Efecto del campo magnético en la producción de oscilaciones gigante-Rabi en el marco de la CQED acústica
dc.contributor.advisor | Vinck Posada, Herbert | |
dc.contributor.advisor | Gómez Gonzalez, Edgar Arturo | |
dc.contributor.author | Alvarado Martínez, Jose Luis | |
dc.contributor.orcid | Alvarado, Jose L. [0000-0002-7634-2280] | |
dc.contributor.researchgroup | Superconductividad y Nanotecnología | spa |
dc.date.accessioned | 2025-09-09T20:05:18Z | |
dc.date.available | 2025-09-09T20:05:18Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, gráficos | spa |
dc.description.abstract | Se estudia la manipulación de los estados excitónicos en un punto cuántico semiconductor acoplado a una cavidad acústica monomodal, considerando la interacción electrón-fonón y bombeo coherente, con el alcance de sintonizar las oscilaciones gigante-Rabi al aplicar un campo magnético que afecta a los excitones a través de la interacción Zeeman y el corrimiento diamagnético. Además de modelar un sistema cerrado mediante la diagonalización del Hamiltoniano y la resolución de la ecuación de Schrödinger, se adopta el formalismo de matriz densidad para incorporar procesos de emisión espontánea, pérdida de la cavidad y desfase, lo cual permite analizar la función de correlación de segundo orden (haz-N), identificando fenómenos como superagrupamiento, agrupamiento y antiagrupamiento, así como examinar el espectro de emisión y constatar la aparición de picos que evidencian la emisión de fonones en circunstancias específicas. El campo magnético sintoniza la participación de los excitones en las oscilaciones gigante-Rabi al modificar la estructura de espines y generar un corrimiento energético, facilitando la conversión de estados oscuros a brillantes y definiendo si la base preferida es vestida o desnuda. Finalmente, las conclusiones muestran que esta capacidad de ajustar la contribución excitónica mediante la interacción Zeeman y el corrimiento diamagnético, en combinación con el bombeo coherente, ofrece nuevas posibilidades para la ingeniería de sistemas cuánticos, mejorando la coherencia y habilitando el control de la emisión de paquetes de fonones (Texto tomado de la fuente). | spa |
dc.description.abstract | The manipulation of excitonic states in a semiconductor quantum dot coupled to a single-mode acoustic cavity is studied, considering the electron–phonon interaction and coherent pumping, with the aim of tuning the giant-Rabi oscillations by applying a magnetic field that affects the excitons through the Zeeman interaction and the diamagnetic shift. In addition to modeling a closed system via diagonalization of the Hamiltonian and solving the Schrödinger equation, the density matrix formalism is adopted to incorporate processes such as spontaneous emission, cavity loss, and dephasing. This approach allows the analysis of the second-order correlation function (N-bundle), identifying phenomena such as superbunching, bunching, and antibunching, as well as examining the emission spectrum and confirming the appearance of peaks that reveal phonon emission under specific circumstances. The magnetic field tunes the participation of excitons in the giant-Rabi oscillations by modifying the spin structure and generating an energy shift, enabling the conversion of dark states to bright states and determining whether the preferred basis is dressed or bare. Finally, the conclusions show that this ability to adjust the excitonic contribution through the Zeeman interaction and the diamagnetic shift, in combination with coherent pumping, offers new possibilities for quantum system engineering, improving coherence and enabling control over phonon packet emission. | eng |
dc.description.curriculararea | Física.Sede Bogotá | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias – Física | spa |
dc.description.researcharea | Óptica cuántica en sistemas nanoestructurados | spa |
dc.format.extent | xvi, 92 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88678 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | Band, Y. B., & Avishai, Y. (2019). Three-level Landau-Zener dynamics. Physical Review A, 99, 032112. https://doi.org/10.1103/PhysRevA.99.032112 | |
dc.relation.references | Bayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A. A., Forchel, A., Hawrylak, P., Fafard, S., Hinzer, K., Reinecke, T. L., Walck, S. N., Reithmaier, J. P., Klopf, F., & Schäfer, F. (2002). Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B, 65(19). https: //doi.org/10.1103/PhysRevB.65.195315 | |
dc.relation.references | Bayer, M., Reinecke, T. L., Weidner, F., Larionov, A., McDonald, A., & Forchel, A. (2001). Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators. Physical Review Letters, 86, 3168-3171. https://doi. org/10.1103/PhysRevLett.86.3168 | |
dc.relation.references | Bayer, M., Stern, O., Kuther, A., & Forchel, A. (2000). Spectroscopic study of dark excitons in InxGa1−xAs self-assembled quantum dots by a magnetic-field-induced symmetry breaking. Physical Review B, 61, 7273-7276. https://doi.org/10.1103/ PhysRevB.61.7273 | |
dc.relation.references | Belhadj, T., Simon, C.-M., Amand, T., Renucci, P., Chatel, B., Krebs, O., Lemaı̂tre, A., Voisin, P., Marie, X., & Urbaszek, B. (2009). Controlling the Polarization Eigenstate of a Quantum Dot Exciton with Light. Physical Review Letters, 103(8). https://doi.org/10.1103/PhysRevLett.103.086601 | |
dc.relation.references | Bienfait, A., Satzinger, K. J., Zhong, Y. P., Chang, H. S., Chou, M. H., Conner, C. R., Dumur, É., Grebel, J., Peairs, G. A., Povey, R. G., & Cleland, A. N. (2019). Phonon-mediated quantum state transfer and remote qubit entanglement. Science, 364, 368-371. https://doi.org/10.1126/science.aaw8415 | |
dc.relation.references | Bimberg, D., Grundmann, M., & Ledentsov, N. N. (1999). Quantum dot heterostructures. John Wiley & Sons. | |
dc.relation.references | Bin, Q., Lü, X.-Y., Laussy, F. P., Nori, F., & Wu, Y. (2020). N -Phonon Bundle Emission via the Stokes Process. Physical Review Letters, 124, 053601. https://doi.org/10. 1103/PhysRevLett.124.053601 | |
dc.relation.references | Björkman, I., Kuzmanović, M., & Paraoanu, G. S. (2024). Observation of the two-photon Landau-Zener-Stückelberg-Majorana effect. arXiv. http : / / arxiv . org / abs / 2402 . 10833 | |
dc.relation.references | Blockley, C. A., Walls, D. F., & Risken, H. (1992). Quantum Collapses and Revivals in a Quantized Trap. Europhysics Letters (EPL), 17 (6), 509-514. https://doi.org/10. 1209/0295-5075/17/6/006 | |
dc.relation.references | Breuer, H.-P., & Petruccione, F. (2002). The Theory of Open Quantum Systems. Oxford University Press, USA. | |
dc.relation.references | Carmichael, H. (1993). An open systems approach to quantum optics Springer. Lecture notes in physics, 18. | |
dc.relation.references | Cohen-Tannoudji, C., Dupont-Roc, J., & Grynberg, G. (1998). Atom-photon interactions: basic processes and applications. John Wiley & Sons. | |
dc.relation.references | Crooker, S. A., Barrick, T., Hollingsworth, J. A., & Klimov, V. I. (2003). Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Applied Physics Letters, 82(17), 2793-2795. https://doi.org/10.1063/1.1570923 | |
dc.relation.references | Echeverri Arteaga, S. (2019). Interacción radiación-materia mediada por fonones en la electrodinámica cuántica de cavidades [Tesis doctoral]. | |
dc.relation.references | Gardiner, C., & Zoller, P. (2004). Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer Science & Business Media. | |
dc.relation.references | Golub, G. H., & Van Loan, C. F. (2013). Matrix computations. JHU press. | |
dc.relation.references | Gorini, V., Kossakowski, A., & Sudarshan, E. C. G. (1976). Completely positive dynamical semigroups of N-level systems. Journal of Mathematical Physics, 17 (5), 821-825. https://doi.org/10.1063/1.522979 | |
dc.relation.references | Grimvall, G. (1976). The Electron-Phonon Interaction in Normal Metals. Physica Scripta, 14(1–2), 63-78. https://doi.org/10.1088/0031-8949/14/1-2/013 | |
dc.relation.references | Hameau, S., Guldner, Y., Verzelen, O., Ferreira, R., Bastard, G., Zeman, J., Lemaı̂tre, A., & Gérard, J. M. (1999). Strong Electron-Phonon Coupling Regime in Quantum Dots: Evidence for Everlasting Resonant Polarons. Physical Review Letters, 83(20), 4152-4155. https://doi.org/10.1103/PhysRevLett.83.4152 | |
dc.relation.references | Jiang, W., Patel, R. N., Mayor, F. M., McKenna, T. P., Arrangoiz-Arriola, P., Sarabalis, C. J., Witmer, J. D., Van Laer, R., & Safavi-Naeini, A. H. (2019). Lithium niobate piezo-optomechanical crystals. Optica, 6(7), 845. https://doi.org/10.1364/optica.6.000845 | |
dc.relation.references | Jiménez-Orjuela, C. A., Vinck-Posada, H., & Villas-Bôas, J. M. (2017). Dark excitons in a quantum-dot–cavity system under a tilted magnetic field. Physical Review B, 96, 125303. https://doi.org/10.1103/PhysRevB.96.125303 | |
dc.relation.references | Kim, H., Shen, T. C., Sridharan, D., Solomon, G. S., & Waks, E. (2011). Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity. Applied Physics Letters, 98(9). https://doi.org/10.1063/1.3562344 | |
dc.relation.references | Kiselev, M. N., Kikoin, K., & Kenmoe, M. B. (2013). SU(3) Landau-Zener interferometry. EPL (Europhysics Letters), 104, 57004. https://doi.org/10.1209/0295-5075/104/57004 | |
dc.relation.references | Kittel, C., & McEuen, P. (2018). Introduction to solid state physics. John Wiley & Sons. | |
dc.relation.references | Koch, J., Yu, T. M., Gambetta, J., Houck, A. A., Schuster, D. I., Majer, J., Blais, A., Devoret, M. H., Girvin, S. M., & Schoelkopf, R. J. (2007). Charge-insensitive qubit design derived from the Cooper pair box. Physical Review A, 76(4). https://doi.org/10.1103/PhysRevA.76.042319 | |
dc.relation.references | Krychowski, D., & Lipiński, S. (2023). Electron-phonon interaction and electronic correlations in transport through electrostatically and tunnel coupled quantum dots. J. Mag. Mag. Mat., 588, 171416. https://doi.org/https://doi.org/10.1016/j.jmmm.2023.171416 | |
dc.relation.references | Kusrayev, Y. G., Koudinov, A. V., Zakharchenya, B. P., Lee, S., Furdyna, J. K., & Dobro- wolska, M. (2005). Optical orientation and alignment of excitons in self-assembled CdSe/ZnSe quantum dots: The role of excited states. Physical Review B, 72(15). https://doi.org/10.1103/PhysRevB.72.155301 | |
dc.relation.references | Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2), 119-130. https://doi.org/10.1007/BF01608499 | |
dc.relation.references | Loudon, R. (2000). The quantum theory of light. OUP Oxford. | |
dc.relation.references | Lüker, S., Kuhn, T., & Reiter, D. E. (2017). Phonon-assisted dark exciton preparation in a quantum dot. Physical Review B, 95(19). https://doi.org/10.1103/PhysRevB.95.195305 | |
dc.relation.references | Ma, K. K. W. (2015). Three-photon resonance and adiabatic passage in the large-detuning Rabi model. Physical Review A, 92(2). https://doi.org/10.1103/PhysRevA.92.023842 | |
dc.relation.references | Maldovan, M. (2013). Sound and heat revolutions in phononics. Nature, 503(7475), 209-217. https://doi.org/10.1038/nature12608 | |
dc.relation.references | Mandel, L., & Wolf, E. (1995). Optical Coherence and Quantum Optics. Cambridge University Press. | |
dc.relation.references | Marquez, J., Geelhaar, L., & Jacobi, K. (2001). Atomically resolved structure of InAs quantum dots. Applied Physics Letters, 78(16), 2309-2311. | |
dc.relation.references | Michler, P., Kiraz, A., Becher, C., Schoenfeld, W. V., Petroff, P. M., Zhang, L., Hu, E., & Imamoglu, A. (2000). A Quantum Dot Single-Photon Turnstile Device. Science, 290, 2282-2285. https://doi.org/10.1126/science.290.5500.2282 | |
dc.relation.references | Muñoz, C. S., del Valle, E., Tudela, A. G., Müller, K., Lichtmannecker, S., Kaniber, M., Tejedor, C., Finley, J. J., & Laussy, F. P. (2014). Emitters of N-photon bundles. Nature Photonics, 8(7), 550-555. https://doi.org/10.1038/nphoton.2014.114 | |
dc.relation.references | Onizhuk, M., Miao, K. C., Blanton, J. P., Ma, H., Anderson, C. P., Bourassa, A., Awschalom, D. D., & Galli, G. (2021). Probing the Coherence of Solid-State Qubits at Avoided Crossings. PRX Quantum, 2, 010311. https://doi.org/10.1103/PRXQuantum.2.010311 | |
dc.relation.references | Perea, J. I., Porras, D., & Tejedor, C. (2004). Dynamics of the excitations of a quantum dot in a microcavity. Physical Review B, 70(11). https://doi.org/10.1103/PhysRevB.70.115304 | |
dc.relation.references | Ping, L. L., Li, W., Zhu, C. J., Yang, Y. P., & Agarwal, G. S. (2021). Parametric interaction induced avoided dressed state crossings in cavity QED:generation of quantum coherence and equally weighted superposition of Fock states. arXiv. http://arxiv.org/abs/2110.12557 | |
dc.relation.references | Poem, E., Kodriano, Y., Tradonsky, C., Lindner, N. H., Gerardot, B. D., Petroff, P. M., & Gershoni, D. (2010). Accessing the dark exciton with light. Nature Physics, 6, 993-997. https://doi.org/10.1038/nphys1812 | |
dc.relation.references | Ramírez-Ramírez, F., Flores-Olmedo, E., Báez, G., Sadurní, E., & Méndez-Sánchez, R. (2019). Emulating tightly bound electrons in crystalline solids using mechanical waves. https://arxiv.org/pdf/1911.11272.pdf | |
dc.relation.references | Ramsay, A. J., Godden, T. M., Boyle, S. J., Gauger, E. M., Nazir, A., Lovett, B. W., Fox, A. M., & Skolnick, M. S. (2010). Phonon-Induced Rabi-Frequency Renormalization of Optically Driven Single InGaAs/GaAs Quantum Dots. Physical Review Letters, 105(17). https://doi.org/10.1103/PhysRevLett.105.177402 | |
dc.relation.references | Reithmaier, J. P., Sek, G., Loffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L. V., Kulakovskii, V. D., Reinecke, T. L., & Forchel, A. (2004). Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432, 197-200. https://doi.org/10.1038/nature02969 | |
dc.relation.references | Reitzenstein, S. (2012). Semiconductor Quantum Dot–Microcavities for Quantum Optics in Solid State. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1733-1746. https://doi.org/10.1109/JSTQE.2012.2195159 | |
dc.relation.references | Ridley, B. K. (2013). Quantum processes in semiconductors. Oxford University Press, USA. | |
dc.relation.references | Roszak, K., Axt, V. M., Kuhn, T., & Machnikowski, P. (2007). Exciton spin decay in quantum dots to bright and dark states. Physical Review B, 76(19). https://doi.org/10.1103/PhysRevB.76.195324 | |
dc.relation.references | Schuetz, M. J. A. (2015). Universal Quantum Transducers Based on Surface Acoustic Waves. Physical Review X, 5(3). https://doi.org/10.1103/PhysRevX.5.031031 | |
dc.relation.references | Srivastava, G. P. (2022, agosto). The Physics of Phonons. CRC Press. https://doi.org/10.1201/9781003141273 | |
dc.relation.references | Stock, E., Dachner, M.-R., Warming, T., Schliwa, A., Lochmann, A., Hoffmann, A., Toropov, A. I., Bakarov, A. K., Derebezov, I. A., Richter, M., Haisler, V. A., Knorr, A., & Bimberg, D. (2011). Acoustic and optical phonon scattering in a single In(Ga)As quantum dot. Physical Review B, 83(4). https://doi.org/10.1103/PhysRevB.83.041304 | |
dc.relation.references | Strekalov, D. V. (2014). A bundle of photons, please. Nature Photonics, 8(7), 500-501. https://doi.org/10.1038/nphoton.2014.144 | |
dc.relation.references | Takagahara, T. (2002). Theory of Exciton Dephasing in Semiconductor Quantum Dots. En Y. Masumoto & T. Takagahara (Eds.), Semiconductor Quantum Dots (pp. 353-388). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05001-9_9 | |
dc.relation.references | Urbaszek, B., Marie, X., Amand, T., Krebs, O., Voisin, P., Maletinsky, P., Högele, A., & Imamoglu, A. (2013). Nuclear spin physics in quantum dots: An optical investigation. Reviews of Modern Physics, 85(1), 79-133. https://doi.org/10.1103/RevModPhys.85.79 | |
dc.relation.references | Vargas-Calderón, V., Vinck-Posada, H., & Villas-Boas, J. M. (2022). Dark-exciton giant Rabi oscillations with no external magnetic field. Physical Review B, 106, 035305. https://doi.org/10.1103/PhysRevB.106.035305 | |
dc.relation.references | Von Neumann, J. (2013). Mathematische grundlagen der quantenmechanik (Vol. 38). Springer-Verlag. | |
dc.relation.references | Wigger, D., Weiß, M., Lienhart, M., Müller, K., Finley, J. J., Kuhn, T., Krenner, H. J., & Machnikowski, P. (2021). Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot. Physical Review Research, 3(3). https://doi.org/10.1103/PhysRevResearch.3.033197 | |
dc.relation.references | Woods, L. M., Reinecke, T. L., & Kotlyar, R. (2004). Hole spin relaxation in quantum dots. Physical Review B, 69(12). https://doi.org/10.1103/PhysRevB.69.125330 | |
dc.relation.references | Xu, N., Cheng, Z.-D., Tang, J.-D., Lv, X.-M., Li, T., Guo, M.-L., Wang, Y., Song, H.-Z., Zhou, Q., & Deng, G.-W. (2021). Recent advances in nano-opto-electro-mechanical systems. Nanophotonics, 10(9), 2265-2281. | |
dc.relation.references | Yu, P., & Cardona, M. (2010). Fundamentals of semiconductors: physics and materials properties. Springer Science & Business Media. | |
dc.relation.references | Zhang, W., Yu, Z., Liu, Y., & Peng, Y. (2014). Optical nonlinearity in a quantum dot–microcavity system under an external magnetic field. Journal of the Optical Society of America B, 31(2), 296. https://doi.org/10.1364/josab.31.000296 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 530 - Física | spa |
dc.subject.lemb | Puntos cuánticos | spa |
dc.subject.lemb | Quantum dots | eng |
dc.subject.lemb | Física cuántica | spa |
dc.subject.lemb | Quantum physical | eng |
dc.subject.lemb | Fotones | spa |
dc.subject.lemb | Photons | eng |
dc.subject.proposal | Campo magnético | spa |
dc.subject.proposal | Oscilaciones gigante-Rabi | spa |
dc.subject.proposal | Agrupamiento | spa |
dc.subject.proposal | Antiagrupamiento | spa |
dc.subject.proposal | Haz-N | spa |
dc.subject.proposal | Magnetic field | eng |
dc.subject.proposal | Giant-Rabi oscillations | eng |
dc.subject.proposal | Bunching | eng |
dc.subject.proposal | Antibunching | eng |
dc.subject.proposal | N-bundle | eng |
dc.title | Efecto del campo magnético en la producción de oscilaciones gigante-Rabi en el marco de la CQED acústica | spa |
dc.title.translated | Effect of the magnetic field on the production of giant-Rabi oscillations in the framework of the acoustic CQED | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |