Effective computation of invariants of finite topological spaces

dc.contributor.advisorLambán Pardo, Laureanospa
dc.contributor.advisorRomero Ibáñez, Anaspa
dc.contributor.advisorSarria Zapata, Humbertospa
dc.contributor.authorCuevas Rozo, Julián Leonardospa
dc.date.accessioned2021-10-13T16:18:33Z
dc.date.available2021-10-13T16:18:33Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractHasta el momento, los métodos conocidos para el cálculo de invariantes de espacios topológicos finitos eran aplicables solamente a los posets de caras de complejos simpliciales o de CW-complejos regulares. En este trabajo hemos desarrollado versiones constructivas de algunos resultados teóricos de diferentes autores acerca de espacios finitos, produciendo en particular nuevos algoritmos para el cálculo explícito de algunos complejos de cadenas asociados a espacios finitos h-regulares y sus correspondientes generadores. Hasta donde sabemos, nuestro programa es el único software capaz de calcular grupos de homología de espacios topológicos finitos trabajando directamente sobre los posets. Hemos mejorado nuestros algoritmos sobre espacios finitos h-regulares mediante el uso de campos de vectores discretos, produciendo un nuevo algoritmo para construir dichos campos discretos definidos directamente sobre el poset, además de crear un proceso de h-regularización de espacios finitos permitiendo así ampliar la familia de espacios finitos h-regulares conocidos en la literatura. También hemos presentado una interfaz entre los sistemas de álgebra computacional SageMath y Kenzo. Nuestro trabajo ha permitido que ambos sistemas colaboren mutuamente en algunos cálculos que no pueden ser hechos de manera independiente por dichos programas. Más aún, hemos creado un módulo en SageMath implementando espacios topológicos finitos y algunos conceptos relacionados. Finalmente, hemos considerado algunas estrategias para estudiar diferentes alternativas para calcular campos de vectores discretos de mayor longitud sobre espacios finitos, haciendo uso de algunas técnicas de aprendizaje automático para obtener campos de vectores discretos de la mayor longitud posible. (Texto tomado de la fuente).spa
dc.description.abstractUp to now, the known methods for computing invariants of finite topological spaces were applicable only for face posets of simplicial complexes or regular CW-complexes. In this work, we have made constructive some theoretical results on finite topological spaces by different authors, producing in particular new algorithms for computing in an explicit way some chain complexes associated with h-regular finite topological spaces and their corresponding generators. Up to our knowledge, our new program is the only software able to compute homology groups of finite topological spaces working directly on the posets. We have improved our algorithms on h-regular spaces by using discrete vector fields, producing a new algorithm for constructing a discrete vector field defined directly on the poset; moreover, we have created a process of h-regularization of finite spaces, allowing to expand the family of h-regular finite spaces known in the literature. We have presented an interface between the computer algebra systems SageMath and Kenzo. Our work has allowed both systems to collaborate in some computations which can not be done independently in any of the programs. Moreover, we have created a module implementing finite topological spaces and related concepts in SageMath. Finally, we have considered some strategies trying to study alternatives to compute longer discrete vector fields on finite spaces, considering some machine learning techniques to obtain discrete vector fields as big as possible.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.description.notesIncluye anexosspa
dc.format.extentxvi, 137 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80538
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesJ. J. Andrews and M. L. Curtis, Free groups and handlebodies, Proceedings of the American Mathematical Society, American Mathematical Society 16 (1965), no. 2, 192–195.spa
dc.relation.referencesP. Alexandroff, Diskrete R¨aume, Mat. Sb. (N.S.) 2 (1937), 501–518.spa
dc.relation.referencesJ. A. Barmak, Algebraic topology of finite topological spaces and applications, Lecture Notes in Mathematics, vol. 2032, Springer, 2011.spa
dc.relation.referencesB. Benedetti and F. H. Lutz, Library of triangulations, http: //page.math.tu-berlin.de/˜lutz/stellar/library_ of_triangulations/, 2017.spa
dc.relation.referencesY. Bengio, A. Lodi, and A. Prouvost, Machine learning for combinatorial optimization: a methodological tour d’horizon, https://arxiv.org/ pdf/1811.06128.pdf, 2020.spa
dc.relation.referencesN. Cianci and M. Ottina, A new spectral sequence for homology of posets, Topology and its Applications 217 (2017), 1–19.spa
dc.relation.referencesN. Cianci and M. Ottina, Poset splitting and minimality of finite models, Journal of Combinatorial Theory, Series A 157 (2018), 120–161.spa
dc.relation.referencesJ. Cuevas-Rozo, Funciones submodulares y matrices en el estudio de los espacios topológicos finitos, Tesis de maestría, Universidad Nacional de Colombia, 2016.spa
dc.relation.referencesJ. Cuevas-Rozo, Point reduction algorithms and discrete vector fields for finite topological spaces in the Kenzo system, Proceedings of Fourth EACA International School on Computer Algebra and its Applications, 2018, https://www.usc.es/regaca/eacaschool18/files/ Contributed_talks_EACA2018.pdf, pp. 3–4.spa
dc.relation.referencesJ. Cuevas-Rozo, Cálculo de invariantes topológicos sobre espacios topológicos finitos, XXII Congreso Colombiano de Matemáticas 2019, 2019, http://scm.org.co/wp-content/uploads/2019/06/ Cronograma_XXII_CCM2019_V2.pdf.spa
dc.relation.referencesJ. Cuevas-Rozo, h-regularización de espacios topológicos finitos, VIII Encuentro de Jóvenes Topólogos, 2019, http://xtsunxet.usc.es/etop2019/ EJTop2019-JCuevas.pdf.spa
dc.relation.referencesJ. Cuevas-Rozo, Finite topological spaces in Kenzo, https://github.com/ jcuevas-rozo/finite-topological-spaces, 2020.spa
dc.relation.referencesJ. Cuevas-Rozo, J. Divasón, M. Marco-Buzunáriz, and A. Romero, A Kenzo interface for algebraic topology computations in SageMath, ACM Commun. Comput. Algebra 53 (2019), no. 2, 61–64.spa
dc.relation.referencesJ. Cuevas-Rozo, J. Divasón, M. Marco-Buzunáriz, and A. Romero, Integration of the Kenzo system within SageMath for new algebraic topology computations, Mathematics, 9(7), 722 (2021).spa
dc.relation.referencesJ. Cuevas-Rozo, L. Lambán, A. Romero, and H. Sarria, New algorithms for computing homology of finite topological spaces, Proceedings of 24th Conference on Applications of Computer Algebra - ACA 2018, 2018, pp. 108– 112.spa
dc.relation.referencesJ. Cuevas-Rozo, L. Lambán, A. Romero, and H. Sarria, Effective homological computations on finite topological spaces, Applicable Algebra in Engineering, Communication and Computing (2020), In press.spa
dc.relation.referencesJ. Cuevas-Rozo, M. Marco-Buzunáriz, and A. Romero, Computing with Kenzo from Sage, Proceedings of the 2019 conference on Effective Methods in Algebraic Geometry, 2019, http://eventos.ucm.es/_files/_event/_12097/ _editorFiles/file/Abstracts_MEGA-alphabetic.pdf, p. 23.spa
dc.relation.referencesThe SageMath Developers, The Sage Mathematics Software System (Version 9.2), https://www.sagemath.org, 2020.spa
dc.relation.referencesX. Dousson, J. Rubio, F. Sergeraert, and Y. Siret, The Kenzo program, Institut Fourier, Grenoble, 1999, http://www-fourier. ujf-grenoble.fr/˜sergerar/Kenzo/.spa
dc.relation.referencesX. Fernández, Finite-spaces, https://github.com/ ximenafernandez/Finite-Spaces, 2017.spa
dc.relation.referencesX. Fernández, Métodos combinatorios y algoritmos en topología de dimensiones bajas y la conjetura de Andrews-Curtis, Ph.D. thesis, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, 2017.spa
dc.relation.referencesX. Fernández, 3-deformations of 2-complexes and Morse theory, https:// arxiv.org/pdf/1912.00115.pdf, 2019.spa
dc.relation.referencesR. Forman, Morse theory for cell complexes, Advances in Mathematics 134 (1998), 90–145.spa
dc.relation.referencesA. Hatcher, Algebraic topology, Cambridge University Press, 2002.spa
dc.relation.referencesG. Heber, A repackaged version of the Kenzo program by Francis Sergeraert and collaborators, https://github.com/gheber/kenzo, 2019.spa
dc.relation.referencesJ. Heras, A Kenzo module computing homotopy groups, 2011, https://esus.unirioja.es/psycotrip/archivos_ documentos/homotopy.cl.spa
dc.relation.referencesM.W. Jahn, P. E. Bradley, M. Al-Doori, and M. Breunig, Topologically consistent models for efficient big geo-spatio-temporal data distribution, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W5 (2017), 65–72.spa
dc.relation.referencesA. I. Khan and S. Al-Habsi, Machine Learning in Computer Vision, Procedia Computer Science 167 (2020), 1444–1451.spa
dc.relation.referencesV. A. Kovalevsky, Finite topology as applied to image analysis, Computer Vision, Graphics and Image Processing 46 (1989), 141–161.spa
dc.relation.referencesV. Krishnamurthy, On the number of topologies on a finite set, Amer. Math. Monthly 73 (1966), 154–157.spa
dc.relation.referencesG. Liu, M. Kitazawa, M. Eguchi, Y. Fuwa, and Y. Nakamura, Dilation and reduction processing in finite topological spaces and its application to inspection of printed boards, Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 85 (2002), no. 12, 89–100.spa
dc.relation.referencesJ. P. May, Simplicial objects in Algebraic Topology, Van Nostrand Mathematical Studies, University of Chicago Press, 1967.spa
dc.relation.referencesJ. P. May, Finite spaces and larger contexts (in progress), http://math. uchicago.edu/˜may/REU2020/FINITEBOOK.pdf, 2020.spa
dc.relation.referencesM. Marco-Buzunáriz, Kenzo, https://github.com/ miguelmarco/kenzo, 2015.spa
dc.relation.referencesM. C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J. 33 (1966), no. 3, 465–474.spa
dc.relation.referencesJ. Milnor, Morse theory. Based on lecture notes by M. Spivak and R. Wells topological spaces, Annals of Mathematics Studies, Princeton University Press, Princeton 51 (1963), 153pp.spa
dc.relation.referencesG. Minian, Some remarks on Morse theory for posets, homological morse theory and finite manifolds, Topology and its Applications 159 (2012), no. 12, 2860–2869.spa
dc.relation.referencesA. Maier, C. Syben, T. Lasser, and C. Riess, A gentle introduction to deep learning in medical image processing, Zeitschrift f¨ur Medizinische Physik 29 (2019), no. 2, 86–101.spa
dc.relation.referencesJ. R. Munkres, Elements of Algebraic Topology, AddisonWesley Publishing Company, 1984.spa
dc.relation.referencesOpenAI, Gym, https://gym.openai.com/, 2016.spa
dc.relation.referencesJ. Palmieri, Examples of simplicial sets – Sage reference manual v9.2, 2020, https://doc.sagemath.org/html/en/reference/ homology/sage/homology/simplicial_set_examples. html#sage.homology.simplicial_set_examples. simplicial_data_from_kenzo_output.spa
dc.relation.referencesD. Peifer, M. Stillman, and D. Halpern-Leistner, Learning selection strategies in buchberger’s algorithm, https://arxiv.org/pdf/2005. 01917.pdf, 2020.spa
dc.relation.referencesD. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math. 28 (1978), 101–128.spa
dc.relation.referencesJ. Renders, Finite topological spaces in algebraic topology, Project of Master of Science in Mathematics, Ghent University, 2019.spa
dc.relation.referencesJ. Rotman, An introduction to algebraic topology, Graduate Texts in Mathematics, vol. 119, Springer, 1998.spa
dc.relation.referencesA. Romero, J. Rubio, and F. Sergeraert, Computing spectral sequences, Journal of Symbolic Computation 41 (2006), no. 10, 1059–1079.spa
dc.relation.referencesJ. Rubio and F. Sergeraert, Constructive Homological Algebra and Applications, Lecture Notes Summer School on Mathematics, Algorithms, and Proofs, University of Genova, 2006, http://www-fourier.ujf-grenoble.fr/˜sergerar/ Papers/Genova-MAP-2006-v3.pdf.spa
dc.relation.referencesA. Romero and F. Sergeraert, Discrete Vector Fields and Fundamental Algebraic Topology, https://arxiv.org/pdf/1005.5685.pdf, 2010.spa
dc.relation.referencesJ. Rubio, F. Sergeraert, and Y. Siret, EAT: Symbolic Software for Effective Homology Computation, Institut Fourier, Grenoble, 1997, https://www-fourier.ujf-grenoble.fr/˜sergerar/ Kenzo/EAT-program.zip.spa
dc.relation.referencesF. Sergeraert, The computability problem in Algebraic Topology, Advances in Mathematics 104 (1994), no. 1, 1–29.spa
dc.relation.referencesM. Shiraki, On finite topological spaces, Rep. Fac. Sci. Kagoshima Univ. 1 (1968), 1–8.spa
dc.relation.referencesD. Silver, A. Huang, and C. Maddison, Mastering the game of Go with deep neural networks and tree search, Nature 529 (2016), 484—-489.spa
dc.relation.referencesL. R. Silverstein, Probability and Machine Learning in Combinatorial Commutative Algebra, Ph.D. thesis, University of California Davis, 2019.spa
dc.relation.referencesR. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), no. 2, 325–340.spa
dc.relation.referencesC. J. C. H. Watkins, Learning from Delayed Rewards, Ph.D. thesis, Cambridge University, 1989.spa
dc.relation.referencesJ. H. C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1–57.spa
dc.relation.referencesG. Whitehead, Fiber spaces and the Eilenberg homology groups, Proceedings of the National Academy of Science of the United States of America 38 (1952), no. 5, 426–430.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::514 - Topologíaspa
dc.subject.lembTopological spaceseng
dc.subject.lembEspacios topológicosspa
dc.subject.lembInvariantseng
dc.subject.lembInvariantesspa
dc.subject.lembVector analysiseng
dc.subject.lembAnálisis vectorialspa
dc.subject.proposalHomology groupseng
dc.subject.proposalHomotopy invariantseng
dc.subject.proposalH-regular finite spaceseng
dc.subject.proposalEffective algorithmseng
dc.subject.proposalWeak homotopy typeseng
dc.subject.proposalComputational topologyeng
dc.subject.proposalEspacios topológicos finitosspa
dc.subject.proposalGrupos de homologíaspa
dc.subject.proposalDiscrete vector fieldseng
dc.subject.proposalCampos de vectores discretosspa
dc.subject.proposalInvariantes homotópicosspa
dc.subject.proposalEspacios finitos h-regularesspa
dc.subject.proposalAlgoritmos efectivosspa
dc.subject.proposalTipos de homotopía débilspa
dc.subject.proposalTopología computacionalspa
dc.titleEffective computation of invariants of finite topological spaceseng
dc.title.translatedCálculo efectivo de invariantes de espacios topológicos finitosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018454513.2021.pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: