosidad utilizando modelos de aprendizaje de máquinas

dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.advisorCortés Correa, Farid Bernardo
dc.contributor.advisorFranco Ariza, Camilo Andrés
dc.contributor.authorRios Muñoz, As Augusto
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001896879spa
dc.contributor.orcidRios Muñoz, As Augusto [0009-0005-1674-1828]spa
dc.contributor.researchgroupFenómenos de Superficie Michael Polanyispa
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificialspa
dc.date.accessioned2025-02-21T12:46:17Z
dc.date.available2025-02-21T12:46:17Z
dc.date.issued2025-02-21
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractLos procesos de recobro mejorado en Colombia toman relevancia para mantener la soberanía energética del país a través de la implementación de nuevas tecnologías. Este trabajo permitió identificar las variables relevantes para la evaluación de nanofluidos poliméricos basados en puntos cuánticos de carbono (CQDs) y poliacrilamida parcialmente hidrolizada (HPAM) para implementar modelos de aprendizaje de máquinas que logren predecir la viscosidad de la solución resultante como estrategia de monitoreo. El conjunto de datos fue generado experimentalmente bajo diferentes condiciones de salinidad, tiempo de añejamiento, orden de adición, tipo de CQD y tasa de corte como predictoras de viscosidad, manteniendo la temperatura, concentración de CQD y polímero fijas. La implementación de cuatro (4) modelos de aprendizaje supervisado de regresión, permitió establecer la capacidad predictiva de los modelos ante un conjunto de datos altamente desbalanceado y de baja correlación lineal entre las variables siendo el de bosques aleatorios el modelo con mejor desempeño con un R2 cercano al 87%. Los resultados experimentales permitieron establecer nuevos acercamientos para investigar el efecto sinérgico CQD-HPAM en procesos de inyección de polímeros para recobro mejorado utilizando modelos de aprendizaje de máquinas como una estrategia efectiva para generalizar el comportamiento de estos sistemas físicos. (Tomado de la fuente)spa
dc.description.abstractEnhanced recovery processes in Colombia are relevant in maintaining the country's energy sovereignty through implementing innovative technologies. This work allowed us to identify the relevant variables for the evaluation of polymeric nanofluids based on carbon quantum dots (CQDs) and partially hydrolyzed polyacrylamide (HPAM) to implement machine learning models that can predict the viscosity of the resulting solution as a monitoring strategy. The data set was generated experimentally under different salinity conditions, aging time, addition order, CQD type, and shear rate as viscosity predictors, keeping the temperature, polymer, and CQD concentration fixed. The implementation of 4 regression models allowed the establishment of the predictive capacity of the methods in the face of a highly unbalanced dataset and low linear correlation between the variables, with the random forest model being the algorithm with the best performance with an R2 near 87%. The experiment highlighted novel approaches to investigate the CQD-HPAM synergistic effect in polymer injection processes for enhanced oil recovery using machine learning techniques as an effective tool to generalize the behavior of these physical systems.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.sponsorshipFondo Francisco José de Caldas, MINCIENCIAS y la Agencia Nacional de Hidrocarburos (ANH) a través del contrato No. 112721-282-2023 (Proyecto 1118-1035-9300) con la Universidad Nacional de Colombia – Sede Medellín y PAREX RESOURCES COLOMBIA AG SUCURSALspa
dc.format.extent64 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87522
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesR. C. Paniagua, Duarte, A., "Generación eléctrica en Colombia y su transición hacia Fuentes Renovables No Convencionales " Corficolombiana, https://investigaciones.corfi.com/renta-variable/informe-especial/generacion-electrica-en-colombia-y-su-transicion-hacia-fuentes-renovables-no-convencionales/informe_7962602021spa
dc.relation.referencesT. Castillo, Garcia, F., Mosquera, L., Rivadeneira, T., Segura, K., Yujato, M., "Panorama Energético de America Latina y El Caribe," Organización Latinoamericana de Energía, olade.org2021spa
dc.relation.referencesUPME, "Proyección de la Demanda de Energía Electrica, Gas Natural y Combustibles Líquidos 2022-2036," UPME2021spa
dc.relation.referencesL. Quiroga, "¿Qué es el recobro mejorado? La tecnología para 'raspar la olla' del petróleo," in EL TIEMPO ed. https://www.eltiempo.com/economia/sectores/petroleo-que-es-recobro-mejorado-la-tecnologia-mencionada-por-minminas-722449: EL TIEMPO 2022.spa
dc.relation.referencesA. López, "Así rasparán la olla para 100 mil barriles más de petróleo," in El Colombiano, ed. https://www.elcolombiano.com/negocios/asi-rasparan-la-olla-para-100-mil-barriles-mas-de-petroleo-EJ19543869: El Colombiano, 2022.spa
dc.relation.referencesB. A. Suleimanov, F. S. Ismayilov, O. A. Dyshin, and E. F. Veliyev, "Selection methodology for screening evaluation of EOR methods," Petroleum Science and Technology, vol. 34, pp. 961-970, 2016spa
dc.relation.referencesM. Gutiérrez, R. Castro, L. Corredor, F. Fernández, J. Zapata, J. Jimenez, et al., "Chemical Enhanced Oil Recovery Experiences in Colombia: Field Pilots Review," in SPE Improved Oil Recovery Conference?, 2024, p. D031S019R003spa
dc.relation.referencesØ. Dugstad, S. Viig, B. Krognes, R. Kleven, and O. Huseby, "Tracer monitoring of enhanced oil recovery projects," in EPJ Web of Conferences, 2013, p. 02002spa
dc.relation.referencesC. A. Franco, C. H. Candela, J. Gallego, J. Marin, L. E. Patiño, N. Ospina, et al., "Easy and rapid synthesis of carbon quantum dots from Mortino (Vaccinium Meridionale Swartz) extract for use as green tracers in the oil and gas industry: Lab-to-field trial development in Colombia," Industrial & Engineering Chemistry Research, vol. 59, pp. 11359-11369, 2020.spa
dc.relation.referencesM. Amiri, M. Fatemi, and E. B. Delijani, "Effect of brine salinity and hydrolyzed polyacrylamide concentration on the Oil/Brine and Brine/Rock Interactions: Implications on enhanced oil recovery by hybrid low salinity polymer flooding in sandstones," Fuel, vol. 324, p. 124630, 2022.spa
dc.relation.referencesS. Jouenne, "Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability," Journal of Petroleum Science and Engineering, vol. 195, p. 107545, 2020.spa
dc.relation.referencesS. Kumar, R. Tiwari, M. Husein, N. Kumar, and U. Yadav, "Enhancing the performance of HPAM polymer flooding using nano CuO/nanoclay blend," Processes, vol. 8, p. 907, 2020.spa
dc.relation.referencesR. Seright and D. Wang, "Polymer flooding: Current status and future directions," Petroleum Science, vol. 20, pp. 910-921, 2023spa
dc.relation.referencesG. Yao, J. Zhao, M. A. Haruna, and D. Wen, "Molecular dynamics insight into viscosity reduction of hydrolysed polyacrylamide by using carbon quantum dots," RSC advances, vol. 11, pp. 26037-26048, 2021spa
dc.relation.referencesM. A. Haruna, Z. Hu, H. Gao, J. Gardy, S. M. Magami, and D. Wen, "Influence of carbon quantum dots on the viscosity reduction of polyacrylamide solution," Fuel, vol. 248, pp. 205-214, 2019spa
dc.relation.referencesM. Zhao, Y. Li, C. Dai, Y. Chen, Z. Yang, K. Liu, et al., "Development of Novel Silicon Quantum Dots and Their Potential in Improving the Enhanced Oil Recovery of HPAM," Langmuir, vol. 40, pp. 3181-3189, 2024spa
dc.relation.referencesM. Abdullah, M. Delshad, K. Sepehrnoori, M. Balhoff, J. Foster, and M. Al-Murayri, "Physics-Based and Data-Driven Polymer Rheology Model," SPE Journal, vol. 28, pp. 1857-1879, 2023spa
dc.relation.referencesE. Pérez, D. Alviso, E. Manrique, and G. Artana, "Estimation of the rheological curve of HPAM solutions from measurements using the Brookfield viscometer," Journal of Petroleum Science and Engineering, vol. 216, p. 110793, 2022.spa
dc.relation.referencesM. Zeynalli, E. W. Al-Shalabi, and W. AlAmeri, "An Extended Viscoelastic Model for predicting polymer apparent viscosity at different shear rates," in SPE Annual Technical Conference and Exhibition?, 2021, p. D011S019R005.spa
dc.relation.referencesV. Karpan, S. Al Farsi, H. Al Sulaimani, D. Al Mahrouqi, R. Al Mjeni, and D. van Batenburg, "Introducing data-driven virtual viscosity measurements," in Abu Dhabi International Petroleum Exhibition and Conference, 2022, p. D031S071R001.spa
dc.relation.referencesN. Lashari, T. Ganat, D. Otchere, S. Kalam, and I. Ali, "Navigating viscosity of GO-SiO2/HPAM composite using response surface methodology and supervised machine learning models," Journal of Petroleum Science and Engineering, vol. 205, p. 108800, 2021spa
dc.relation.referencesR. Maillon, P. Ghosh, and C. Wilson, "Predicting EOR Polymer Viscosity with Varying Molecular Weight and Chemistry Using Machine Learning," in Abu Dhabi International Petroleum Exhibition and Conference, 2023, p. D031S090R002spa
dc.relation.referencesM. Shakeel, P. Pourafshary, M. R. Hashmet, and R. Muneer, "Application of machine learning techniques to predict viscosity of polymer solutions for enhanced oil recovery," Energy Systems, pp. 1-24, 2023spa
dc.relation.referencesB. R. Cancela, L. C. M. Palermo, P. F. de Oliveira, and C. R. Mansur, "Rheological study of polymeric fluids based on HPAM and fillers for application in EOR," Fuel, vol. 330, p. 125647, 2022spa
dc.relation.referencesA. A. R. Lady J. Giraldo, "Evaluation of addition of Carbon Quantum Dots (CQDs) on Polymeric solution for EOR processes: Effect of CQD type and Ion content on brine," presented at the X SUMMER SCHOOL: MEETING SOUTH-SOUTH-NORTH. SUBSURFACE RESOURCES IN THE CONTEXT OF THE ENERGY TRANSITION, Universidad Nacional de Colombia, Medellín, Facultad de Minas, 2024.spa
dc.relation.referencesA. A. R. Lady J. Giraldo, Esteban A. Taborda, Farid B. Cortés, Camilo A. Franco, "EVALUACIÓN DE LA ADICIÓN DE PUNTOS CUANTICOS DE CARBONO (CQDs) EN SOLUCIONES POLIMERICAS PARA PROCESOS DE RECOBRO MEJORADO (EOR): EFECTO DEL TIPO DE CQD Y CONTENIDO DE IONES EN SALMUERA," presented at the XXI CONGRESO COLOMBIANO DEL PETROLEO, GAS Y ENERGÍA: Impulsando el Progreso con Energía e Innovación, Barranquilla, Colombia, 2024.spa
dc.relation.referencesJ. F. Gallego, L. J. Giraldo, H. I. Quintero, H. A. García, K. Zapata, S. Heidari, et al., "Effect of monovalent/divalent ions and SiO2-based nanocomposite dosage on thermochemical stability of HPAM polymeric solutions," Petroleum, 2024spa
dc.relation.referencesQ. Ma, P. J. Shuler, C. W. Aften, and Y. Tang, "Theoretical studies of hydrolysis and stability of polyacrylamide polymers," Polymer degradation and stability, vol. 121, pp. 69-77, 2015.spa
dc.relation.referencesA. M. Firozjaii and H. R. Saghafi, "Review on chemical enhanced oil recovery using polymer flooding: Fundamentals, experimental and numerical simulation," Petroleum, vol. 6, pp. 115-122, 2020spa
dc.relation.referencesG. Rotko, E. Knapik, M. Piotrowski, and M. Marszałek, "Oilfield Brine as a Source of Water and Valuable Raw Materials—Proof of Concept on a Laboratory Scale," Water, vol. 16, p. 1461, 2024spa
dc.relation.referencesW. Luo, S. Xu, and F. Torabi*, "Chemical degradation of HPAM by oxidization in produced water: experimental study," in SPE Health, Safety, Security, Environment, & Social Responsibility Conference-North America, 2013, pp. SPE-163751-MSspa
dc.relation.referencesK. G. Salem, A. M. Salem, M. A. Tantawy, A. A. Gawish, S. Gomaa, and A. El-hoshoudy, "A Comprehensive Investigation of Nanocomposite Polymer Flooding at Reservoir Conditions: New Insights into Enhanced Oil Recovery," Journal of Polymers and the Environment, pp. 1-21, 2024spa
dc.relation.referencesD. Tayyib, A. Al-Qasim, S. Kokal, and O. Huseby, "Overview of tracer applications in oil and gas industry," in SPE Kuwait oil and gas show and conference, 2019, p. D023S006R004spa
dc.relation.referencesA. K. Patidar, D. Joshi, U. Dristant, and T. Choudhury, "A review of tracer testing techniques in porous media specially attributed to the oil and gas industry," Journal of Petroleum Exploration and Production Technology, vol. 12, pp. 3339-3356, 2022spa
dc.relation.referencesC. Carpenter, "Use of partitioning tracers to estimate oil-saturation distribution," Journal of Petroleum Technology, vol. 68, pp. 72-73, 2016spa
dc.relation.referencesS. Rosales, K. Zapata, F. B. Cortes, B. Rojano, C. Diaz, C. Cortes, et al., "Simultaneous Detection of Carbon Quantum Dots as Tracers for Interwell Connectivity Evaluation in a Pattern with Two Injection Wells," Nanomaterials, vol. 14, p. 789, 2024.spa
dc.relation.referencesR. Das, R. Bandyopadhyay, and P. Pramanik, "Carbon quantum dots from natural resource: A review," Materials today chemistry, vol. 8, pp. 96-109, 2018spa
dc.relation.referencesJ. Durrani, "Explainer: why have quantum dots won the 2023 Nobel prize?," in Chemistry World, ed. https://www.chemistryworld.com/news/explainer-why-have-quantum-dots-won-the-2023-nobel-prize/4018168.article: Royal Society of Chemistry 2023spa
dc.relation.referencesM. Razavifar, A. Khoshsima, M. Riazi, J. J. Sheng, and E. Esmaeilnezhad, "Recent developments, challenges, and prospects of carbon dots (CDs) for fluid flow investigation in porous media," Petroleum Research, 2024spa
dc.relation.referencesX. Zhao, S. Chen, L. Zhang, H. Su, Y. Wu, and H. Ren, "Influence of carbon quantum dots on foam stability: a molecular dynamics study," in Journal of Physics: Conference Series, 2024, p. 012043spa
dc.relation.referencesL. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, et al., "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions," Journal of big Data, vol. 8, pp. 1-74, 2021spa
dc.relation.referencesJ. Jobson and J. Jobson, "Multiple linear regression," Applied multivariate data analysis: regression and experimental design, pp. 219-398, 1991.spa
dc.relation.referencesV. Vapnik, The nature of statistical learning theory: Springer science & business media, 2013spa
dc.relation.referencesM. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, "Support vector machines," IEEE Intelligent Systems and their applications, vol. 13, pp. 18-28, 1998spa
dc.relation.referencesG. Gordon, "Support vector machines and kernel methods," Online]. Dosegljiv: https://www. cs. cmu. edu/~ ggordon/SVMs/new-svms-andkernels. pdf [Dostopano 28. 6. 2016], 2004spa
dc.relation.referencesY.-Y. Song and L. Ying, "Decision tree methods: applications for classification and prediction," Shanghai archives of psychiatry, vol. 27, p. 130, 2015spa
dc.relation.referencesO. C. Njoku, "Decision trees and their application for classification and regression problems," 2019spa
dc.relation.referencesL. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001.spa
dc.relation.referencesG. Biau and E. Scornet, "A random forest guided tour," Test, vol. 25, pp. 197-227, 2016spa
dc.relation.referencesS. J. Rigatti, "Random forest," Journal of Insurance Medicine, vol. 47, pp. 31-39, 2017spa
dc.relation.referencesT. Erfando, G. Siregar, Y. F. Alli, and Y. B. Wangge, "Hydrolyzed Polyacrylamide Screening for EOR in an Indonesia Mature Oil Field," Trends in Sciences, vol. 19, pp. 3461-3461, 2022spa
dc.relation.referencesH. A. Yousefvand and A. Jafari, "Stability and flooding analysis of nanosilica/NaCl/HPAM/SDS solution for enhanced heavy oil recovery," Journal of Petroleum Science and Engineering, vol. 162, pp. 283-291, 2018spa
dc.relation.referencesB. Choi, M. S. Jeong, and K. S. Lee, "Temperature-dependent viscosity model of HPAM polymer through high-temperature reservoirs," Polymer degradation and stability, vol. 110, pp. 225-231, 2014spa
dc.relation.referencesT. Duriez, S. L. Brunton, and B. R. Noack, Machine learning control-taming nonlinear dynamics and turbulence vol. 116: Springer, 2017spa
dc.relation.referencesA. R. Shaik, W. AlAmeri, A. AlSumaiti, M. Muhammad, and N. C. Thomas, "Application of supervised machine learning technique to investigate the effect of brine hardness on polymer bulk rheology," in Abu Dhabi International Petroleum Exhibition and Conference, 2019, p. D022S149R001spa
dc.relation.referencesN. Basha, R. Arcucci, P. Angeli, C. Anastasiou, T. Abadie, C. Q. Casas, et al., "Machine learning and physics-driven modelling and simulation of multiphase systems," International Journal of Multiphase Flow, vol. 179, p. 104936, 2024spa
dc.relation.referencesM. Lellep, J. Prexl, B. Eckhardt, and M. Linkmann, "Interpreted machine learning in fluid dynamics: explaining relaminarisation events in wall-bounded shear flows," Journal of Fluid Mechanics, vol. 942, p. A2, 2022spa
dc.relation.referencesS. Rushd, U. Gazder, H. J. Qureshi, and M. Arifuzzaman, "Advanced machine learning applications to viscous oil-water multi-phase flow," Applied Sciences, vol. 12, p. 4871, 2022spa
dc.relation.referencesB. D. Wood, X. He, and S. V. Apte, "Modeling turbulent flows in porous media," Annual Review of Fluid Mechanics, vol. 52, pp. 171-203, 2020spa
dc.relation.referencesJ. Zhang, U. Braga-Neto, and E. Gildin, "Physics-Informed Neural Networks for Multiphase Flow in Porous Media Considering Dual Shocks and Interphase Solubility," Energy & Fuels, 2024spa
dc.relation.referencesL.-T. Zhu, X.-Z. Chen, B. Ouyang, W.-C. Yan, H. Lei, Z. Chen, et al., "Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors," Industrial & Engineering Chemistry Research, vol. 61, pp. 9901-9949, 2022spa
dc.relation.referencesH. Khakurel, M. Taufique, A. Roy, G. Balasubramanian, G. Ouyang, J. Cui, et al., "Machine learning assisted prediction of the Young’s modulus of compositionally complex alloys," Scientific reports, vol. 11, p. 17149, 2021spa
dc.relation.referencesK. M. Kim, P. Hurley, and J. P. Duarte, "Physics-informed machine learning-aided framework for prediction of minimum film boiling temperature," International Journal of Heat and Mass Transfer, vol. 191, p. 122839, 2022spa
dc.relation.referencesJ. Li, M. Zhou, H. H. Wu, L. Wang, J. Zhang, N. Wu, et al., "Machine Learning‐Assisted Property Prediction of Solid‐State Electrolyte," Advanced Energy Materials, p. 2304480, 2024spa
dc.relation.referencesH. A. Ritacco, "Foam-Assisted Oil Recovery: A Physics-Based Perspective," Current Opinion in Colloid & Interface Science, p. 101809, 2024spa
dc.relation.referencesT. W. Thibodeaux, Image-based Modeling of Flow through Porous Media: Development of Multiscale Techniques for the Pore Level: Louisiana State University and Agricultural & Mechanical College, 2018spa
dc.relation.referencesR. S. Seright, A. Campbell, P. Mozley, and P. Han, "Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations," SPE journal, vol. 15, pp. 341-348, 2010spa
dc.relation.referencesR. Nisbet, J. Elder, and G. D. Miner, Handbook of statistical analysis and data mining applications: Academic press, 2009spa
dc.relation.referencesJ. J. Berman, Data simplification: taming information with open source tools: Morgan Kaufmann, 2016spa
dc.relation.referencesA. Jierula, S. Wang, T.-M. Oh, and P. Wang, "Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data," Applied Sciences, vol. 11, p. 2314, 2021.spa
dc.relation.referencesD. Chicco, M. J. Warrens, and G. Jurman, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation," Peerj computer science, vol. 7, p. e623, 2021spa
dc.relation.referencesE. E. Ateia, O. Rabie, and A. T. Mohamed, "Assessment of the correlation between optical properties and CQD preparation approaches," The European Physical Journal Plus, vol. 139, p. 24, 2024spa
dc.relation.referencesM. D. Malitha, M. T. H. Molla, M. A. Bashar, D. Chandra, and M. S. Ahsan, "Fabrication of a reusable carbon quantum dots (CQDs) modified nanocomposite with enhanced visible light photocatalytic activity," Scientific Reports, vol. 14, p. 17976, 2024spa
dc.relation.referencesL. Cheng, Y. Qin, Y. Su, Y. Pan, Y. Wang, R. Liao, et al., "Development of a high-strength and adhesive polyacrylamide gel for well plugging," ACS omega, vol. 7, pp. 6151-6159, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcNanofluidos
dc.subject.armarcCarbono - Puntos cuánticos
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembViscosidad
dc.subject.lembPolimeros
dc.subject.lembRecobro del petróleo
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.proposalRecobro mejoradospa
dc.subject.proposalNanofluidos poliméricosspa
dc.subject.proposalPredicción de viscosidadspa
dc.subject.proposalAprendizaje de máquinasspa
dc.subject.proposalPuntos cuánticos de carbonospa
dc.subject.proposalEnhanced oil recoveryeng
dc.subject.proposalPolymer nanofluidseng
dc.subject.proposalViscosity predictioneng
dc.subject.proposalMachine learningeng
dc.subject.proposalCarbon quantum dotseng
dc.titleIntegración de los parámetros fisicoquímicos de nanofluidos poliméricos basados en puntos cuánticos de carbono (CQDs) para la predicción de viscosidad utilizando modelos de aprendizaje de máquinasspa
dc.title.translatedIntegration of physicochemical parameters of polymeric nanofluids based on carbon quantum dots (CQDs) for viscosity prediction using machine learning modelseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlecontrato No. 112721-282-2023 (Proyecto 1118-1035-9300)spa
oaire.fundernameFondo Francisco José de Caldasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037663382.2025.pdf
Tamaño:
2.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: