Obtención de conjugados péptido-resorcinareno mediante reacción de adición de Michael tiol-maleimida y evaluación de su potencial antibacteriano

dc.contributor.advisorMaldonado Villamil, Mauriciospa
dc.contributor.advisorRivera Monroy, Zuly Jennyspa
dc.contributor.authorNiño Ramírez, Víctor Alfonsospa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000170362spa
dc.contributor.orcidNiño Ramírez, Víctor Alfonso [0000000258204458]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Victor-Nino-Ramirez?ev=prf_overviewspa
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicasspa
dc.contributor.researchgroupAplicaciones Analíticas de Compuestos Orgánicos (Aaco)spa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=57217067732spa
dc.date.accessioned2025-04-01T12:40:36Z
dc.date.available2025-04-01T12:40:36Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos calix[4]resorcinarenos son macrociclos polihidroxilados que permiten incorporar en varios puntos de su estructura grupos funcionales reactivos, esta versatilidad sintética los hace atractivos para la conjugación con otras moléculas, como los péptidos antibacterianos (PAMs). En este trabajo, se exploraron rutas sintéticas que permitieran la unión selectiva entre los PAMs y los calix[4]resorcinarenos usando la reacción de adición de Michael tiol-maleimida, clasificada como reacción de química click. Con el desarrollo del proyecto se pretendía enriquecer las opciones de rutas sintéticas para la obtención de nuevos agentes antibacterianos, basados en péptidos modificados, polivalentes y que presenten motivos no proteicos en su estructura. En este estudio específicamente, se optimizaron rutas sintéticas para la obtención de precursores, derivados de (i) resorcinarenos y de (ii) PAMs, funcionalizados con grupos tiol o maleimida. Para el caso de los resorcinarenos es el primer reporte de la funcionalización de estas moléculas con el grupo maleimida. Se evaluaron condiciones de la reacción de adición de Michael tiol-maleimida para formar conjugados del tipo (péptido)n-calix[4]resorcinareno (n = 1, 2, 3 o 4), lo que permitió la obtención de seis nuevos conjugados con una o dos copias del motivo peptídico LfcinB (20-25): RRWQWR. Cabe resaltar, que fue posible unir al macrociclo un péptido palindrómico de trece residuos, siendo la primera vez que se logra funcionalizar los resorcinarenos con secuencias peptídicas de más de seis residuos. Finalmente, se evaluó la actividad antibacteriana de los conjugados, frente a Escherichia coli (Gram-negativa) y Enterococcus faecalis (Gram-positiva). Los avances obtenidos abren nuevas rutas para la síntesis de moléculas novedosas, permitiendo la incorporación de otros PAMs mediante una reacción limpia, selectiva y modular como lo es la adición de Michael tiol-maleimida (Texto tomado de la fuente).spa
dc.description.abstractCalix[4]resorcinarenes are polyhydroxylated macrocycles that allow the incorporation of reactive functional groups at various points in their structure. This synthetic versatility makes them attractive for conjugation with other molecules, such as antibacterial peptides (PAMs). In this work, synthetic routes were explored that allow the selective binding between PAMs and calix[4]resorcinarenes using the thiol-maleimide Michael addition reaction, classified as a click chemistry reaction. The development of the project was intended to enrich the options of synthetic routes for obtaining new antibacterial agents, based on modified, polyvalent peptides that present non-protein motifs in their structure. In this study specifically, synthetic routes were optimized for obtaining precursors, derivatives of (i) resorcinarenes and (ii) PAMs, functionalized with thiol or maleimide groups. In the case of resorcinarenes, this is the first report of the functionalization of these molecules with the maleimide group. Conditions of the Michael thiol-maleimide addition reaction were evaluated to form conjugates of the (peptide)n-calix[4]resorcinarene type (n = 1, 2, 3 or 4), which allowed obtaining six new conjugates with one or two copies of the LfcinB peptide motif (20-25): RRWQWR. It is worth noting that it was possible to bind the macrocycle with a palindromic peptide of thirteen residues, being the first time that resorcinarenes have been functionalized with peptide sequences of more than six residues. Finally, the antibacterial activity of the conjugates was evaluated against Escherichia coli (Gram-negative) and Enterococcus faecalis (Gram-positive). The advances obtained open new routes for the synthesis of novel molecules, allowing the incorporation of other PAMs through a clean, selective and modular reaction such as the Michael addition.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.methodsCon el fin de dar respuesta a la pregunta de investigación y a la hipótesis planteada, dentro del marco de la presente tesis doctoral, se implementaron las siguientes etapas: ETAPA 1. Optimización de las rutas sintéticas para la obtención de moléculas precursoras funcionalizadas con grupo tiol o maleimida: derivados de resorcinarenos (Etapa 1A) y derivados de péptidos antimicrobianos, PAMs (Etapa 1B). ETAPA 2. Optimización de las condiciones de reacción de adición de Michael, para la formación de conjugados de tipo (péptido)n-calix[4]resorcinareno (n = 1, 2, 3 o 4). ETAPA 3. Evaluación de la actividad antibacteriana de los conjugados obtenidos frente a E. coli y E. faecalisspa
dc.format.extent254 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87801
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesGuevara, Y.A.S.; Santos, M.H.C.; Gomes, F.I.R.; Sheheryar; Mesquita, F.P.; Souza, P.F.N. A Historical, Economic, and Technical-Scientific Approach to the Current Crisis in the Development of Antibacterial Drugs: Promising Role of Antibacterial Peptides in This Scenario. Microb Pathog 2023, 179.spa
dc.relation.referencesAhmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial Resistance: Impacts, Challenges, and Future Prospects. Journal of Medicine, Surgery, and Public Health 2024, 2, 100081, doi:10.1016/j.glmedi.2024.100081.spa
dc.relation.referencesDe La Cadena, E.; Pallares, C.J.; García-Betancur, J.C.; Porras, J.A.; Villegas, M.V. Update of Antimicrobial Resistance in Level III and IV Health Institutions in Colombia between January 2018 and December 2021. Biomedica 2023, 43, 457–473, doi:10.7705/BIOMEDICA.7065spa
dc.relation.referencesDarwish, R.M.; Matar, S.G.; Snaineh, A.A.A.; Alsharif, M.R.; Yahia, A.B.; Mustafa, H.N.; Hasabo, E.A. Impact of Antimicrobial Stewardship on Antibiogram, Consumption and Incidence of Multi Drug Resistance. BMC Infect Dis 2022, 22, doi:10.1186/s12879-022-07906-1.spa
dc.relation.referencesTimmerman, P.; Verboom, W.; Reinhoudt, D.N. Resorcinarenes. Tetrahedron 1996, 52, 2663–2704, doi:10.1016/0040-4020(95)00984-1.spa
dc.relation.referencesScott, M.P.; Sherburn, M.S. Resorcinarenes and Pyrogallolarenes. Comprehensive Supramolecular Chemistry II 2017, 337–374, doi:10.1016/B978-0-12-409547-2.12475-8.spa
dc.relation.referencesGutsche, C.D. Single Step Synthesis and Properties of Calixarenes. In Calixarenes: A Versatile Class of Macrocyclic Compounds; Jaques, V., Volker, B., Eds.; Springer, Dordrecht, 1991; pp. 3–37.spa
dc.relation.referencesIwanek, W.; Wzorek, A. Introduction to the Chirality of Resorcinarenes. Mini Rev Org Chem 2009, 6, 398–411, doi:10.2174/157019309789371604.spa
dc.relation.referencesJain, V.K.; Kanaiya, P.H. Chemistry of Calix[4]Resorcinarenes. Russian Chemical Reviews 2011, 80, 75–102, doi:10.1070/RC2011V080N01ABEH004127.spa
dc.relation.referencesWeinelt, F.; Schneider, H.J. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. Journal of Organic Chemistry 1991, 56, 5527–5535, doi:10.1021/JO00019A011/SUPPL_FILE/JO00019A011_SI_001.PDF.spa
dc.relation.referencesBotta, B.; Cassani, M.; D’Acquarica, I.; Misiti, D.; Subissati, D.; Monache, G. Resorcarenes: Emerging Class of Macrocyclic Receptors. Curr Org Chem 2010, 9, 337–355, doi:10.2174/1385272053174958.spa
dc.relation.referencesSverker Hógberg, A.G. Cyclooligomeric Phenol-Aldehyde Condensation Products. 2. Stereoselective Synthesis and DNMR Study of Two 1,8,15,22-Tetraphenyl[14]Metacyclophan-3,5,10,12,17,19,24,26-Octols. J Am Chem Soc 2002, 102, 6046–6050, doi:10.1021/JA00539A012.spa
dc.relation.referencesLiu, J.L.; Sun, M.; Shi, Y.H.; Zhou, X.M.; Zhang, P.Z.; Jia, A.Q.; Zhang, Q.F. Functional Modification, Self-Assembly and Application of Calix[4]Resorcinarenes. J Incl Phenom Macrocycl Chem 2022, 1, 1–33, doi:10.1007/S10847-021-01119-W/FIGURES/40.spa
dc.relation.referencesKashapov, R.R.; Razuvayeva, Y.S.; Ziganshina, A.Y.; Mukhitova, R.K.; Sapunova, A.S.; Voloshina, A.D.; Syakaev, V. V.; Latypov, S.K.; Nizameev, I.R.; Kadirov, M.K.; et al. N-Methyl-d-Glucamine–Calix[4]Resorcinarene Conjugates: Self-Assembly and Biological Properties. Molecules 2019, 24, doi:10.3390/MOLECULES24101939.spa
dc.relation.referencesVelásquez-Silva, B.A.; Castillo-Aguirre, A.; Rivera-Monroy, Z.J.; Maldonado, M. Aminomethylated Calix[4]Resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface. Polymers 2019, Vol. 11, Page 1147 2019, 11, 1147, doi:10.3390/POLYM11071147.spa
dc.relation.referencesChirachanchai, S.; Phongtamrug, S.; Laobuthee, A.; Tashiro, K. Mono-Substituted Phenol-Based Benzoxazines: Inevitable Dimerization Via Self-Termination and Its Metal Complexation. Handbook of Benzoxazine Resins 2011, 111–126, doi:10.1016/B978-0-444-53790-4.00049-7.spa
dc.relation.referencesKuberski, B.; Pecul, M.; Szumna, A. A Chiral “Frozen” Hydrogen Bonding in C4-Symmetric Inherently Chiral Resorcin[4]Arenes: NMR, X-Ray, Circular Dichroism, and Theoretical Study (Eur. J. Org. Chem. 18/2008). European J Org Chem 2008, 2008, 3027–3027, doi:10.1002/EJOC.200890045.spa
dc.relation.referencesPedro-Hernández, L.D.; Martínez-Klimova, E.; Cortez-Maya, S.; Mendoza-Cardozo, S.; Ramírez-Ápan, T.; Martínez-García, M. Synthesis, Characterization, and Nanomedical Applications of Conjugates between Resorcinarene-Dendrimers and Ibuprofen. Nanomaterials (Basel) 2017, 7, doi:10.3390/NANO7070163.spa
dc.relation.referencesCortez-Maya, S.; Hernández-Ortega, S.; Ramírez-Apan, T.; Lijanova, I. V.; Martínez-García, M. Synthesis of 5-Aryl-1,4-Benzodiazepine Derivatives Attached in Resorcinaren-PAMAM Dendrimers and Their Anti-Cancer Activity. Bioorg Med Chem 2012, 20, 415–421, doi:10.1016/J.BMC.2011.10.070.spa
dc.relation.referencesMendoza-Cardozo, S.; Pedro-Hernández, L.D.; Organista-Mateos, U.; Allende-Alarcón, L.I.; Martínez-Klimova, E.; Ramírez-Ápan, T.; Martínez-García, M. In Vitro Activity of Resorcinarene–Chlorambucil Conjugates for Therapy in Human Chronic Myelogenous Leukemia Cells. https://doi.org/10.1080/03639045.2019.1569036 2019, 45, 683–688, doi:10.1080/03639045.2019.1569036.spa
dc.relation.referencesDaniel Pedro-Hernández, L.; Hernández-Montalbán, C.; Martínez-Klimova, E.; Ramírez-Ápan, T.; Martínez-García, M. Synthesis and Anticancer Activity of Open-Resorcinarene Conjugates. Bioorg Med Chem Lett 2020, 30, 127275, doi:10.1016/J.BMCL.2020.127275.spa
dc.relation.referencesAbosadiya, H.M.; Hasbullah, S.A.; Mackeen, M.M.; Low, S.C.; Ibrahim, N.; Koketsu, M.; Yamin, B.M. Synthesis, Characterization, X-Ray Structure and Biological Activities of C-5-Bromo-2-Hydroxyphenylcalix[4]-2-Methyl Resorcinarene. Molecules 2013, Vol. 18, Pages 13369-13384 2013, 18, 13369–13384, doi:10.3390/MOLECULES181113369.spa
dc.relation.referencesNgodwana, L.; Bout, W.; Nqaba, Z.; Motlokoa, T.; Vatsha, B. Methodologies for the Derivatization of Resorcin[4]Arenes at the Upper Rim Ortho-Positions. European J Org Chem 2022, 2022.spa
dc.relation.referencesMcIldowie, M.J.; Mocerino, M.; Ogden, M.I.; Skelton, B.W. Pyridine-Functionalised C4 Symmetric Resorcinarenes. Tetrahedron 2007, 63, 10817–10825, doi:10.1016/J.TET.2007.07.049.spa
dc.relation.referencesKobayashi, K.; Yamanaka, M. Self-Assembled Capsules Based on Tetrafunctionalized Calix[4]Resorcinarene Cavitands. Chem Soc Rev 2014, 44, 449–466, doi:10.1039/C4CS00153B.spa
dc.relation.referencesKazakova, E.K.; Makarova, N.A.; Ziganshina, A.U.; Muslinkina, L.A.; Muslinkin, A.A.; Habicher, W.D. Novel Water-Soluble Tetrasulfonatomethylcalix[4]Resorcinarenes. Tetrahedron Lett 2000, 41, 10111–10115, doi:10.1016/S0040-4039(00)01798-6.spa
dc.relation.referencesMillership, J.S. A Preliminary Investigation of the Solution Complexation of 4-Sulphonic Calix[n]Arenes with Testosterone. Journal of inclusion phenomena and macrocyclic chemistry 2001 39:3 2001, 39, 327–331, doi:10.1023/A:1011196217714.spa
dc.relation.referencesCai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of Quercetin: Problems and Promises. Curr Med Chem 2013, 20, 2572–2582, doi:10.2174/09298673113209990120.spa
dc.relation.referencesRehman, K.; Ali, I.; El-Haj, B.M.; Kanwal, T.; Maharjan, R.; Saifullah, S.; Imran, M.; Shafiullah; Usman Simjee, S.; Raza Shah, M. Synthesis of Novel Biocompatible Resorcinarene Based Nanosized Dendrimer-Vesicles for Enhanced Anti-Bacterial Potential of Quercetin. J Mol Liq 2021, 341, 116921, doi:10.1016/J.MOLLIQ.2021.116921.spa
dc.relation.referencesBerghaus, C.; Feigel, M. Peptide-Cavitands Based on Resorc[4]Arenes − Synthesis and Structure. European J Org Chem 2003, 2003, 3200–3208, doi:10.1002/EJOC.200300128.spa
dc.relation.referencesBotta, B.; D’Acquarica, I.; Delle Monache, G.; Subissati, D.; Uccello-Barretta, G.; Mastrini, M.; Nazzi, S.; Speranza, M. Synthesis and Host-Guest Studies of Chiral N-Linked Peptidoresorc[4]Arenes. Journal of Organic Chemistry 2007, 72, 9283–9290, doi:10.1021/JO7016636/SUPPL_FILE/JO7016636-FILE002.PDF.spa
dc.relation.referencesShurpik, D.N.; Padnya, P.L.; Stoikov, I.I.; Cragg, P.J.; Butlerov, A.M.; Berberan-Santos, M.; Marcos, P.M. Antimicrobial Activity of Calixarenes and Related Macrocycles. Molecules 2020, Vol. 25, Page 5145 2020, 25, 5145, doi:10.3390/MOLECULES25215145.spa
dc.relation.referencesYe, X.; Wang, Q.; Sun, M.; Chen, L.; Jia, A.; Zhang, Q. Syntheses and Biological Activities of Calix[4]Resorcinarene Derivatives Modified by Sulfonic Acid and Sulfonamides. RSC Adv 2024, 14, 25115–25119, doi:10.1039/d4ra04426f.spa
dc.relation.referencesDawn, A.; Chandra, H.; Ade-Browne, C.; Yadav, J.; Kumari, H. Multifaceted Supramolecular Interactions from C-Methylresorcin[4]Arene Lead to an Enhancement in In Vitro Antibacterial Activity of Gatifloxacin. Chemistry – A European Journal 2017, 23, 18171–18179, doi:10.1002/CHEM.201704291.spa
dc.relation.referencesPineda-Castañeda, H.M.; Maldonado-Villamil, M.; Parra-Giraldo, C.M.; Leal-Castro, A.L.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Peptide-Resorcinarene Conjugates Obtained via Click Chemistry: Synthesis and Antimicrobial Activity. Antibiotics 2023, 12, doi:10.3390/antibiotics12040773.spa
dc.relation.referencesFry, D.E. Antimicrobial Peptides. Surg Infect (Larchmt) 2018, 19, 804–811, doi:10.1089/SUR.2018.194.spa
dc.relation.referencesBrandenburg, K.; Heinbockel, L.; Correa, W.; Lohner, K. Peptides with Dual Mode of Action: Killing Bacteria and Preventing Endotoxin-Induced Sepsis. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858, 971–979, doi:10.1016/J.BBAMEM.2016.01.011.spa
dc.relation.referencesLeón-Calvijo, M.A.; Leal-Castro, A.L.; Almanzar-Reina, G.A.; Rosas-Pérez, J.E.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia Coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. Biomed Res Int 2015, 2015, doi:10.1155/2015/453826.spa
dc.relation.referencesJ. Afacan, N.; T.Y. Yeung, A.; M. Pena, O.; E.W. Hancock, R. Therapeutic Potential of Host Defense Peptides in Antibiotic-Resistant Infections. Curr Pharm Des 2012, 18, 807–819, doi:10.2174/138161212799277617.spa
dc.relation.referencesGifford, J.L.; Hunter, H.N.; Vogel, H.J. Lactoferricin: A Lactoferrin-Derived Peptide with Antimicrobial, Antiviral, Antitumor and Immunological Properties. Cellular and Molecular Life Sciences 2005, 62, 2588–2598, doi:10.1007/s00018-005-5373-z.spa
dc.relation.referencesHuertas Méndez, N.D.J.; Vargas Casanova, Y.; Gómez Chimbi, A.K.; Hernández, E.; Leal Castro, A.L.; Melo Diaz, J.M.; Rivera Monroy, Z.J.; García Castañeda, J.E. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. Coli ATCC 11775, S. Maltophilia ATCC 13636 and S. Enteritidis ATCC 13076. Molecules 2017, 22, 1–10, doi:10.3390/molecules22030452.spa
dc.relation.referencesVega, S.C.; Martínez, D.A.; Chalá, M. del S.; Vargas, H.A.; Rosas, J.E. Design, Synthesis and Evaluation of Branched RRWQWR-Based Peptides as Antibacterial Agents against Clinically Relevant Gram-Positive and Gram-Negative Pathogens. Front Microbiol 2018, 9, doi:10.3389/fmicb.2018.00329.spa
dc.relation.referencesVega, S.C.; Martínez, D.A.; Chalá, M. del S.; Vargas, H.A.; Rosas, J.E. Design, Synthesis and Evaluation of Branched RRWQWR-Based Peptides as Antibacterial Agents against Clinically Relevant Gram-Positive and Gram-Negative Pathogens. Front Microbiol 2018, 9, 329, doi:10.3389/FMICB.2018.00329/BIBTEX.spa
dc.relation.referencesHuertas Méndez, N.D.J.; Vargas Casanova, Y.; Gómez Chimbi, A.K.; Hernández, E.; Leal Castro, A.L.; Melo Diaz, J.M.; Rivera Monroy, Z.J.; García Castañeda, J.E. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. Coli ATCC 11775, S. Maltophilia ATCC 13636 and S. Enteritidis ATCC 13076. Molecules 2017, Vol. 22, Page 452 2017, 22, 452, doi:10.3390/MOLECULES22030452.spa
dc.relation.referencesPineda-Castañeda, H.M.; Bonilla-Velásquez, L.D.; Leal-Castro, A.L.; Fierro-Medina, R.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Use of Click Chemistry for Obtaining an Antimicrobial Chimeric Peptide Containing the LfcinB and Buforin II Minimal Antimicrobial Motifs. ChemistrySelect 2020, 5, 1655–1657, doi:10.1002/SLCT.201903834.spa
dc.relation.referencesArdila-Chantré, N.; Hernández-Cardona, A.K.; Pineda-Castañeda, H.M.; Estupiñan-Torres, S.M.; Leal-Castro, A.L.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Short Peptides Conjugated to Non-Peptidic Motifs Exhibit Antibacterial Activity. RSC Adv 2020, 10, 29580–29586, doi:10.1039/D0RA05937D.spa
dc.relation.referencesKolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie - International Edition 2001, 40, 2004–2021.spa
dc.relation.referencesHoyle, C.E.; Bowman, C.N. Thiol-Ene Click Chemistry. Angewandte Chemie - International Edition 2010, 49, 1540–1573.spa
dc.relation.referencesNair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chemistry of Materials 2013, 26, 724–744, doi:10.1021/CM402180T.spa
dc.relation.referencesRenault, K.; Fredy, J.W.; Renard, P.Y.; Sabot, C. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. undefined 2018, 29, 2497–2513, doi:10.1021/ACS.BIOCONJCHEM.8B00252.spa
dc.relation.referencesRoseli, R.B.; Keto, A.B.; Krenske, E.H. Mechanistic Aspects of Thiol Additions to Michael Acceptors: Insights from Computations. Wiley Interdiscip Rev Comput Mol Sci 2023, 13, doi:10.1002/wcms.1636.spa
dc.relation.referencesCal, P.M.S.D.; Bernardes, G.J.L.; Gois, P.M.P. Cysteine-Selective Reactions for Antibody Conjugation. Angewandte Chemie - International Edition 2014, 53, 10585–10587, doi:10.1002/anie.201405702.spa
dc.relation.referencesRenault, K.; Fredy, J.W.; Renard, P.Y.; Sabot, C. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. Bioconjug Chem 2018, 29, 2497–2513, doi:10.1021/acs.bioconjchem.8b00252.spa
dc.relation.referencesBartolami, E.; Knoops, J.; Bessin, Y.; Fossépré, M.; Chamieh, J.; Dumy, P.; Surin, M.; Ulrich, S. One-Pot Self-Assembly of Peptide-Based Cage-Type Nanostructures Using Orthogonal Ligations. Chemistry - A European Journal 2017, 23, 14323–14331, doi:10.1002/chem.201702974.spa
dc.relation.referencesMartínez-Jothar, L.; Doulkeridou, S.; Schiffelers, R.M.; Sastre Torano, J.; Oliveira, S.; van Nostrum, C.F.; Hennink, W.E. Insights into Maleimide-Thiol Conjugation Chemistry: Conditions for Efficient Surface Functionalization of Nanoparticles for Receptor Targeting. Journal of Controlled Release 2018, 282, 101–109, doi:10.1016/J.JCONREL.2018.03.002.spa
dc.relation.referencesInsuasty-Cepeda, D.S.; Maldonado, M.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Obtaining an Immunoaffinity Monolithic Material: Poly(GMA-Co-EDMA) Functionalized with an HPV-Derived Peptide Using a Thiol–Maleimide Reaction. RSC Adv 2021, 11, 4247–4255, doi:10.1039/D0RA09095F.spa
dc.relation.referencesVamisetti, G.B.; Satish, G.; Sulkshane, P.; Mann, G.; Glickman, M.H.; Brik, A. On-Demand Detachment of Succinimides on Cysteine to Facilitate (Semi)Synthesis of Challenging Proteins. J Am Chem Soc 2020, 142, 19558–19569, doi:10.1021/jacs.0c07663.spa
dc.relation.referencesStephen H. Frayne, R.M.S. and B.H.N. Dendritic Architectures by Orthogonal Thiol-¬‐Maleimide “Click” and Furan-¬‐Maleimide Dynamic Covalent Chemistries. Org Biomol Chem 2019, 17, 7878–7883, doi:10.1039/x0xx00000x.spa
dc.relation.referencesWängler, C.; Maschauer, S.; Prante, O.; Schäfer, M.; Schirrmacher, R.; Bartenstein, P.; Eisenhut, M.; Wängler, B. Multimerization of CRGD Peptides by Click Chemistry: Synthetic Strategies, Chemical Limitations, and Influence on Biological Properties. ChemBioChem 2010, 11, 2168–2181, doi:10.1002/CBIC.201000386.spa
dc.relation.referencesVan De Vijver, P.; Schmitt, M.; Suylen, D.; Scheer, L.; Thomassen, M.C.L.G.D.; Schurgers, L.J.; Griffin, J.H.; Koenen, R.R.; Hackeng, T.M. Incorporation of Disulfide Containing Protein Modules into Multivalent Antigenic Conjugates: Generation of Antibodies against the Thrombin-Sensitive Region of Murine Protein S. J Am Chem Soc 2012, 134, 19318–19321, doi:10.1021/JA306993T/SUPPL_FILE/JA306993T_SI_001.PDF.spa
dc.relation.referencesBelbekhouche, S.; Guerrouache, M.; Carbonnier, B. Thiol–Maleimide Michael Addition Click Reaction: A New Route to Surface Modification of Porous Polymeric Monolith. Macromol Chem Phys 2016, 217, 997–1006, doi:10.1002/MACP.201500427.spa
dc.relation.referencesNair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chemistry of Materials 2014, 26, 724–744, doi:10.1021/CM402180T/ASSET/IMAGES/CM402180T.SOCIAL.JPEG_V03.spa
dc.relation.referencesDudchak, R.; Podolak, M.; Holota, S.; Szewczyk-Roszczenko, O.; Roszczenko, P.; Bielawska, A.; Lesyk, R.; Bielawski, K. Click Chemistry in the Synthesis of Antibody-Drug Conjugates. Bioorg Chem 2024.spa
dc.relation.referencesLiu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Copper(II)-Catalyzed Single-Step Synthesis of Aryl Thiols from Aryl Halides and 1,2-Ethanedithiol. Adv Synth Catal 2015, 357, 2205–2212, doi:10.1002/adsc.201400941.spa
dc.relation.referencesInsuasty, D.; Pineda, H.; Rodriguez, A.V.; García, J.; Mauricio, M.; Fierro, R.; Rivera, Z.J. Synthetic Peptide Purification via Solid-Phase Economical , Fast, and Efficient Methodology. Molecules 2019, 24, 1215, doi:10.3390/molecules24071215.spa
dc.relation.referencesPineda-Castañeda, H.M.; Maldonado, M.; Rivera-Monroy, Z.J. Efficient Separation of C-Tetramethylcalix[4]Resorcinarene Conformers by Means of Reversed-Phase Solid-Phase Extraction. ACS Omega 2023, 8, 231–237, doi:10.1021/acsomega.2c03218.spa
dc.relation.referencesRodríguez, V.; Pineda, H.; Ardila, N.; Insuasty, D.; Cárdenas, K.; Román, J.; Urrea, M.; Ramírez, D.; Fierro, R.; Rivera, Z.; et al. Efficient Fmoc Group Removal Using Diluted 4-Methylpiperidine: An Alternative for a Less-Polluting SPPS-Fmoc/TBu Protocol. Int J Pept Res Ther 2020, 26, 585–587, doi:10.1007/s10989-019-09865-9.spa
dc.relation.referencesRodríguez, V.; Pineda, H.; Ardila, N.; Insuasty, D.; Cárdenas, K.; Román, J.; Urrea, M.; Ramírez, D.; Fierro, R.; Rivera, Z.; et al. Efficient Fmoc Group Removal Using Diluted 4-Methylpiperidine: An Alternative for a Less-Polluting SPPS-Fmoc/TBu Protocol. Int J Pept Res Ther 2019, 4–6, doi:10.1007/s10989-019-09865-9.spa
dc.relation.referencesInsuasty-Cepeda, D.S.; Rodríguez-Mayor, A.V.; Pineda-Castañeda, H.M.; García-Castañeda, J.E.; Maldonado-Villamil, M.; Fierro-Medina, R.; Rivera-Monroy, Z.J. Synthetic Peptide Purification via Solid-Phase Economical , Fast , and Efficient Methodology. Molecules 2019, 24, 1215, doi:10.3390/molecules24071215.spa
dc.relation.referencesCockerill, F. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2015.spa
dc.relation.referencesVelásquez-Silva, B.A.; Castillo-Aguirre, A.; Rivera-Monroy, Z.J.; Maldonado, M. Aminomethylated Calix[4]Resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface. Polymers 2019, Vol. 11, Page 1147 2019, 11, 1147, doi:10.3390/POLYM11071147.spa
dc.relation.referencesVelásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z.J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J Mol Struct 2017, 1137, 380–386, doi:10.1016/j.molstruc.2017.02.059.spa
dc.relation.referencesReynolds, M.R.; Pick, F.S.; Hayward, J.J.; Trant, J.F. A Concise Synthesis of a Methyl Ester 2-Resorcinarene: A Chair-Conformation Macrocycle. Symmetry (Basel) 2021, 13, doi:10.3390/sym13040627.spa
dc.relation.referencesHe, M.; Johnson, R.J.; Escobedo, J.O.; Beck, P.A.; Melancon, B.J.; Treleaven, W.D.; Strongin, R.M.; Lewis, P.T.; Kim, K.K.; St. Luce, N.N.; et al. Chromophore Formation in Resorcinarene Solutions and the Visual Detection of Mono- and Oligosaccharides. J Am Chem Soc 2002, 124, 5000–5009, doi:10.1021/ja017713h.spa
dc.relation.referencesClayden, J.; Greeves, N.; Warren, S. Organic Chemistry; Second Edition.; OxfordUniversityPress: Oxford, 2012.spa
dc.relation.referencesKlein, D. Organic Chemistry; First Edition.; Wiley: Danvers, Massachusetts, 2012.spa
dc.relation.referencesWade, L. Química Orgánica; 2011th ed.; Pearson: México, 2012; Vol. 1.spa
dc.relation.referencesMatsushita, Y.; Matsui, T. Synthesis of Aminomethylated Calix[4]Resorcinarenes. Tetrahedron Lett 1993, 34, 7433–7436, doi:10.1016/S0040-4039(00)60145-4.spa
dc.relation.referencesKallen, R.G. Mechanism of Reactions Involving Schiff Base Intermediates. Thiazolidine Formation from L-Cysteine and Formaldehyde. J Am Chem Soc 1971, 93, 6236–6248, doi:10.1021/ja00752a040.spa
dc.relation.referencesKamps, J.J.A.G.; Hopkinson, R.J.; Schofield, C.J.; Claridge, T.D.W. How Formaldehyde Reacts with Amino Acids. Commun Chem 2019, 2, doi:10.1038/s42004-019-0224-2.spa
dc.relation.referencesKuberski, B.; Pecul, M.; Szumna, A. A Chiral “Frozen” Hydrogen Bonding in C4-Symmetric Inherently Chiral Resorcin[4]Arenes: NMR, X-Ray, Circular Dichroism, and Theoretical Study. European J Org Chem 2008, 3069–3078, doi:10.1002/ejoc.200800247.spa
dc.relation.referencesPretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds: Tables of Spectral Data; Springer Berlin Heidelberg, 2009.spa
dc.relation.referencesClaridge, T.D.W. High-Resolution NMR Techniques in Organic Chemistry: Third Edition; Elsevier Inc., 2016.spa
dc.relation.referencesLide, D.R. CRC Handbook of Chemistry and Physics, 94th Edition, 2013-2014; 2013; ISBN 9781466571143.spa
dc.relation.referencesReichardt, C.; Welton, T. Solvent Effects on the Rates of Homogeneous Chemical Reactions. In Solvents and Solvent Effects in Organic Chemistry; Wiley, 2010; pp. 165–357.spa
dc.relation.referencesMontalbetti, C.A.G.N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron 2005.spa
dc.relation.referencesWindridge, G.; Jorgensen, E.C. 1-Hydroxybenzotriazole as a Racemization-Suppressing Reagent for the Incorporation of Im-Benzyl-L-Histidine into Peptides. J Am Chem Soc 1971, 93, 6318–6319, doi:10.1021/ja00752a081.spa
dc.relation.referencesMurphy, L.R.; Meek, T.L.; Allred, A.L.; Allen, L.C. Evaluation and Test of Pauling’s Electronegativity Scale. J Phys Chem A 2000, 104, 5867–5871, doi:10.1021/jp000288e.spa
dc.relation.referencesNiño-Ramírez, V.A.; Insuasty-Cepeda, D.S.; Rivera-Monroy, Z.J.; Maldonado, M. Evidence of Isomerization in the Michael-Type Thiol-Maleimide Addition: Click Reaction between L-Cysteine and 6-Maleimidehexanoic Acid. Molecules 2022, 27, doi:10.3390/molecules27165064.spa
dc.relation.referencesInsuasty-Cepeda, D.S.; Maldonado, M.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Obtaining an Immunoaffinity Monolithic Material: Poly(GMA-Co-EDMA) Functionalized with an HPV-Derived Peptide Using a Thiol–Maleimide Reaction. RSC Adv 2021, 11, 4247–4255, doi:10.1039/D0RA09095F.spa
dc.relation.referencesHuang, W.; Wu, X.; Gao, X.; Yu, Y.; Lei, H.; Zhu, Z.; Shi, Y.; Chen, Y.; Qin, M.; Wang, W.; et al. Maleimide–Thiol Adducts Stabilized through Stretching. Nat Chem 2019, doi:10.1038/s41557-018-0209-2.spa
dc.relation.referencesYechouron, A.; Dascal, A.; Stevenson, J.; Mendelson, J. Ability of National Committee for Clinical Laboratory Standards-Recommended Quality Control Strains from the American Type Culture Collection to Detect Errors in Disk Diffusion Susceptibility Tests. J Clin Microbiol 1991, 29, 2758–2762, doi:10.1128/jcm.29.12.2758-2762.1991.spa
dc.relation.referencesHeil, E.L.; Kuti, J.L.; Bearden, D.T.; Gallagher, J.C. The Essential Role of Pharmacists in Antimicrobial Stewardship. Infect Control Hosp Epidemiol 2016, 37, 753–754.spa
dc.relation.referencesBarragán-Cárdenas, A.; Urrea-Pelayo, M.; Niño-Ramírez, V.A.; Umaña-Pérez, A.; Vernot, J.P.; Parra-Giraldo, C.M.; Fierro-Medina, R.; Rivera-Monroy, Z.; García-Castañeda, J. Selective Cytotoxic Effect against the MDA-MB-468 Breast Cancer Cell Line of the Antibacterial Palindromic Peptide Derived from Bovine Lactoferricin. RSC Adv 2020, 10, 17593–17601, doi:10.1039/d0ra02688c.spa
dc.relation.referencesVargas-Casanova, Y.; Rodríguez-Mayor, A.V.; Cardenas, K.J.; Leal-Castro, A.L.; Muñoz-Molina, L.C.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Synergistic Bactericide and Antibiotic Effects of Dimeric, Tetrameric, or Palindromic Peptides Containing the RWQWR Motif against Gram-Positive and Gram-Negative Strains. RSC Adv 2019, doi:10.1039/c9ra00708c.spa
dc.relation.referencesChan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and Arginine-Rich Antimicrobial Peptides: Structures and Mechanisms of Action. Biochim Biophys Acta Biomembr 2006, 1758, 1184–1202.spa
dc.relation.referencesHe, S.; Deber, C.M. Interaction of Designed Cationic Antimicrobial Peptides with the Outer Membrane of Gram-Negative Bacteria. Sci Rep 2024, 14, doi:10.1038/s41598-024-51716-1.spa
dc.relation.referencesBechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J Dent Res 2017, 96, 254–260.spa
dc.relation.referencesPineda-Castañeda, H.M.; Maldonado-Villamil, M.; Parra-Giraldo, C.M.; Leal-Castro, A.L.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Peptide-Resorcinarene Conjugates Obtained via Click Chemistry: Synthesis and Antimicrobial Activity. Antibiotics 2023, 12, doi:10.3390/antibiotics12040773.spa
dc.relation.referencesMalanovic, N.; Lohner, K. Gram-Positive Bacterial Cell Envelopes: The Impact on the Activity of Antimicrobial Peptides. Biochim Biophys Acta Biomembr 2016, 1858, 936–946, doi:10.1016/j.bbamem.2015.11.004.spa
dc.relation.referencesJama-Kmiecik, A.; Mączyńska, B.; Frej-Mądrzak, M.; Choroszy-Król, I.; Dudek-Wicher, R.; Piątek, D.; Kujawa, K.; Sarowska, J. The Changes in the Antibiotic Resistance of Staphylococcus Aureus, Streptococcus Pneumoniae, Enterococcus Faecalis and Enterococcus Faecium in the Clinical Isolates of a Multiprofile Hospital over 6 Years (2017–2022). J Clin Med 2025, 14, doi:10.3390/jcm14020332.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembPOLIFENOLESspa
dc.subject.lembPolyphenolseng
dc.subject.lembANTIBIOTICOS PEPTIDOSspa
dc.subject.lembPeptide antibioticseng
dc.subject.lembDROGAS INMUNOCONJUGADASspa
dc.subject.lembAntibody-drug conjugateseng
dc.subject.lembBIOCONJUGADOSspa
dc.subject.lembBioconjugateseng
dc.subject.proposalCalix[4]resorcinarenospa
dc.subject.proposalMaleimidaspa
dc.subject.proposalQuímica clickspa
dc.subject.proposalTiol-maleimidaspa
dc.subject.proposalPéptidos antimicrobianos (PAMs)spa
dc.subject.proposalLfcinBspa
dc.subject.proposalReacción de Mannichspa
dc.subject.proposalConjugadosspa
dc.subject.proposalCalix[4]resorcinareneeng
dc.subject.proposalMaleimideeng
dc.subject.proposalClick chemistryeng
dc.subject.proposalThiol-maleimideeng
dc.subject.proposalAntimicrobial peptides (PAMs)eng
dc.subject.proposalLfcinBeng
dc.subject.proposalMannich reactioneng
dc.subject.proposalconjugateseng
dc.subject.proposalConjugados (péptido)-resorcinarenospa
dc.subject.proposalPeptide-resorcinarene conjugateseng
dc.titleObtención de conjugados péptido-resorcinareno mediante reacción de adición de Michael tiol-maleimida y evaluación de su potencial antibacterianospa
dc.title.translatedObtaining peptide-resorcinarene conjugates by Michael thiol-maleimide addition reaction and evaluation of their antibacterial potentialeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022340821.2025.pdf
Tamaño:
19.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: