Geometría de subducción de la placa de Nazca bajo el noroeste de Suramérica, a partir del análisis de microsismicidad reciente

dc.contributor.advisorDimaté Castellanos, María Cristinaspa
dc.contributor.authorFandiño Bohórquez, Jonnathan Hadierspa
dc.date.accessioned2020-08-16T06:07:52Zspa
dc.date.available2020-08-16T06:07:52Zspa
dc.date.issued2020spa
dc.description.abstractThe subduction geometry of the Nazca plate beneath the northern termination of the Andes is complex, particularly under the Choco basin. Based on the spatial distribution of hypocenters and the interpretation of focal mechanisms, we sought to refine the geometry and kinematic model of the subducting lithosphere. For this purpose, we relocated nearly 480 seismic events reported by Colombian National Seismic Network from 1996 to 2016 at depths of 0 - 180 km with local magnitudes between 3.0 and 6.5 using absolute and relative location techniques. Our results showed an apparently continuous Nazca plate along the Colombia-Ecuador trench, which subducts under the South American plate with a slight increase in the subduction dip angle in a north-south direction, and rate seismicity variations. These variations may be explained by the presence of the extinct spreading center CNS-2 and a heterogeneous bathymetric morphology, which would modify the hydration and dehydration volume of the oceanic crust of the eastern Panama basin.spa
dc.description.abstractLa configuración de subducción de la placa de Nazca bajo la terminación de los Andes del Norte es bastante compleja, en particular bajo la cuenca del Chocó. Basados en la distribución espacial de hipocentros y la interpretación de mecanismos focales buscamos definir un modelo geométrico y cinemático más detallado de la litosfera que subduce. Para ello, relocalizamos alrededor de cuatrocientos ochenta eventos registrados por la Red Sismológica Nacional de Colombia entre los años de 1996 – 2016 con profundidades de cero y ciento ochenta kilómetros y magnitudes locales de 3.0 – 6.5 utilizando técnicas de localización absolutas y relativas. Nuestros resultados muestran una aparente continuidad de la placa de Nazca a lo largo de la fosa Colombo - Ecuatoriana, la cual subduce bajo la placa Sudamericana con ligeros incrementos en el ángulo de buzamiento, 30° al norte y 40° al sur de ~5.2°N, y una variación en la tasa de sismicidad. Estas variaciones podrían ser explicadas por la presencia del centro de expansión extinto CNS-2 y una morfología batimétrica heterogénea que modificaría el volumen de hidratación y deshidratación de la corteza de la cuenca oriental de Panamá.spa
dc.description.additionalLínea de Investigación: Sismotectónicaspa
dc.description.degreelevelMaestríaspa
dc.format.extent102spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78055
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísicaspa
dc.relation.referencesAbers, G. A., Nakajima, J., Van Keken, P. E., Kita, S., & Hacker, B. R. (2013). Thermal–petrological controls on the location of earthquakes within subducting plates. Earth and Planetary Science Letters, Volumes 369–370, 178-187.spa
dc.relation.referencesAki, K., & Lee, W. (1976). Determination of three‐dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. Journal of Geophysical Research, Volume 81, Issue 23, 4381-4399.spa
dc.relation.referencesAndreani, M., Mével, C., Boullier, A. M., & Escartin, J. (2007). Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems, Volume 8, Issue 2.spa
dc.relation.referencesArcila, M., & Dimaté, C. (2005). Caracterización de fuentes sísmicas de subducción. Bogotá: Instituto Colombiano de Geología y Minería - INGEOMINAS.spa
dc.relation.referencesArroyo, I. G., Husen, S., Flueh, E. R., Gossler, J., Kissling, E., & Alvarado, G. E. (2009). Three‐dimensional P‐wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off‐ and onshore networks. Geophysical Journal International, Volume 179, Issue 2., 827–849.spa
dc.relation.referencesBeyreuther, M., Barsh, R., Krischer, L., Megies, T., Behr, Y., & Wassrmann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81, 530-533.spa
dc.relation.referencesBoneh, Y., Schottenfels, E., Kwong, K., Zelst, I., Tong, X., Eimer, M., . . . Zhan, Z. (2019). Intermediate‐Depth Earthquakes Controlled by Incoming Plate Hydration Along Bending‐Related Faults. Geophysical Research Letters, Volume 46, Issue 7, 3688-3697.spa
dc.relation.referencesBrocher, T. (2008). Compressional and shear-wave velocity versus depth relations for common rock types in northern California. Bulletin of the Seismological Society of America, Vol. 98, Issue 2, 950-968.spa
dc.relation.referencesCediel, F., & Shaw, R. (2019). Geology and Tectonics of Northwestern South America. Switzerland: Springer.spa
dc.relation.referencesChang, Y., Warren, L. M., & Prieto, G. A. (2017). Precise Locations for Intermediate‐Depth Earthquakes in the Cauca Cluster, Colombia. Bulletin of the Seismological Society of America, vol.107, 2649-2663.spa
dc.relation.referencesChiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., & Prieto, G. (2015). Subduction system and flat slab beneath the Eastern cordillera of Colombia. Geochemistry, Geophysics, Geosystems, Volume 17, Issue 1, 16-27.spa
dc.relation.referencesCortes, M., & Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, Volume 403, Issues 1–4, 29-58.spa
dc.relation.referencesDeLONG, S., Schwarz, W. M., & Anderson, R. N. (1979). Thermal effects of ridge subduction. Earth and Planetary Science Letters, Volume 44, Issue 2, 239-246.spa
dc.relation.referencesDeShon, H. (2004). Seismogenic zone structure along the Middle America subduction zone, Costa Rica. Ph.D. Thesis. University of California-Santa Cruz, 359.spa
dc.relation.referencesDiehl, T. (2008). 3-D seismic velocity models of the Alpine crust from local earthquake tomography. Zürich: Eidgenössische Technische Hochschule ETH.spa
dc.relation.referencesDiehl, T., & Kissling, E. (2008). Users Guide for Consistent Phase Picking at Local to Regional Scales. Zürich: Eidgenössische Technische Hochschule ETH.spa
dc.relation.referencesDineva, S., Eaton, D., & Mereu, R. (2004). Seismicity of the Southern Great Lakes: Revised Earthquake Hypocenters and Possible Tectonic Controls. Bulletin of the Seismological Society of America, Vol. 94, 1902-1918.spa
dc.relation.referencesDziewonski, A. M.-A. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Geophys. Res., 86, 2825-2852.spa
dc.relation.referencesEkström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet, 200-201.spa
dc.relation.referencesFaccenda, M., Gerya, T. V., & Burlini, L. (2009). Deep slab hydration induced by bending-related variations in tectonic pressure. Nature Geoscience, 2, 790–793.spa
dc.relation.referencesFranco, E., Rengifo, F., Llanos, D., Perez, J., Bedoya, N., Bermudez, M., . . . Ojeda, A. (2002). Sismicidad registrada por la red sismológica nacional de Colombia durante el tiempo de operación: Junio de 1993 hasta Agosto de 2002. Simposio Colombiano de Sismología.spa
dc.relation.referencesFréchet, J. (1985). Sismogenése et doublets sismiques, Thése d'Etat,. University of Sciencce and Technology, 10223-10236.spa
dc.relation.referencesFrisch, W., Meschede, M., & Blakey, R. (2011). Plate Tectonics, Continental Drift and Mountain Building. Springer.spa
dc.relation.referencesGEM, & SGC. (2018). Modelo Nacional de Amenaza sísmica de Colombia. Servicio Geológico Colombiano (SGC) – Grupo de Amenaza Sísmica. Fundación Global Earthquake Model (GEM)., 1-196.spa
dc.relation.referencesGot, J., Fréchet, J., & Klein, F. (1994). Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. Journal of Geophysical Research: Solid Earth, Volume 99, Issue B8, 15375-15386.spa
dc.relation.referencesGovers, R., & Wortel, M. (2005). Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth and Planetary Science Letters, Volume 236, Issues 1–2, 505-523.spa
dc.relation.referencesGrevemeyer, I., Ranero, C. R., Flueh, E. R., Kläschen, D., & Bialas, J. (2007). Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth and Planetary Science Letters, Volume 258, Issues 3–4, 528–542.spa
dc.relation.referencesGrim, P. (1970). Connection of the Panama fracture zone with the Galapagos rift zone, eastern tropical Pacific. Marine Geophysical Researches, volume 1, 85-90.spa
dc.relation.referencesHardy, N. C. (1991). Tectonic evolution of the easternmost Panama basin: Some new data and inferences. Journal of South American Earth Sciences, Volume 4, Issue 3, 261-269.spa
dc.relation.referencesHaslinger, F. (1998). Velocity structure, seismicity and seismotectonics of northwestern Greece between the Gulf of Arta and Zakynthos. Ph.D. thesis. Swiss Federal Institute of Technology of Zürich, 1–158.spa
dc.relation.referencesHavskov, J., & Ottemöller, L. (1999). SeisAn Earthquake Analysis Software. Seismological Research Letters 70, 532-534.spa
dc.relation.referencesHavskov, J., & Ottemöller, L. (2010). Routine Data Processing in Earthquake Seismology. Netherlands: Springer.spa
dc.relation.referencesHavskov, J., Bormann, P., & Schweitzer, J. (2011). Seismic Source Location. Postdam.spa
dc.relation.referencesHelffrich, G., Wookey, J., & Bastow, I. (2013). The Seismic Analysis Code: A Primer and User’s Guide. New York: Cambridge University Press.spa
dc.relation.referencesHerron, E., & Heirtzler, J. (1967). Sea-Floor Spreading near the Galapagos. Science Vol.158, 775-779.spa
dc.relation.referencesHewitt, E., & Hewitt, R. (1979). The Gibbs-Wilbraham phenomenon: An episode in fourier analysis. Archive for History of Exact Sciences, volume 21, 129-160.spa
dc.relation.referencesHey, R. (1977). Tectonic evolution of the Cocos-Nazca spreading center. Geological Society of American Bulletin, volume 88, 1404-1420.spa
dc.relation.referencesHusen, S. (1999). Local Earthquake Tomography of a Convergent Margin, North Chile - a Combined On- and Offshore Study. Ph.D. thesis. University of Kiel, 1–148.spa
dc.relation.referencesHusen, S., Kissling, E., Flueh, E., & Asch, G. (1999). Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network. Geophysical Journal International, Volume 138, Issue 3, 687–701.spa
dc.relation.referencesIsacks, B., Oliver, J., & Sykes, L. (1968). Seismology and the new global tectonics. Journal of Geophysical Research, Volume 73, Issue 18, 5855-5899.spa
dc.relation.referencesJerry, A. (1998). The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Boston: Kluwer Academic Publishers.spa
dc.relation.referencesKanamori, H. (1986). Rupture Process of Subduction-Zone Earthquakes. Annual Review of Earth and Planetary Sciences, Volume 14, 293-322.spa
dc.relation.referencesKennett, B., & Engdahl, E. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, Volume 105, Issue 2, 429-465.spa
dc.relation.referencesKey, K., Constable, S., Matsuno, T., Evans, R. L., & & Myer, D. (2012). Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench. Earth and Planetary Science Letters, Volumes 351–352, 45-53.spa
dc.relation.referencesKirby, S. H., Stein, S., Okal, E. A., & Rubie, D. C. (1996). Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, Volume 34, Issue 2, 261-306.spa
dc.relation.referencesKissling, E. (1988). Geotomography with local earthquake data. Reviews of Geophysics, Volume 26, Issue 4, 659-698.spa
dc.relation.referencesKissling, E., Ellsworth, W., Eberhart-Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research: Solid Earth, Volume 99, Issue B10, 635-646.spa
dc.relation.referencesKlein, F. (1978). Hypocenter location program HYPOINVERSE: Part I. Users guide to Versions 1, 2, 3, and 4. Part II. Source listings and notes. U.S. Geological Survey, 78-694.spa
dc.relation.referencesLee, W., & Lahr, J. (1975). HYPO71 (revised): a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. California: U.S. Dept. of the Interior, Geological Survey, National Center for Earthquake Research.spa
dc.relation.referencesLevenberg, K. (1944). A Method for the solution of certain nonlinear problems in Least Squares. The Quarterly of Applied Mathematics, Vol. 2, No. 2, 164-168.spa
dc.relation.referencesLienert, B. (1991). Monte Carlo simulation of errors in the anisotropy of magnetic susceptibility: A second‐rank symmetric tensor. Journal of Geophysical Research: Solid Earth, Volume 96, Issue B12, 539-544.spa
dc.relation.referencesLienert, B., & Havskov, J. (1995). A Computer Program for Locating Earthquakes Both Locally and Globally. Seismological Research Letters, Volume 66, 26-36.spa
dc.relation.referencesLienert, B., Berg, E., & Frazer, L. (1986). HYPOCENTER: An earthquake location method using centered, scaled, and adaptively damped least squares. Bulletin of the Seismological Society of America, volume 76, 771-783.spa
dc.relation.referencesLonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, Volume 404, Issues 3–4, 237-264.spa
dc.relation.referencesLonsdale, P., & Klitgord, G. (1978). Structure and tectonic history of the eastern Panama Basin. Geological Society of American Bulletin, 981-999.spa
dc.relation.referencesMatrullo, E. (2012). Fault delineation and stress orientations from the analysis of background, low magnitude seismicity in Southern Apennines (Italy). Ph.D. thesis. Università Di Bologna, pp 1-177.spa
dc.relation.referencesMatrullo, E., De Matteis, R., Satriano, C., Amoroso, O., & Zollo, A. (2013). An improved 1-D seismic velocity model for seismological studies in the Campania–Lucania region (Southern Italy). Geophysical Journal International, Volume 195, Issue 1, 460-473.spa
dc.relation.referencesMcCalpin, J. P., & Carver, G. (2009). Paleoseismology of compressional tectonic environments. International Geophysics, Volume 95, 315-419.spa
dc.relation.referencesMeissnar, R., Flueh, E., Stibane, F., & Berg, E. (1976). Dynamics of the active plate boundary in southwest Colombia according to recent geophysical measurements. Tectonophysics, Volume 35, Issues 1–3, 115-136.spa
dc.relation.referencesMeschede, M., & Barckhausen, U. (2000). The plate tectonic evolution of the Cocos-Nazca spreading center. Silver, E.A., Kimura, G., and Shipley, T.H. (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results Volume 170, 1-10.spa
dc.relation.referencesMeyer, R., Mooner, W., Hales, A., Helsey, C., Woollard, G., Hussong, D., & Ramirez, J. (1976). Refraction Observation Across a Leading Edge, Malpelo Island to the Colombian Cordillera Occidental. Project Nariño II, 105-132.spa
dc.relation.referencesMolnar, P., & Sykes, L. R. (1969). Tectonics of the Caribbean and Middle America Regions from Focal Mechanisms and Seismicity. Geological Society of American Bulletin, Volume 80, 1639-1684.spa
dc.relation.referencesMolnar, P., Freedman, D., & Shih, J. S. (1979). Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere. Geophysical Journal International, Volume 56, Issue 1, 41-54.spa
dc.relation.referencesMonsalve, M., & Arcila, M. (2009). Contexto tectónico de la zona volcánica del Puracé y provincia Alcalina del Valle superior del Magdalena. Ingeniería Investigación y Desarrollo, 8(1), 35-41.spa
dc.relation.referencesMonsalve, M., Correa, T., Arcila, M., & Dixon, J. (2009). Firma adakítica en los productos recientes de los volcanes Nevado del Huila y Puracé, Colombia. Boletín Geológico 43, 23-40.spa
dc.relation.referencesMora, H., Kellogg, J., Freymueller, J., Mencin, D., Fernandes, R., Diederix, H., . . . Corchuelo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, Volume 89, 76-91.spa
dc.relation.referencesNikolsky, S. (1977). A Course of Mathematical Analysis vol1 , vol2. Moscow: Mir Publisher.spa
dc.relation.referencesOjeda, A., & Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology 5, 575-593.spa
dc.relation.referencesPacheco, J., & Sykes, L. (1992). Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bulletin of the Seismological Society of America, volume 82, 1306-1349.spa
dc.relation.referencesPennington, W. (1981). Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, Volume 86, Issue B11, 10753-10770.spa
dc.relation.referencesRaff, A. (1968). Sea‐floor spreading-Another rift. Journal of Geophysical Research, Volume 73, Issue 12, 3699-3705.spa
dc.relation.referencesRamirez, J. (1979). Geological and Geophysical setting of Colombia. Project Nariño I.spa
dc.relation.referencesRanero, C. R., Villaseñor, A., Phipps Morgan, J., & Weinrebe, W. (2005). Relationship between bend‐faulting at trenches and intermediate‐depth seismicity. Geochemistry, Geophysics, Geosystems, Volume 6, Issue 12, 1-25.spa
dc.relation.referencesRanero, C., Phipps, M. J., McIntosh, K., & Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367-373.spa
dc.relation.referencesReyners, M., Donna, E., Stuart, G., & Yuichi, N. (2006). Imaging subduction from the trench to 300 km depth beneath the central North Island, New Zealand, with Vp and Vp/Vs. Geophysical Journal International, Volume 165, Issue 2, 565-583.spa
dc.relation.referencesRuff, L., & Kanamori, H. (1980). Seismicity and the subduction process. Physics of the Earth and Planetary Interiors, Volume 23, Issue 3, 240-252.spa
dc.relation.referencesRyan, W. B., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., . . . Zemsky, R. (2009). Global Multi‐Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, Volume 10, Issue 3.spa
dc.relation.referencesSacks, P. E., & Secor Jr, D. T. (1990). Delamination in collisional orogens. Geology, Volume 18, 999-1002.spa
dc.relation.referencesScarfi, L., Raffaele, R., Imposa, S., & Scaltrito, A. (2009). Crustal seismic velocity in the Marche region (Central Italy): computation of a minimum 1-D model with seismic station corrections. Environmental Geology, Volume 56, 1115-1121.spa
dc.relation.referencesSibson, R. H. (2000). Fluid involvement in normal faulting. Journal of Geodynamics, Volume 29, Issues 3–5, 469-499.spa
dc.relation.referencesStein, S., & Wysession, M. (2003). An Introduction to Seismology, Earthquakes, and Earth Structure. Wiley-Blackwell.spa
dc.relation.referencesSyracuse, E., Maceira, M., Prieto, G., Zhang, H., & Ammon, C. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, Volume 444, 139-149.spa
dc.relation.referencesTaboada, A., Dimaté, C., & Fuenzalida, A. (1998). Sismotectónica de Colombia: deformación continental activa y subducción. Física de la Tierra, 111-148.spa
dc.relation.referencesTaboada, A., Rivera, L., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., . . . Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, Volume 19, Issue 5, 787-813.spa
dc.relation.referencesThurber, C. (1983). Earthquake locations and three‐dimensional crustal structure in the Coyote Lake Area, central California. Journal of Geophysical Research: Solid Earth, Volume 88, Issue B10, 8226-8236.spa
dc.relation.referencesThurber, C. (1992). Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors, Volume 75, Issues 1–3, 55-62.spa
dc.relation.referencesTurcotte, D., & Schubert, G. (2014). Geodynamics. New York: Cambridge University press.spa
dc.relation.referencesUyeda, S., & Kanamori, H. (1979). Back‐arc opening and the mode of subduction. Journal of Geophysical Research: Solid Earth, Volume 84, Issue B3, 1049-1061.spa
dc.relation.referencesVan Andel, T., Heath, G., Malfait, B., Heinrichs, D., & Ewing, J. (1971). Tectonics of the Panama Basin, Eastern Equatorial Pacific. Geological Society of American Bulletin, Volume 82, 1489-1508.spa
dc.relation.referencesVan der Hilst, R., & Mann, P. (1994). Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, Volume 22, 451-454.spa
dc.relation.referencesVargas, C., & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc‐Indenter with Northwestern South America. Bulletin of the Seismological Society of America, Volume 103, 2025-2046.spa
dc.relation.referencesWadati, K. (1993). On the Travel Time of Earthquake Waves. Journal of the Meteorological Society of Japan, 101-111.spa
dc.relation.referencesWagner, L., Jaramillo, J., Ramirez-Hoyos, L., Monsalve, G., Cardona, A., & Becker, T. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, Volume 44, Issue 13.spa
dc.relation.referencesWalck, M. (1988). Three‐dimensional Vp/Vs variations for the Coso Region, California. Journal of Geophysical Research: Solid Earth, Volume 93, Issue B3, 2047-2052.spa
dc.relation.referencesWaldhauser, F., & Ellsworth, W. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, Volume 90, 1353-1368.spa
dc.relation.referencesWesson, R., Lee, W., & Gibbs, J. (1971). Aftershocks of the San Fernando Earthquake. U.S. Geological survey Professional Paper 73, 24-29.spa
dc.relation.referencesYano, T., & Matsubara, M. (2017). Effect of newly refined hypocenter locations on the seismic activity recorded during the 2016 Kumamoto Earthquake sequence. Earth, Planets and Space volume 69, 69-74.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc551 - Geología, hidrología, meteorologíaspa
dc.subject.ddc558 - Ciencias de la tierra de América del Surspa
dc.subject.ddc513 - Aritméticaspa
dc.subject.proposalsubductioneng
dc.subject.proposalsubducciónspa
dc.subject.proposalzona de Wadati-Benioffspa
dc.subject.proposalWadati-Benioff zoneeng
dc.subject.proposalmodelo de velocidad 1-Dspa
dc.subject.proposalvelocity model 1-Deng
dc.subject.proposalNazca plateeng
dc.subject.proposalplaca de Nazcaspa
dc.subject.proposalsismotectónicaspa
dc.subject.proposalseismotectonicseng
dc.titleGeometría de subducción de la placa de Nazca bajo el noroeste de Suramérica, a partir del análisis de microsismicidad recientespa
dc.title.alternativeSubduction geometry of the Nazca plate beneath northwestern South America from recent microseismicity analysisspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026262378.2020.pdf
Tamaño:
6.91 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: