Stiffness matrix and loading vector of a two-layer Timoshenko composite beam

dc.contributor.advisorAristizabal-Ochoa, Jose Dariospa
dc.contributor.authorAreiza-Hurtado, Mauriciospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupESTABILIDAD ESTRUCTURALspa
dc.date.accessioned2020-05-05T20:55:41Zspa
dc.date.available2020-05-05T20:55:41Zspa
dc.date.issued2020-02-01spa
dc.description.abstractEste trabajo presenta un resumen de los resultados obtenidos de la investigación realizada durante los estudios de doctorado. Inicialmente la propuestra del trabajo de grado consistía en la obtención de la "Matriz de rigidez y vector de carga de una viga de Timoshenko de dos capas" (ver Capítulo 5), sin embargo se ha adjuntado a este documento otros capítulos que se encuentran intimamente relacionados y que fueron también fruto del trabajo de investigación. Los capítulos 1 y 2 presentan la formulación teórica y la verificación con ejemplos, respectivamente, de la matriz de rigidez y el vector de carga de una viga pretensada incluyendo los efectos de largo plazo. El capítulo 3 presenta el análisis de segundo orden de una viga columna sobre fundación elástica con deflección inicial y conexiones semirrigidas. Los capítulos 4, 5 y 6 presentan el análisis de una viga de Timoshenko de dos capas. En el capítulo 4 se presenta la formulación para un sólo elemento, en el capítulo 5 se presenta la derivación de la matriz de rigidez y se hace la verificación con aplicaciones al diseño de vigas mixtas de acero y concreto. Finalemnte en el capitulo 6 se usa la formulación desarrollada en el capítulo 5 para realizar el análisis de nudos adhesivados. Los capitulos 3 al 6 cuentan con el identificador único y permanente para las publicaciones electrónicas (DOI) en el encabezado de cada capítulo para una fácil referencia.spa
dc.description.abstractInitially, the proposal of the degree work consisted of obtaining the "Stiffness matrix and loading vector of a two-layer Timoshenko beam" (see Chapter 5 and 6), however it has been attached to this document other chapters that are closely related and that were also the result of the research work of these years. Chapters 1 and 2 present the theoretical formulation and verification with examples, respectively, of the stiffness matrix and load vector of a prestressed beam including long-term effects. Chapter 3 presents the second order analysis of a column beam on elastic foundation with initial deflection and semi-rigid connections. Chapters 4, 5 and 6 present the analysis of a two-layer Tymoshenko beam. In chapter 4 the formulation for a single element is presented, in chapter 5 the bypass of the stiffness matrix is presented and verification is made with applications to the design of mixed steel and concrete beams. Finally in chapter 6 the formulation developed in chapter 5 is used to perform the analysis of adhesive joints. Chapters 3 through 6 have the unique and permanent Digital Object Identifier (DOI) in the heading of each chapter for easy reference.spa
dc.description.degreelevelDoctoradospa
dc.description.sponsorshipColcienciasspa
dc.format.extent146spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationAreiza-2020spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77476
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Civilspa
dc.relation.referencesA., L. and J., L. (2016). Non-linear buckling of elliptical curved beams. Int. J. Non. Linear. Mech., 82:132–143.spa
dc.relation.referencesAnsourian, P. (1981). Experiments on continuous composite beams. Proceedings Institute of Civil Engineers. part 2., 71:25–51.spa
dc.relation.referencesArboleda-Monsalve, L. G., Z.-M. D. G. and Aristizabal-Ochoa, J. D. (2008). Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector. Journal of Sound and Vibration, 310:1057–1079spa
dc.relation.referencesAristizabal-Ochoa, J. D. (1997). First- and second-order stiffness matrices and load vector of beam-columns with semirigid connections. ASCE J. Struct. Eng., 123:669–678.spa
dc.relation.referencesAydo˘gan, M. (1995). Stiffness-matrix formulation of beams with shear effect on elastic foundation. J. Struct. Engrg., ASCE, 121:1265–1270.spa
dc.relation.referencesAziz, K. A. (1986). Modelisation et etude experimentale de poutres mixtes acier-beton a connexion partielle ou espacee, doktorska disertacija. Institut National des Sciences Appliquees des Rennes.spa
dc.relation.referencesBazzucchi F., M. A. and A., C. (2017). Interaction between snap-through and eulerian instability in shallow structures. Int. J. Non. Linear. Mech., 88:11–20.spa
dc.relation.referencesChen J.and Hung, S. (2012). Exact snapping loads of a buckled beam under a midpoint force. Appl. Math. Model., 36:1776–1782.spa
dc.relation.referencesCollins, M. P. and Mitchell, D. (1997). Prestressed Concrete Structures. Prentice Hall College, ISBN 13: 9780136916352.spa
dc.relation.referencesCosenza, E. (2001). Shear and normal stresses interaction in coupled structural systems. J Struct Eng, 127:84–88spa
dc.relation.referencesEcsedi, I. and Baksa, A. (2016). Analytical solution for layered composite beams with partial shear interaction based on timoshenko beam theory. Eng Struct, 115:107–117.spa
dc.relation.referencesFaella, C., M. E. and Nigro, E. (2010). Steel–concrete composite beams in partial interaction: Closed-form ‘exact’ expression of the stiffness matrix and the vector of equivalent nodal forces. Engineering Structures, 32:2744–2754.spa
dc.relation.referencesForaboschi, P. (2009). Analytical solution of two-layer beam taking into account nonlinear interlayer slip. Journal of Engineering Mechanics, 135:1129–1146.spa
dc.relation.referencesG. Ranzi, F. G. and Ansourian, P. (2006). General method of analysis for composite beams with longitudinal and transverse partial interaction. Comput Struct, 84:2373–2384.spa
dc.relation.referencesGay, D. and Hoa., S. V. (2007). Composite Materials. Design and Applications. CRC Press, ISBN 13:978-1-4200-4519-spa
dc.relation.referencesLezgy-Nazargah, M. (2014). An isogeometric approach for the analysis of composite steel–concrete beams. Thin Walled Struct, 84:406–415.spa
dc.relation.referencesLIN., T. Y. (1963). Load-balancing method for desingn and analysis of prestressed concrete structures. J. Am. Concr. institute., 60:719–742.spa
dc.relation.referencesLin, T. Y. and Thornton, K. (1972). Secondary moment and moment redistribution in continuous prestressed concrete beams. PCI J., 18:8–20.spa
dc.relation.referencesP. Keo, Q.-H. Nguyen, H. S. and Hjiaj, M. (2016). Derivation of the exact stiffness matrix of shear-deformable multi-layered beam element in partial interaction. Finite Elem Anal Des, 112:40–49.spa
dc.relation.referencesQ.-H. Nguyen, E. M. and Hjiaj, M. (2011). Derivation of the exact stiffness matrix for a two-layer timoshenko beam element with partial interaction. Eng Struct, 33:298–307.spa
dc.relation.referencesQ.-H. Nguyen, M. H. and Lai, V.-A. (2014). Force-based f.e. for large displacement inelastic analysis of two-layer timoshenko beams with interlayer slips. Finite Elem Anal Des, 85:1–10.spa
dc.relation.referencesS.-F. Jiang, X. Z. and Zhou, D. (2014). Novel two-node linear composite beam element with both interface slip and shear deformation into consideration: formulation and validation. Int J Mech Sci, 85:110–119.spa
dc.relation.referencesSua, Y.-Y. and Gao, X.-L. (2014). Analytical model for adhesively bonded composite panel-flange joints based on the timoshenko beam theory. Compos Struct, 107:112–118spa
dc.relation.referencesTimoshenko S. P, G. J. M. (1961.). Theory of Elastic Stability. McGraw-Hill Book Company, 2 ed..spa
dc.relation.referencesZ. Liu, Y. Huang, Z. Y. S. B. and Valvo, P. (2014). A general solution for the twodimensional stress analysis of balanced and unbalanced adhesively bonded joints. Int J Adhes Adhes, 54:112–123.spa
dc.relation.referencesZona, A. and Ranzi, G. (2011). Finite element models for nonlinear analysis of steel–concrete composite beams with partial interaction in combined bending and shear. Finite Elem Anal Des, 47:98–118.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalStiffnes Matrixspa
dc.subject.proposalLoading vectoreng
dc.subject.proposalTimoshenko beamspa
dc.subject.proposalStiffness matrixspa
dc.subject.proposalTwo-layer Timoshenko beamspa
dc.titleStiffness matrix and loading vector of a two-layer Timoshenko composite beamspa
dc.title.alternativeMatriz de rigidez y vector de carga de una viga de Timoshenko de dos capas.spa
dc.typeReportespa
dc.type.coarhttp://purl.org/coar/resource_type/c_93fcspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/reportspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTCASOspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71776289.2020.pdf
Tamaño:
6.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Civil

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: