Diseño de un perfil aerodinámico morfológicamente variable

dc.contributor.advisorArzola de la Peña, Nelson
dc.contributor.authorSierra Daza, Carlos Arturo
dc.contributor.researchgroupDiseño Óptimo Multidisciplinariospa
dc.date.accessioned2022-12-13T16:42:43Z
dc.date.available2022-12-13T16:42:43Z
dc.date.issued2022-12-12
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl concepto de morfología aplicado a las alas de aeronaves está relacionado con la habilidad de una estructura de cambiar su geometría, para adaptarse a diferentes condiciones de vuelo. Esto con el fin de incrementar el rendimiento, reduciendo la cantidad de combustible y aumentando su tiempo de operación. Este trabajo tiene como propósito describir los procedimientos llevados a cabo para la generación y posterior evaluación del diseño conceptual y detallado de un perfil aerodinámico de morfología variable. Se toma como punto de inicio diseños creados con anterioridad por diferentes autores y se procede a realizar el desarrollo de conceptos propios de diseño. Después de esto, se realiza un proceso de decisión, utilizando diferentes requerimientos de ingeniería, se determina el concepto global dominante; el cual está basado en un mecanismo flexible para deformar el borde de fuga del perfil aerodinámico, para su posterior análisis por medios numéricos. Se genera una metodología de optimización de dos niveles para el desarrollo del mecanismo flexible. En el primer nivel, la mejor forma del perfil aerodinámico es obtenida por medio de un proceso de optimización multiobjetivo. En el segundo nivel, la mejor configuración estructural es obtenida por medio de optimización topológica. Por último, se realizan varios análisis por medio de dinámica de fluidos computacional usando el software OpenFoam, donde se hace uso del modelo de turbulencia K-Omega SST. (Texto tomado de la fuente)spa
dc.description.abstractThe concept of morphology applied to the wing of an aircraft is related to the capacity of a structure to change its geometry according to different flight conditions. The morphology is used to increase the performance of the aircraft in both, reducing the fuel consumption or increasing the endurance of a mission profile. This work describes the methods to generate and evaluate the conceptual and detailed design of a morphing airfoil. From a bibliographic review of design concepts previously created by different authors, the development of design concepts is carried out. After that, a decision process takes place; using different engineering requirements, the dominant global concept is determined, which is based on a compliant mechanism to deform the trailing edge of the airfoil, for subsequent numerical analysis. Furthermore, a two-level optimization methodology is elaborated for the development of the compliant mechanism. At the first level, the best aerodynamic shape is obtained through a multi-objective optimization process. At the second level, the best structural configuration is obtained using topological optimization. Finally, several analyzes are performed by means of computational fluid dynamics using the software OpenFoam, where the K-Omega SST turbulence model is used.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaDiseño de perfiles aerodinámicosspa
dc.format.extentxvii, 104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82860
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesAguirrebeitia, J., Avilés, R., Fernández, I., & Abasolo, M. (2013). Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications. Frontiers of Mechanical Engineering. https://doi.org/10.1007/s11465-013-0364-5spa
dc.relation.referencesAnderson, J. D. (1984). Fundamentals of aerodynamics. https://doi.org/10.2514/152157spa
dc.relation.referencesAnderson, W. K., & Venkatakrishnan, V. (1999). Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Computers and Fluids. https://doi.org/10.1016/S0045-7930(98)00041-3spa
dc.relation.referencesAntunes, A. P., & Azevedo, J. L. F. (2016). An aerodynamic optimization computational framework using genetic algorithms. Journal of the Brazilian Society of Mechanical Sciences and Engineering. https://doi.org/10.1007/s40430-015-0445-yspa
dc.relation.referencesArena, M., Concilio, A., & Pecora, R. (2019). Aero-servo-elastic design of a morphing wing trailing edge system for enhanced cruise performance. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2019.01.020spa
dc.relation.referencesBarbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., & Inman, D. J. (2011). A review of morphing aircraft. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X11414084spa
dc.relation.referencesBartl, J., Sagmo, K. F., Bracchi, T., & Sætran, L. (2019). Performance of the NREL S826 airfoil at low to moderate Reynolds numbers—A reference experiment for CFD models. European Journal of Mechanics, B/Fluids. https://doi.org/10.1016/j.euromechflu.2018.10.002spa
dc.relation.referencesBashir, M., Longtin-Martel, S., Botez, R. M., & Wong, T. (2021). Aerodynamic design optimization of a morphing leading edge and trailing edge airfoil–application on the uas-s45. Applied Sciences (Switzerland). https://doi.org/10.3390/app11041664spa
dc.relation.referencesBendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization. https://doi.org/10.1007/BF01650949spa
dc.relation.referencesBlank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2990567spa
dc.relation.referencesBoyd Rix, M. (2012). Cross-sectionally Morphing Airfoil. Retrieved from https://lens.org/118-159-656-815-741spa
dc.relation.referencesCakmakcioglu, S. C., Sert, I. O., Tugluk, O., & Sezer-Uzol, N. (2014). 2-D and 3-D CFD investigation of NREL S826 airfoil at low Reynolds numbers. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/524/1/012028spa
dc.relation.referencesCampanile, L. F. (2008). Modal synthesis of flexible mechanisms for airfoil shape control. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X07080638spa
dc.relation.referencesCampanile, L. F., & Sachau, D. (2000). Belt-rib concept: a structronic approach to variable camber. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1106/6H4B-HBW3-VDJ8-NB8Aspa
dc.relation.referencesCoello, C. A. C., & Lamont, G. B. (2004). Applications of Multi-Objective Evolutionary Algorithms. https://doi.org/10.1142/5712spa
dc.relation.referencesCoutu, D., Brailovski, V., & Terriault, P. (2010). Optimized design of an active extrados structure for an experimental morphing laminar wing. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2010.01.009spa
dc.relation.referencesde Castro, L. N. (2007). Fundamentals of natural computing: an overview. Physics of Life Reviews. https://doi.org/10.1016/j.plrev.2006.10.002spa
dc.relation.referencesDe Gaspari, A., & Ricci, S. (2011). A two-level approach for the optimal design of morphing wings based on compliant structures. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X11409081spa
dc.relation.referencesDeb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/4235.996017spa
dc.relation.referencesDella Vecchia, P., Daniele, E., & D’Amato, E. (2014). An airfoil shape optimization technique coupling PARSEC parameterization and evolutionary algorithm. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2013.11.006spa
dc.relation.referencesDu, S., & Ang, H. (2012). Design and Feasibility Analyses of Morphing Airfoil Used to Control Flight Attitude. Strojniski Vestnik, 58, 46–55. https://doi.org/10.5545/sv-jme.2011.189spa
dc.relation.referencesFincham, J. H. S., & Friswell, M. I. (2015). Aerodynamic optimisation of a camber morphing aerofoil. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2015.02.023spa
dc.relation.referencesFlux, A. W., & Pareto, V. (1897). Cours d’Economie Politique. The Economic Journal. https://doi.org/10.2307/2956966spa
dc.relation.referencesFusi, F., Congedo, P. M., Guardone, A., & Quaranta, G. (2018). Shape optimization under uncertainty of morphing airfoils. Acta Mechanica. https://doi.org/10.1007/s00707-017-2049-3spa
dc.relation.referencesGamboa, P., Vale, J., Lau, F. J. P., & Suleman, A. (2009). Optimization of a Morphing Wing Based on Coupled Aerodynamic and Structural Constraints. AIAA Journal, 47(9), 2087–2104. https://doi.org/10.2514/1.39016spa
dc.relation.referencesGandhi, F. (2010). Variable Chord Morphing Helicopter Rotor. Retrieved from https://lens.org/167-124-962-862-746spa
dc.relation.referencesGeuzaine, C.; Remacle, J. F. (2009). Gmsh: a Three-Dimensional Finite Element Mesh Generator with Built-in Pre- and Post-Processing. Facilities. Int. J. Numer. Meth. Eng.spa
dc.relation.referencesGrip, R. E., Brown, J. J., Harrison, N. A., Rawdon, B. K., & Vassberg, J. C. (2017). Morphing Airfoil Leading Edge. Retrieved from https://lens.org/083-739-017-820-942spa
dc.relation.referencesHaase, W., Aupoix, B., Bunge, U., & Schwamborn, D. (2006). FLOMANIA — A European Initiative on Flow Physics Modelling. In FLOMANIA — A European Initiative on Flow Physics Modelling. https://doi.org/10.1007/978-3-540-39507-2spa
dc.relation.referencesHassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences. https://doi.org/10.1016/j.paerosci.2017.04.003spa
dc.relation.referencesHetrick, J. A., Osborn, R. F., Kota, S., Flick, P. M., & Paul, D. B. (2007). Flight testing of Mission Adaptive Compliant Wing. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https://doi.org/10.2514/6.2007-1709spa
dc.relation.referencesHetrick, J., Ervin, G., & Kota, S. (2019). Compliant Structure Design For Varying Surface Contours. Retrieved from https://lens.org/016-903-804-131-910spa
dc.relation.referencesHowell, L. L., Magleby, S. P., & Olsen, B. M. (2013). Handbook of Compliant Mechanisms. In Handbook of Compliant Mechanisms. https://doi.org/10.1002/9781118516485spa
dc.relation.referencesIATA. (2019). More Connectivity and Improved Efficiency - 2018 Airline Industry Statistics Released [Comunicado de prensa ]. Retrieved November 26, 2019, from https://www.iata.org/pressroom/pr/Pages/2019-07-31-01.aspxspa
dc.relation.referencesJaimes, A. L., & Coello, C. A. (2008). An introduction to multi-objective evolutionary algorithms and some of their potential uses in biology. Studies in Computational Intelligence. https://doi.org/10.1007/978-3-540-78534-7_4spa
dc.relation.referencesJuan-Mauricio, P.-S. (2006). Wing, Particularly Airfoil Of An Aircraft, Having Changeable Profile. Retrieved from https://lens.org/022-862-582-261-697spa
dc.relation.referencesKhurana, M. (2011). Development and application of an optimisation architecture with adaptive swarm algorithm for airfoil aerodynamic designspa
dc.relation.referencesKota, S., Ervin, G. F., Lo, J.-H., Lu, K.-J., Maric, D., Trost, M. R., & Tsang, R.-K. K. (2019). Edge Morphing Arrangement For An Airfoil. Retrieved from https://lens.org/018-081-077-068-857spa
dc.relation.referencesKudva, J. N. (2004). Overview of the DARPA smart wing project. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X04042796spa
dc.relation.referencesKulfan, B. M. (2008). Universal parametric geometry representation method. Journal of Aircraft. https://doi.org/10.2514/1.29958spa
dc.relation.referencesKumar, D., Ali, S. F., & Arockiarajan, A. (2018). Structural and Aerodynamics Studies on Various Wing Configurations for Morphing. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2018.05.084spa
dc.relation.referencesLeschziner, M. A., & Drikakis, D. (2002). Turbulence modelling and turbulent-flow computation in aeronautics. Aeronautical Journalspa
dc.relation.referencesLi, D., Zhao, S., Da Ronch, A., Xiang, J., Drofelnik, J., Li, Y., … Breuker, R. De. (2018). A review of modelling and analysis of morphing wings. Progress in Aerospace Sciences. https://doi.org/10.1016/j.paerosci.2018.06.002spa
dc.relation.referencesLu, K. J., & Kota, S. (2003). Design of compliant mechanisms for morphing structural shapes. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X03035563spa
dc.relation.referencesMark Drela. (2000). XFOIL Subsonic Airfoil Development System.spa
dc.relation.referencesMatyushenko, A. A., Kotov, E. V., & Garbaruk, A. V. (2017). Calculations of flow around airfoils using two-dimensional RANS: an analysis of the reduction in accuracy. St. Petersburg Polytechnical University Journal: Physics and Mathematics. https://doi.org/10.1016/j.spjpm.2017.03.004spa
dc.relation.referencesMcGhee, R. J., Walker, B. S., & Millard, B. F. (1988). Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley Low-Turbulence Pressure Tunnel. NASA Technical Memorandum.spa
dc.relation.referencesMeguid, S. A., Su, Y., & Wang, Y. (2017). Complete morphing wing design using flexible-rib system. International Journal of Mechanics and Materials in Design. https://doi.org/10.1007/s10999-015-9323-0spa
dc.relation.referencesMenter, F R, Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model Turbulence heat and mass transfer. Cfd.Spbstu.Ru.spa
dc.relation.referencesMenter, Florian R., & Esch, T. (2001). Elements of Industrial Heat Transfer Predictions. 16th Brazilian Congress of Mechanical Engineering.spa
dc.relation.referencesMolinari, G., Quack, M., Arrieta, A. F., Morari, M., & Ermanni, P. (2015). Design, realization and structural testing of a compliant adaptable wing. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/24/10/105027spa
dc.relation.referencesMonner, H. P. (2001). Realization of an optimized wing camber by using formvariable flap structures. Aerospace Science and Technology. https://doi.org/10.1016/S1270-9638(01)01118-Xspa
dc.relation.referencesNie, R., Qiu, J., Ji, H., & Li, D. (2016). Aerodynamic characteristic of the active compliant trailing edge concept. International Journal of Modern Physics: Conference Series, 42, 1660173. https://doi.org/10.1142/S2010194516601733spa
dc.relation.referencesNygren, K. P., & Schulz, R. R. (1996). Breguet’s formulas for aircraft range & endurance an application of integral calculus. ASEE Annual Conference Proceedings. https://doi.org/10.18260/1-2--5901spa
dc.relation.referencesOhtake, T., Nakae, Y., & Motohashi, T. (2007). Nonlinearity of the Aerodynamic Characteristics of NACA0012 Aerofoil at Low Reynolds Numbers. JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 55(644), 439–445. https://doi.org/10.2322/jjsass.55.439spa
dc.relation.referencesOliver, J., Yago, D., Cante, J., & Lloberas-Valls, O. (2019). Variational approach to relaxed topological optimization: Closed form solutions for structural problems in a sequential pseudo-time framework. Computer Methods in Applied Mechanics and Engineering. https://doi.org/10.1016/j.cma.2019.06.038spa
dc.relation.referencesOsyczka, A. (1985). Multicriteria optimization for engineering design. In Design Optimization. https://doi.org/10.1016/b978-0-12-280910-1.50012-xspa
dc.relation.referencesPoonsong, P. (2004). Design and analysis of multi-section variable camber wing. ProQuest Dissertations and Theses.spa
dc.relation.referencesRodriguez, D. L., Aftosmis, M. J., Nemec, M., & Anderson, G. R. (2015). Optimized Off-Design Performance of Flexible Wings with Continuous Trailing-Edge Flaps. https://doi.org/10.2514/6.2015-1409spa
dc.relation.referencesRogalsky, T., Derksen, R. W., & Kocabiyik, S. (1999). Differential Evolution in Aerodynamic Optimization.spa
dc.relation.referencesSakurai, S., Fox, S. J., Beyer, K. W., Lacy, D. S., Johnson, P. L., Wells, S. L., … Gronenthal, E. W. (2007). Multi-function Trailing Edge Devices And Associated Methods. Retrieved from https://lens.org/143-768-204-159-624spa
dc.relation.referencesSheldahl, R. E., & Klimas, P. C. (1981). Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines.spa
dc.relation.referencesSmart Intelligent Aircraft Structures (SARISTU). (2016). In M. Papadopoulos & P. C. Wölcken (Eds.), Smart Intelligent Aircraft Structures (SARISTU). https://doi.org/10.1007/978-3-319-22413-8spa
dc.relation.referencesSobieczky, H. (1999). Parametric Airfoils and Wings. https://doi.org/10.1007/978-3-322-89952-1_4spa
dc.relation.referencesSofla, A. Y. N., Meguid, S. A., Tan, K. T., & Yeo, W. K. (2010). Shape morphing of aircraft wing: Status and challenges. Materials and Design. https://doi.org/10.1016/j.matdes.2009.09.011spa
dc.relation.referencesSpirlet, G. B. (2015). Design of Morphing Leading and Trailing Edge Surfaces for Camber and Twist Control. University of Delft.spa
dc.relation.referencesSun, J., Scarpa, F., Liu, Y., & Leng, J. (2016). Morphing thickness in airfoils using pneumatic flexible tubes and Kirigami honeycomb. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X15580656spa
dc.relation.referencesTian, Y., Quan, J., Liu, P., Li, D., & Kong, C. (2018). Mechanism/structure/aerodynamic multidisciplinary optimization of flexible high-lift devices for transport aircraft. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2018.09.045spa
dc.relation.referencesUllman, G. (2020). The Mechanical Design Process Case Studies, 2nd Edition. Retrieved from https://books.google.com.co/books?id=7W-YzQEACAAJspa
dc.relation.referencesUrnes, J., & Nguyen, N. (2013). A Mission Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift to Drag Ratios of Future N+3 Transport Aircraft. https://doi.org/10.2514/6.2013-214spa
dc.relation.referencesVan Dijk, N. P., Maute, K., Langelaar, M., & Van Keulen, F. (2013). Level-set methods for structural topology optimization: A review. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-013-0912-yspa
dc.relation.referencesVersteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. In Pearson Education Limited.spa
dc.relation.referencesWang, Y. (2015). Development of flexible rib morphing wing system. University of Toronto.spa
dc.relation.referencesWeller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics. https://doi.org/10.1063/1.168744spa
dc.relation.referencesWoods, B. K., Bilgen, O., & Friswell, M. I. (2014). Wind tunnel testing of the fish bone active camber morphing concept. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X14521700spa
dc.relation.referencesWoods, B. K. S., Parsons, L., Coles, A. B., Fincham, J. H. S., & Friswell, M. I. (2016). Morphing elastically lofted transition for active camber control surfaces. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2016.06.017spa
dc.relation.referencesXie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization. Computers and Structures. https://doi.org/10.1016/0045-7949(93)90035-Cspa
dc.relation.referencesXinxing, T., Wenjie, G., Chao, S., & Xiaoyong, L. (2014). Topology optimization of compliant adaptive wing leading edge with composite materials. Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2014.10.015spa
dc.relation.referencesYago, D., Cante, J., Lloberas-Valls, O., & Oliver, J. (2021). Topology optimization using the unsmooth variational topology optimization (UNVARTOP) method: an educational implementation in MATLAB. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-020-02722-0spa
dc.relation.referencesZhang, S., Li, H., & Abbasi, A. A. (2019). Design methodology using characteristic parameters control for low Reynolds number airfoils. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2019.01.003spa
dc.relation.referencesZhang, W., Yuan, J., Zhang, J., & Guo, X. (2016). A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-015-1372-3spa
dc.relation.referencesZhang, X., & Zhu, B. (2018). Topology Optimization of Compliant Mechanisms. https://doi.org/10.1007/978-981-13-0432-3spa
dc.relation.referencesZhao, A., Zou, H., Jin, H., & Wen, D. (2019). Structural design and verification of an innovative whole adaptive variable camber wing. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2019.02.032spa
dc.relation.referencesZhao, L., Di, C., Li, K., Li, J., & Liu, J. (2018). Compliant mechanism design of multiphase material wing leading edge. Proceedings - 2017 10th International Symposium on Computational Intelligence and Design, ISCID 2017, 2, 437–440. https://doi.org/10.1109/ISCID.2017.189spa
dc.relation.referencesZitzler, E., Brockhoff, D., & Thiele, L. (2007). The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-540-70928-2_64spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembAerodynamicseng
dc.subject.lembAerodinámicaspa
dc.subject.lembEstabilidad de los avionesspa
dc.subject.lembStability of airplaneseng
dc.subject.proposalMorphology, compliant mechanisms, topology optimization, genetic algorithmseng
dc.subject.proposalMorfologíaspa
dc.subject.proposalMecanismos flexiblesspa
dc.subject.proposalOptimización topológicaspa
dc.subject.proposalAlgoritmos genéticosspa
dc.subject.proposalMorphologyeng
dc.subject.proposalCompliant mechanismseng
dc.subject.proposalTopology optimizationeng
dc.subject.proposalGenetic algorithmseng
dc.titleDiseño de un perfil aerodinámico morfológicamente variablespa
dc.title.translatedDesign of a Variable Morphing Airfoileng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDiseño de un Perfil Aerodinámico Morfológicamente Variablespa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022404008.2022.pdf
Tamaño:
2.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: