Efecto del campo magnético en la producción de oscilaciones gigante-Rabi en el marco de la CQED acústica

dc.contributor.advisorVinck Posada, Herbert
dc.contributor.advisorGómez Gonzalez, Edgar Arturo
dc.contributor.authorAlvarado Martínez, Jose Luis
dc.contributor.orcidAlvarado, Jose L. [0000-0002-7634-2280]
dc.contributor.researchgroupSuperconductividad y Nanotecnologíaspa
dc.date.accessioned2025-09-09T20:05:18Z
dc.date.available2025-09-09T20:05:18Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, gráficosspa
dc.description.abstractSe estudia la manipulación de los estados excitónicos en un punto cuántico semiconductor acoplado a una cavidad acústica monomodal, considerando la interacción electrón-fonón y bombeo coherente, con el alcance de sintonizar las oscilaciones gigante-Rabi al aplicar un campo magnético que afecta a los excitones a través de la interacción Zeeman y el corrimiento diamagnético. Además de modelar un sistema cerrado mediante la diagonalización del Hamiltoniano y la resolución de la ecuación de Schrödinger, se adopta el formalismo de matriz densidad para incorporar procesos de emisión espontánea, pérdida de la cavidad y desfase, lo cual permite analizar la función de correlación de segundo orden (haz-N), identificando fenómenos como superagrupamiento, agrupamiento y antiagrupamiento, así como examinar el espectro de emisión y constatar la aparición de picos que evidencian la emisión de fonones en circunstancias específicas. El campo magnético sintoniza la participación de los excitones en las oscilaciones gigante-Rabi al modificar la estructura de espines y generar un corrimiento energético, facilitando la conversión de estados oscuros a brillantes y definiendo si la base preferida es vestida o desnuda. Finalmente, las conclusiones muestran que esta capacidad de ajustar la contribución excitónica mediante la interacción Zeeman y el corrimiento diamagnético, en combinación con el bombeo coherente, ofrece nuevas posibilidades para la ingeniería de sistemas cuánticos, mejorando la coherencia y habilitando el control de la emisión de paquetes de fonones (Texto tomado de la fuente).spa
dc.description.abstractThe manipulation of excitonic states in a semiconductor quantum dot coupled to a single-mode acoustic cavity is studied, considering the electron–phonon interaction and coherent pumping, with the aim of tuning the giant-Rabi oscillations by applying a magnetic field that affects the excitons through the Zeeman interaction and the diamagnetic shift. In addition to modeling a closed system via diagonalization of the Hamiltonian and solving the Schrödinger equation, the density matrix formalism is adopted to incorporate processes such as spontaneous emission, cavity loss, and dephasing. This approach allows the analysis of the second-order correlation function (N-bundle), identifying phenomena such as superbunching, bunching, and antibunching, as well as examining the emission spectrum and confirming the appearance of peaks that reveal phonon emission under specific circumstances. The magnetic field tunes the participation of excitons in the giant-Rabi oscillations by modifying the spin structure and generating an energy shift, enabling the conversion of dark states to bright states and determining whether the preferred basis is dressed or bare. Finally, the conclusions show that this ability to adjust the excitonic contribution through the Zeeman interaction and the diamagnetic shift, in combination with coherent pumping, offers new possibilities for quantum system engineering, improving coherence and enabling control over phonon packet emission.eng
dc.description.curricularareaFísica.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias – Físicaspa
dc.description.researchareaÓptica cuántica en sistemas nanoestructuradosspa
dc.format.extentxvi, 92 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88678
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesBand, Y. B., & Avishai, Y. (2019). Three-level Landau-Zener dynamics. Physical Review A, 99, 032112. https://doi.org/10.1103/PhysRevA.99.032112
dc.relation.referencesBayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A. A., Forchel, A., Hawrylak, P., Fafard, S., Hinzer, K., Reinecke, T. L., Walck, S. N., Reithmaier, J. P., Klopf, F., & Schäfer, F. (2002). Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B, 65(19). https: //doi.org/10.1103/PhysRevB.65.195315
dc.relation.referencesBayer, M., Reinecke, T. L., Weidner, F., Larionov, A., McDonald, A., & Forchel, A. (2001). Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators. Physical Review Letters, 86, 3168-3171. https://doi. org/10.1103/PhysRevLett.86.3168
dc.relation.referencesBayer, M., Stern, O., Kuther, A., & Forchel, A. (2000). Spectroscopic study of dark excitons in InxGa1−xAs self-assembled quantum dots by a magnetic-field-induced symmetry breaking. Physical Review B, 61, 7273-7276. https://doi.org/10.1103/ PhysRevB.61.7273
dc.relation.referencesBelhadj, T., Simon, C.-M., Amand, T., Renucci, P., Chatel, B., Krebs, O., Lemaı̂tre, A., Voisin, P., Marie, X., & Urbaszek, B. (2009). Controlling the Polarization Eigenstate of a Quantum Dot Exciton with Light. Physical Review Letters, 103(8). https://doi.org/10.1103/PhysRevLett.103.086601
dc.relation.referencesBienfait, A., Satzinger, K. J., Zhong, Y. P., Chang, H. S., Chou, M. H., Conner, C. R., Dumur, É., Grebel, J., Peairs, G. A., Povey, R. G., & Cleland, A. N. (2019). Phonon-mediated quantum state transfer and remote qubit entanglement. Science, 364, 368-371. https://doi.org/10.1126/science.aaw8415
dc.relation.referencesBimberg, D., Grundmann, M., & Ledentsov, N. N. (1999). Quantum dot heterostructures. John Wiley & Sons.
dc.relation.referencesBin, Q., Lü, X.-Y., Laussy, F. P., Nori, F., & Wu, Y. (2020). N -Phonon Bundle Emission via the Stokes Process. Physical Review Letters, 124, 053601. https://doi.org/10. 1103/PhysRevLett.124.053601
dc.relation.referencesBjörkman, I., Kuzmanović, M., & Paraoanu, G. S. (2024). Observation of the two-photon Landau-Zener-Stückelberg-Majorana effect. arXiv. http : / / arxiv . org / abs / 2402 . 10833
dc.relation.referencesBlockley, C. A., Walls, D. F., & Risken, H. (1992). Quantum Collapses and Revivals in a Quantized Trap. Europhysics Letters (EPL), 17 (6), 509-514. https://doi.org/10. 1209/0295-5075/17/6/006
dc.relation.referencesBreuer, H.-P., & Petruccione, F. (2002). The Theory of Open Quantum Systems. Oxford University Press, USA.
dc.relation.referencesCarmichael, H. (1993). An open systems approach to quantum optics Springer. Lecture notes in physics, 18.
dc.relation.referencesCohen-Tannoudji, C., Dupont-Roc, J., & Grynberg, G. (1998). Atom-photon interactions: basic processes and applications. John Wiley & Sons.
dc.relation.referencesCrooker, S. A., Barrick, T., Hollingsworth, J. A., & Klimov, V. I. (2003). Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Applied Physics Letters, 82(17), 2793-2795. https://doi.org/10.1063/1.1570923
dc.relation.referencesEcheverri Arteaga, S. (2019). Interacción radiación-materia mediada por fonones en la electrodinámica cuántica de cavidades [Tesis doctoral].
dc.relation.referencesGardiner, C., & Zoller, P. (2004). Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer Science & Business Media.
dc.relation.referencesGolub, G. H., & Van Loan, C. F. (2013). Matrix computations. JHU press.
dc.relation.referencesGorini, V., Kossakowski, A., & Sudarshan, E. C. G. (1976). Completely positive dynamical semigroups of N-level systems. Journal of Mathematical Physics, 17 (5), 821-825. https://doi.org/10.1063/1.522979
dc.relation.referencesGrimvall, G. (1976). The Electron-Phonon Interaction in Normal Metals. Physica Scripta, 14(1–2), 63-78. https://doi.org/10.1088/0031-8949/14/1-2/013
dc.relation.referencesHameau, S., Guldner, Y., Verzelen, O., Ferreira, R., Bastard, G., Zeman, J., Lemaı̂tre, A., & Gérard, J. M. (1999). Strong Electron-Phonon Coupling Regime in Quantum Dots: Evidence for Everlasting Resonant Polarons. Physical Review Letters, 83(20), 4152-4155. https://doi.org/10.1103/PhysRevLett.83.4152
dc.relation.referencesJiang, W., Patel, R. N., Mayor, F. M., McKenna, T. P., Arrangoiz-Arriola, P., Sarabalis, C. J., Witmer, J. D., Van Laer, R., & Safavi-Naeini, A. H. (2019). Lithium niobate piezo-optomechanical crystals. Optica, 6(7), 845. https://doi.org/10.1364/optica.6.000845
dc.relation.referencesJiménez-Orjuela, C. A., Vinck-Posada, H., & Villas-Bôas, J. M. (2017). Dark excitons in a quantum-dot–cavity system under a tilted magnetic field. Physical Review B, 96, 125303. https://doi.org/10.1103/PhysRevB.96.125303
dc.relation.referencesKim, H., Shen, T. C., Sridharan, D., Solomon, G. S., & Waks, E. (2011). Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity. Applied Physics Letters, 98(9). https://doi.org/10.1063/1.3562344
dc.relation.referencesKiselev, M. N., Kikoin, K., & Kenmoe, M. B. (2013). SU(3) Landau-Zener interferometry. EPL (Europhysics Letters), 104, 57004. https://doi.org/10.1209/0295-5075/104/57004
dc.relation.referencesKittel, C., & McEuen, P. (2018). Introduction to solid state physics. John Wiley & Sons.
dc.relation.referencesKoch, J., Yu, T. M., Gambetta, J., Houck, A. A., Schuster, D. I., Majer, J., Blais, A., Devoret, M. H., Girvin, S. M., & Schoelkopf, R. J. (2007). Charge-insensitive qubit design derived from the Cooper pair box. Physical Review A, 76(4). https://doi.org/10.1103/PhysRevA.76.042319
dc.relation.referencesKrychowski, D., & Lipiński, S. (2023). Electron-phonon interaction and electronic correlations in transport through electrostatically and tunnel coupled quantum dots. J. Mag. Mag. Mat., 588, 171416. https://doi.org/https://doi.org/10.1016/j.jmmm.2023.171416
dc.relation.referencesKusrayev, Y. G., Koudinov, A. V., Zakharchenya, B. P., Lee, S., Furdyna, J. K., & Dobro- wolska, M. (2005). Optical orientation and alignment of excitons in self-assembled CdSe/ZnSe quantum dots: The role of excited states. Physical Review B, 72(15). https://doi.org/10.1103/PhysRevB.72.155301
dc.relation.referencesLindblad, G. (1976). On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2), 119-130. https://doi.org/10.1007/BF01608499
dc.relation.referencesLoudon, R. (2000). The quantum theory of light. OUP Oxford.
dc.relation.referencesLüker, S., Kuhn, T., & Reiter, D. E. (2017). Phonon-assisted dark exciton preparation in a quantum dot. Physical Review B, 95(19). https://doi.org/10.1103/PhysRevB.95.195305
dc.relation.referencesMa, K. K. W. (2015). Three-photon resonance and adiabatic passage in the large-detuning Rabi model. Physical Review A, 92(2). https://doi.org/10.1103/PhysRevA.92.023842
dc.relation.referencesMaldovan, M. (2013). Sound and heat revolutions in phononics. Nature, 503(7475), 209-217. https://doi.org/10.1038/nature12608
dc.relation.referencesMandel, L., & Wolf, E. (1995). Optical Coherence and Quantum Optics. Cambridge University Press.
dc.relation.referencesMarquez, J., Geelhaar, L., & Jacobi, K. (2001). Atomically resolved structure of InAs quantum dots. Applied Physics Letters, 78(16), 2309-2311.
dc.relation.referencesMichler, P., Kiraz, A., Becher, C., Schoenfeld, W. V., Petroff, P. M., Zhang, L., Hu, E., & Imamoglu, A. (2000). A Quantum Dot Single-Photon Turnstile Device. Science, 290, 2282-2285. https://doi.org/10.1126/science.290.5500.2282
dc.relation.referencesMuñoz, C. S., del Valle, E., Tudela, A. G., Müller, K., Lichtmannecker, S., Kaniber, M., Tejedor, C., Finley, J. J., & Laussy, F. P. (2014). Emitters of N-photon bundles. Nature Photonics, 8(7), 550-555. https://doi.org/10.1038/nphoton.2014.114
dc.relation.referencesOnizhuk, M., Miao, K. C., Blanton, J. P., Ma, H., Anderson, C. P., Bourassa, A., Awschalom, D. D., & Galli, G. (2021). Probing the Coherence of Solid-State Qubits at Avoided Crossings. PRX Quantum, 2, 010311. https://doi.org/10.1103/PRXQuantum.2.010311
dc.relation.referencesPerea, J. I., Porras, D., & Tejedor, C. (2004). Dynamics of the excitations of a quantum dot in a microcavity. Physical Review B, 70(11). https://doi.org/10.1103/PhysRevB.70.115304
dc.relation.referencesPing, L. L., Li, W., Zhu, C. J., Yang, Y. P., & Agarwal, G. S. (2021). Parametric interaction induced avoided dressed state crossings in cavity QED:generation of quantum coherence and equally weighted superposition of Fock states. arXiv. http://arxiv.org/abs/2110.12557
dc.relation.referencesPoem, E., Kodriano, Y., Tradonsky, C., Lindner, N. H., Gerardot, B. D., Petroff, P. M., & Gershoni, D. (2010). Accessing the dark exciton with light. Nature Physics, 6, 993-997. https://doi.org/10.1038/nphys1812
dc.relation.referencesRamírez-Ramírez, F., Flores-Olmedo, E., Báez, G., Sadurní, E., & Méndez-Sánchez, R. (2019). Emulating tightly bound electrons in crystalline solids using mechanical waves. https://arxiv.org/pdf/1911.11272.pdf
dc.relation.referencesRamsay, A. J., Godden, T. M., Boyle, S. J., Gauger, E. M., Nazir, A., Lovett, B. W., Fox, A. M., & Skolnick, M. S. (2010). Phonon-Induced Rabi-Frequency Renormalization of Optically Driven Single InGaAs/GaAs Quantum Dots. Physical Review Letters, 105(17). https://doi.org/10.1103/PhysRevLett.105.177402
dc.relation.referencesReithmaier, J. P., Sek, G., Loffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L. V., Kulakovskii, V. D., Reinecke, T. L., & Forchel, A. (2004). Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432, 197-200. https://doi.org/10.1038/nature02969
dc.relation.referencesReitzenstein, S. (2012). Semiconductor Quantum Dot–Microcavities for Quantum Optics in Solid State. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1733-1746. https://doi.org/10.1109/JSTQE.2012.2195159
dc.relation.referencesRidley, B. K. (2013). Quantum processes in semiconductors. Oxford University Press, USA.
dc.relation.referencesRoszak, K., Axt, V. M., Kuhn, T., & Machnikowski, P. (2007). Exciton spin decay in quantum dots to bright and dark states. Physical Review B, 76(19). https://doi.org/10.1103/PhysRevB.76.195324
dc.relation.referencesSchuetz, M. J. A. (2015). Universal Quantum Transducers Based on Surface Acoustic Waves. Physical Review X, 5(3). https://doi.org/10.1103/PhysRevX.5.031031
dc.relation.referencesSrivastava, G. P. (2022, agosto). The Physics of Phonons. CRC Press. https://doi.org/10.1201/9781003141273
dc.relation.referencesStock, E., Dachner, M.-R., Warming, T., Schliwa, A., Lochmann, A., Hoffmann, A., Toropov, A. I., Bakarov, A. K., Derebezov, I. A., Richter, M., Haisler, V. A., Knorr, A., & Bimberg, D. (2011). Acoustic and optical phonon scattering in a single In(Ga)As quantum dot. Physical Review B, 83(4). https://doi.org/10.1103/PhysRevB.83.041304
dc.relation.referencesStrekalov, D. V. (2014). A bundle of photons, please. Nature Photonics, 8(7), 500-501. https://doi.org/10.1038/nphoton.2014.144
dc.relation.referencesTakagahara, T. (2002). Theory of Exciton Dephasing in Semiconductor Quantum Dots. En Y. Masumoto & T. Takagahara (Eds.), Semiconductor Quantum Dots (pp. 353-388). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05001-9_9
dc.relation.referencesUrbaszek, B., Marie, X., Amand, T., Krebs, O., Voisin, P., Maletinsky, P., Högele, A., & Imamoglu, A. (2013). Nuclear spin physics in quantum dots: An optical investigation. Reviews of Modern Physics, 85(1), 79-133. https://doi.org/10.1103/RevModPhys.85.79
dc.relation.referencesVargas-Calderón, V., Vinck-Posada, H., & Villas-Boas, J. M. (2022). Dark-exciton giant Rabi oscillations with no external magnetic field. Physical Review B, 106, 035305. https://doi.org/10.1103/PhysRevB.106.035305
dc.relation.referencesVon Neumann, J. (2013). Mathematische grundlagen der quantenmechanik (Vol. 38). Springer-Verlag.
dc.relation.referencesWigger, D., Weiß, M., Lienhart, M., Müller, K., Finley, J. J., Kuhn, T., Krenner, H. J., & Machnikowski, P. (2021). Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot. Physical Review Research, 3(3). https://doi.org/10.1103/PhysRevResearch.3.033197
dc.relation.referencesWoods, L. M., Reinecke, T. L., & Kotlyar, R. (2004). Hole spin relaxation in quantum dots. Physical Review B, 69(12). https://doi.org/10.1103/PhysRevB.69.125330
dc.relation.referencesXu, N., Cheng, Z.-D., Tang, J.-D., Lv, X.-M., Li, T., Guo, M.-L., Wang, Y., Song, H.-Z., Zhou, Q., & Deng, G.-W. (2021). Recent advances in nano-opto-electro-mechanical systems. Nanophotonics, 10(9), 2265-2281.
dc.relation.referencesYu, P., & Cardona, M. (2010). Fundamentals of semiconductors: physics and materials properties. Springer Science & Business Media.
dc.relation.referencesZhang, W., Yu, Z., Liu, Y., & Peng, Y. (2014). Optical nonlinearity in a quantum dot–microcavity system under an external magnetic field. Journal of the Optical Society of America B, 31(2), 296. https://doi.org/10.1364/josab.31.000296
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Físicaspa
dc.subject.lembPuntos cuánticosspa
dc.subject.lembQuantum dotseng
dc.subject.lembFísica cuánticaspa
dc.subject.lembQuantum physicaleng
dc.subject.lembFotonesspa
dc.subject.lembPhotonseng
dc.subject.proposalCampo magnéticospa
dc.subject.proposalOscilaciones gigante-Rabispa
dc.subject.proposalAgrupamientospa
dc.subject.proposalAntiagrupamientospa
dc.subject.proposalHaz-Nspa
dc.subject.proposalMagnetic fieldeng
dc.subject.proposalGiant-Rabi oscillationseng
dc.subject.proposalBunchingeng
dc.subject.proposalAntibunchingeng
dc.subject.proposalN-bundleeng
dc.titleEfecto del campo magnético en la producción de oscilaciones gigante-Rabi en el marco de la CQED acústicaspa
dc.title.translatedEffect of the magnetic field on the production of giant-Rabi oscillations in the framework of the acoustic CQEDeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1123115765.2025.pdf
Tamaño:
4.19 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: