Obtención de conjugados péptido-resorcinareno mediante reacción de adición de Michael tiol-maleimida y evaluación de su potencial antibacteriano
dc.contributor.advisor | Maldonado Villamil, Mauricio | spa |
dc.contributor.advisor | Rivera Monroy, Zuly Jenny | spa |
dc.contributor.author | Niño Ramírez, Víctor Alfonso | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000170362 | spa |
dc.contributor.orcid | Niño Ramírez, Víctor Alfonso [0000000258204458] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Victor-Nino-Ramirez?ev=prf_overview | spa |
dc.contributor.researchgroup | Síntesis y Aplicación de Moléculas Peptídicas | spa |
dc.contributor.researchgroup | Aplicaciones Analíticas de Compuestos Orgánicos (Aaco) | spa |
dc.contributor.scopus | https://www.scopus.com/authid/detail.uri?authorId=57217067732 | spa |
dc.date.accessioned | 2025-04-01T12:40:36Z | |
dc.date.available | 2025-04-01T12:40:36Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Los calix[4]resorcinarenos son macrociclos polihidroxilados que permiten incorporar en varios puntos de su estructura grupos funcionales reactivos, esta versatilidad sintética los hace atractivos para la conjugación con otras moléculas, como los péptidos antibacterianos (PAMs). En este trabajo, se exploraron rutas sintéticas que permitieran la unión selectiva entre los PAMs y los calix[4]resorcinarenos usando la reacción de adición de Michael tiol-maleimida, clasificada como reacción de química click. Con el desarrollo del proyecto se pretendía enriquecer las opciones de rutas sintéticas para la obtención de nuevos agentes antibacterianos, basados en péptidos modificados, polivalentes y que presenten motivos no proteicos en su estructura. En este estudio específicamente, se optimizaron rutas sintéticas para la obtención de precursores, derivados de (i) resorcinarenos y de (ii) PAMs, funcionalizados con grupos tiol o maleimida. Para el caso de los resorcinarenos es el primer reporte de la funcionalización de estas moléculas con el grupo maleimida. Se evaluaron condiciones de la reacción de adición de Michael tiol-maleimida para formar conjugados del tipo (péptido)n-calix[4]resorcinareno (n = 1, 2, 3 o 4), lo que permitió la obtención de seis nuevos conjugados con una o dos copias del motivo peptídico LfcinB (20-25): RRWQWR. Cabe resaltar, que fue posible unir al macrociclo un péptido palindrómico de trece residuos, siendo la primera vez que se logra funcionalizar los resorcinarenos con secuencias peptídicas de más de seis residuos. Finalmente, se evaluó la actividad antibacteriana de los conjugados, frente a Escherichia coli (Gram-negativa) y Enterococcus faecalis (Gram-positiva). Los avances obtenidos abren nuevas rutas para la síntesis de moléculas novedosas, permitiendo la incorporación de otros PAMs mediante una reacción limpia, selectiva y modular como lo es la adición de Michael tiol-maleimida (Texto tomado de la fuente). | spa |
dc.description.abstract | Calix[4]resorcinarenes are polyhydroxylated macrocycles that allow the incorporation of reactive functional groups at various points in their structure. This synthetic versatility makes them attractive for conjugation with other molecules, such as antibacterial peptides (PAMs). In this work, synthetic routes were explored that allow the selective binding between PAMs and calix[4]resorcinarenes using the thiol-maleimide Michael addition reaction, classified as a click chemistry reaction. The development of the project was intended to enrich the options of synthetic routes for obtaining new antibacterial agents, based on modified, polyvalent peptides that present non-protein motifs in their structure. In this study specifically, synthetic routes were optimized for obtaining precursors, derivatives of (i) resorcinarenes and (ii) PAMs, functionalized with thiol or maleimide groups. In the case of resorcinarenes, this is the first report of the functionalization of these molecules with the maleimide group. Conditions of the Michael thiol-maleimide addition reaction were evaluated to form conjugates of the (peptide)n-calix[4]resorcinarene type (n = 1, 2, 3 or 4), which allowed obtaining six new conjugates with one or two copies of the LfcinB peptide motif (20-25): RRWQWR. It is worth noting that it was possible to bind the macrocycle with a palindromic peptide of thirteen residues, being the first time that resorcinarenes have been functionalized with peptide sequences of more than six residues. Finally, the antibacterial activity of the conjugates was evaluated against Escherichia coli (Gram-negative) and Enterococcus faecalis (Gram-positive). The advances obtained open new routes for the synthesis of novel molecules, allowing the incorporation of other PAMs through a clean, selective and modular reaction such as the Michael addition. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Química | spa |
dc.description.methods | Con el fin de dar respuesta a la pregunta de investigación y a la hipótesis planteada, dentro del marco de la presente tesis doctoral, se implementaron las siguientes etapas: ETAPA 1. Optimización de las rutas sintéticas para la obtención de moléculas precursoras funcionalizadas con grupo tiol o maleimida: derivados de resorcinarenos (Etapa 1A) y derivados de péptidos antimicrobianos, PAMs (Etapa 1B). ETAPA 2. Optimización de las condiciones de reacción de adición de Michael, para la formación de conjugados de tipo (péptido)n-calix[4]resorcinareno (n = 1, 2, 3 o 4). ETAPA 3. Evaluación de la actividad antibacteriana de los conjugados obtenidos frente a E. coli y E. faecalis | spa |
dc.format.extent | 254 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87801 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Química | spa |
dc.relation.references | Guevara, Y.A.S.; Santos, M.H.C.; Gomes, F.I.R.; Sheheryar; Mesquita, F.P.; Souza, P.F.N. A Historical, Economic, and Technical-Scientific Approach to the Current Crisis in the Development of Antibacterial Drugs: Promising Role of Antibacterial Peptides in This Scenario. Microb Pathog 2023, 179. | spa |
dc.relation.references | Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial Resistance: Impacts, Challenges, and Future Prospects. Journal of Medicine, Surgery, and Public Health 2024, 2, 100081, doi:10.1016/j.glmedi.2024.100081. | spa |
dc.relation.references | De La Cadena, E.; Pallares, C.J.; García-Betancur, J.C.; Porras, J.A.; Villegas, M.V. Update of Antimicrobial Resistance in Level III and IV Health Institutions in Colombia between January 2018 and December 2021. Biomedica 2023, 43, 457–473, doi:10.7705/BIOMEDICA.7065 | spa |
dc.relation.references | Darwish, R.M.; Matar, S.G.; Snaineh, A.A.A.; Alsharif, M.R.; Yahia, A.B.; Mustafa, H.N.; Hasabo, E.A. Impact of Antimicrobial Stewardship on Antibiogram, Consumption and Incidence of Multi Drug Resistance. BMC Infect Dis 2022, 22, doi:10.1186/s12879-022-07906-1. | spa |
dc.relation.references | Timmerman, P.; Verboom, W.; Reinhoudt, D.N. Resorcinarenes. Tetrahedron 1996, 52, 2663–2704, doi:10.1016/0040-4020(95)00984-1. | spa |
dc.relation.references | Scott, M.P.; Sherburn, M.S. Resorcinarenes and Pyrogallolarenes. Comprehensive Supramolecular Chemistry II 2017, 337–374, doi:10.1016/B978-0-12-409547-2.12475-8. | spa |
dc.relation.references | Gutsche, C.D. Single Step Synthesis and Properties of Calixarenes. In Calixarenes: A Versatile Class of Macrocyclic Compounds; Jaques, V., Volker, B., Eds.; Springer, Dordrecht, 1991; pp. 3–37. | spa |
dc.relation.references | Iwanek, W.; Wzorek, A. Introduction to the Chirality of Resorcinarenes. Mini Rev Org Chem 2009, 6, 398–411, doi:10.2174/157019309789371604. | spa |
dc.relation.references | Jain, V.K.; Kanaiya, P.H. Chemistry of Calix[4]Resorcinarenes. Russian Chemical Reviews 2011, 80, 75–102, doi:10.1070/RC2011V080N01ABEH004127. | spa |
dc.relation.references | Weinelt, F.; Schneider, H.J. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. Journal of Organic Chemistry 1991, 56, 5527–5535, doi:10.1021/JO00019A011/SUPPL_FILE/JO00019A011_SI_001.PDF. | spa |
dc.relation.references | Botta, B.; Cassani, M.; D’Acquarica, I.; Misiti, D.; Subissati, D.; Monache, G. Resorcarenes: Emerging Class of Macrocyclic Receptors. Curr Org Chem 2010, 9, 337–355, doi:10.2174/1385272053174958. | spa |
dc.relation.references | Sverker Hógberg, A.G. Cyclooligomeric Phenol-Aldehyde Condensation Products. 2. Stereoselective Synthesis and DNMR Study of Two 1,8,15,22-Tetraphenyl[14]Metacyclophan-3,5,10,12,17,19,24,26-Octols. J Am Chem Soc 2002, 102, 6046–6050, doi:10.1021/JA00539A012. | spa |
dc.relation.references | Liu, J.L.; Sun, M.; Shi, Y.H.; Zhou, X.M.; Zhang, P.Z.; Jia, A.Q.; Zhang, Q.F. Functional Modification, Self-Assembly and Application of Calix[4]Resorcinarenes. J Incl Phenom Macrocycl Chem 2022, 1, 1–33, doi:10.1007/S10847-021-01119-W/FIGURES/40. | spa |
dc.relation.references | Kashapov, R.R.; Razuvayeva, Y.S.; Ziganshina, A.Y.; Mukhitova, R.K.; Sapunova, A.S.; Voloshina, A.D.; Syakaev, V. V.; Latypov, S.K.; Nizameev, I.R.; Kadirov, M.K.; et al. N-Methyl-d-Glucamine–Calix[4]Resorcinarene Conjugates: Self-Assembly and Biological Properties. Molecules 2019, 24, doi:10.3390/MOLECULES24101939. | spa |
dc.relation.references | Velásquez-Silva, B.A.; Castillo-Aguirre, A.; Rivera-Monroy, Z.J.; Maldonado, M. Aminomethylated Calix[4]Resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface. Polymers 2019, Vol. 11, Page 1147 2019, 11, 1147, doi:10.3390/POLYM11071147. | spa |
dc.relation.references | Chirachanchai, S.; Phongtamrug, S.; Laobuthee, A.; Tashiro, K. Mono-Substituted Phenol-Based Benzoxazines: Inevitable Dimerization Via Self-Termination and Its Metal Complexation. Handbook of Benzoxazine Resins 2011, 111–126, doi:10.1016/B978-0-444-53790-4.00049-7. | spa |
dc.relation.references | Kuberski, B.; Pecul, M.; Szumna, A. A Chiral “Frozen” Hydrogen Bonding in C4-Symmetric Inherently Chiral Resorcin[4]Arenes: NMR, X-Ray, Circular Dichroism, and Theoretical Study (Eur. J. Org. Chem. 18/2008). European J Org Chem 2008, 2008, 3027–3027, doi:10.1002/EJOC.200890045. | spa |
dc.relation.references | Pedro-Hernández, L.D.; Martínez-Klimova, E.; Cortez-Maya, S.; Mendoza-Cardozo, S.; Ramírez-Ápan, T.; Martínez-García, M. Synthesis, Characterization, and Nanomedical Applications of Conjugates between Resorcinarene-Dendrimers and Ibuprofen. Nanomaterials (Basel) 2017, 7, doi:10.3390/NANO7070163. | spa |
dc.relation.references | Cortez-Maya, S.; Hernández-Ortega, S.; Ramírez-Apan, T.; Lijanova, I. V.; Martínez-García, M. Synthesis of 5-Aryl-1,4-Benzodiazepine Derivatives Attached in Resorcinaren-PAMAM Dendrimers and Their Anti-Cancer Activity. Bioorg Med Chem 2012, 20, 415–421, doi:10.1016/J.BMC.2011.10.070. | spa |
dc.relation.references | Mendoza-Cardozo, S.; Pedro-Hernández, L.D.; Organista-Mateos, U.; Allende-Alarcón, L.I.; Martínez-Klimova, E.; Ramírez-Ápan, T.; Martínez-García, M. In Vitro Activity of Resorcinarene–Chlorambucil Conjugates for Therapy in Human Chronic Myelogenous Leukemia Cells. https://doi.org/10.1080/03639045.2019.1569036 2019, 45, 683–688, doi:10.1080/03639045.2019.1569036. | spa |
dc.relation.references | Daniel Pedro-Hernández, L.; Hernández-Montalbán, C.; Martínez-Klimova, E.; Ramírez-Ápan, T.; Martínez-García, M. Synthesis and Anticancer Activity of Open-Resorcinarene Conjugates. Bioorg Med Chem Lett 2020, 30, 127275, doi:10.1016/J.BMCL.2020.127275. | spa |
dc.relation.references | Abosadiya, H.M.; Hasbullah, S.A.; Mackeen, M.M.; Low, S.C.; Ibrahim, N.; Koketsu, M.; Yamin, B.M. Synthesis, Characterization, X-Ray Structure and Biological Activities of C-5-Bromo-2-Hydroxyphenylcalix[4]-2-Methyl Resorcinarene. Molecules 2013, Vol. 18, Pages 13369-13384 2013, 18, 13369–13384, doi:10.3390/MOLECULES181113369. | spa |
dc.relation.references | Ngodwana, L.; Bout, W.; Nqaba, Z.; Motlokoa, T.; Vatsha, B. Methodologies for the Derivatization of Resorcin[4]Arenes at the Upper Rim Ortho-Positions. European J Org Chem 2022, 2022. | spa |
dc.relation.references | McIldowie, M.J.; Mocerino, M.; Ogden, M.I.; Skelton, B.W. Pyridine-Functionalised C4 Symmetric Resorcinarenes. Tetrahedron 2007, 63, 10817–10825, doi:10.1016/J.TET.2007.07.049. | spa |
dc.relation.references | Kobayashi, K.; Yamanaka, M. Self-Assembled Capsules Based on Tetrafunctionalized Calix[4]Resorcinarene Cavitands. Chem Soc Rev 2014, 44, 449–466, doi:10.1039/C4CS00153B. | spa |
dc.relation.references | Kazakova, E.K.; Makarova, N.A.; Ziganshina, A.U.; Muslinkina, L.A.; Muslinkin, A.A.; Habicher, W.D. Novel Water-Soluble Tetrasulfonatomethylcalix[4]Resorcinarenes. Tetrahedron Lett 2000, 41, 10111–10115, doi:10.1016/S0040-4039(00)01798-6. | spa |
dc.relation.references | Millership, J.S. A Preliminary Investigation of the Solution Complexation of 4-Sulphonic Calix[n]Arenes with Testosterone. Journal of inclusion phenomena and macrocyclic chemistry 2001 39:3 2001, 39, 327–331, doi:10.1023/A:1011196217714. | spa |
dc.relation.references | Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of Quercetin: Problems and Promises. Curr Med Chem 2013, 20, 2572–2582, doi:10.2174/09298673113209990120. | spa |
dc.relation.references | Rehman, K.; Ali, I.; El-Haj, B.M.; Kanwal, T.; Maharjan, R.; Saifullah, S.; Imran, M.; Shafiullah; Usman Simjee, S.; Raza Shah, M. Synthesis of Novel Biocompatible Resorcinarene Based Nanosized Dendrimer-Vesicles for Enhanced Anti-Bacterial Potential of Quercetin. J Mol Liq 2021, 341, 116921, doi:10.1016/J.MOLLIQ.2021.116921. | spa |
dc.relation.references | Berghaus, C.; Feigel, M. Peptide-Cavitands Based on Resorc[4]Arenes − Synthesis and Structure. European J Org Chem 2003, 2003, 3200–3208, doi:10.1002/EJOC.200300128. | spa |
dc.relation.references | Botta, B.; D’Acquarica, I.; Delle Monache, G.; Subissati, D.; Uccello-Barretta, G.; Mastrini, M.; Nazzi, S.; Speranza, M. Synthesis and Host-Guest Studies of Chiral N-Linked Peptidoresorc[4]Arenes. Journal of Organic Chemistry 2007, 72, 9283–9290, doi:10.1021/JO7016636/SUPPL_FILE/JO7016636-FILE002.PDF. | spa |
dc.relation.references | Shurpik, D.N.; Padnya, P.L.; Stoikov, I.I.; Cragg, P.J.; Butlerov, A.M.; Berberan-Santos, M.; Marcos, P.M. Antimicrobial Activity of Calixarenes and Related Macrocycles. Molecules 2020, Vol. 25, Page 5145 2020, 25, 5145, doi:10.3390/MOLECULES25215145. | spa |
dc.relation.references | Ye, X.; Wang, Q.; Sun, M.; Chen, L.; Jia, A.; Zhang, Q. Syntheses and Biological Activities of Calix[4]Resorcinarene Derivatives Modified by Sulfonic Acid and Sulfonamides. RSC Adv 2024, 14, 25115–25119, doi:10.1039/d4ra04426f. | spa |
dc.relation.references | Dawn, A.; Chandra, H.; Ade-Browne, C.; Yadav, J.; Kumari, H. Multifaceted Supramolecular Interactions from C-Methylresorcin[4]Arene Lead to an Enhancement in In Vitro Antibacterial Activity of Gatifloxacin. Chemistry – A European Journal 2017, 23, 18171–18179, doi:10.1002/CHEM.201704291. | spa |
dc.relation.references | Pineda-Castañeda, H.M.; Maldonado-Villamil, M.; Parra-Giraldo, C.M.; Leal-Castro, A.L.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Peptide-Resorcinarene Conjugates Obtained via Click Chemistry: Synthesis and Antimicrobial Activity. Antibiotics 2023, 12, doi:10.3390/antibiotics12040773. | spa |
dc.relation.references | Fry, D.E. Antimicrobial Peptides. Surg Infect (Larchmt) 2018, 19, 804–811, doi:10.1089/SUR.2018.194. | spa |
dc.relation.references | Brandenburg, K.; Heinbockel, L.; Correa, W.; Lohner, K. Peptides with Dual Mode of Action: Killing Bacteria and Preventing Endotoxin-Induced Sepsis. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858, 971–979, doi:10.1016/J.BBAMEM.2016.01.011. | spa |
dc.relation.references | León-Calvijo, M.A.; Leal-Castro, A.L.; Almanzar-Reina, G.A.; Rosas-Pérez, J.E.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia Coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. Biomed Res Int 2015, 2015, doi:10.1155/2015/453826. | spa |
dc.relation.references | J. Afacan, N.; T.Y. Yeung, A.; M. Pena, O.; E.W. Hancock, R. Therapeutic Potential of Host Defense Peptides in Antibiotic-Resistant Infections. Curr Pharm Des 2012, 18, 807–819, doi:10.2174/138161212799277617. | spa |
dc.relation.references | Gifford, J.L.; Hunter, H.N.; Vogel, H.J. Lactoferricin: A Lactoferrin-Derived Peptide with Antimicrobial, Antiviral, Antitumor and Immunological Properties. Cellular and Molecular Life Sciences 2005, 62, 2588–2598, doi:10.1007/s00018-005-5373-z. | spa |
dc.relation.references | Huertas Méndez, N.D.J.; Vargas Casanova, Y.; Gómez Chimbi, A.K.; Hernández, E.; Leal Castro, A.L.; Melo Diaz, J.M.; Rivera Monroy, Z.J.; García Castañeda, J.E. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. Coli ATCC 11775, S. Maltophilia ATCC 13636 and S. Enteritidis ATCC 13076. Molecules 2017, 22, 1–10, doi:10.3390/molecules22030452. | spa |
dc.relation.references | Vega, S.C.; Martínez, D.A.; Chalá, M. del S.; Vargas, H.A.; Rosas, J.E. Design, Synthesis and Evaluation of Branched RRWQWR-Based Peptides as Antibacterial Agents against Clinically Relevant Gram-Positive and Gram-Negative Pathogens. Front Microbiol 2018, 9, doi:10.3389/fmicb.2018.00329. | spa |
dc.relation.references | Vega, S.C.; Martínez, D.A.; Chalá, M. del S.; Vargas, H.A.; Rosas, J.E. Design, Synthesis and Evaluation of Branched RRWQWR-Based Peptides as Antibacterial Agents against Clinically Relevant Gram-Positive and Gram-Negative Pathogens. Front Microbiol 2018, 9, 329, doi:10.3389/FMICB.2018.00329/BIBTEX. | spa |
dc.relation.references | Huertas Méndez, N.D.J.; Vargas Casanova, Y.; Gómez Chimbi, A.K.; Hernández, E.; Leal Castro, A.L.; Melo Diaz, J.M.; Rivera Monroy, Z.J.; García Castañeda, J.E. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. Coli ATCC 11775, S. Maltophilia ATCC 13636 and S. Enteritidis ATCC 13076. Molecules 2017, Vol. 22, Page 452 2017, 22, 452, doi:10.3390/MOLECULES22030452. | spa |
dc.relation.references | Pineda-Castañeda, H.M.; Bonilla-Velásquez, L.D.; Leal-Castro, A.L.; Fierro-Medina, R.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Use of Click Chemistry for Obtaining an Antimicrobial Chimeric Peptide Containing the LfcinB and Buforin II Minimal Antimicrobial Motifs. ChemistrySelect 2020, 5, 1655–1657, doi:10.1002/SLCT.201903834. | spa |
dc.relation.references | Ardila-Chantré, N.; Hernández-Cardona, A.K.; Pineda-Castañeda, H.M.; Estupiñan-Torres, S.M.; Leal-Castro, A.L.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Short Peptides Conjugated to Non-Peptidic Motifs Exhibit Antibacterial Activity. RSC Adv 2020, 10, 29580–29586, doi:10.1039/D0RA05937D. | spa |
dc.relation.references | Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie - International Edition 2001, 40, 2004–2021. | spa |
dc.relation.references | Hoyle, C.E.; Bowman, C.N. Thiol-Ene Click Chemistry. Angewandte Chemie - International Edition 2010, 49, 1540–1573. | spa |
dc.relation.references | Nair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chemistry of Materials 2013, 26, 724–744, doi:10.1021/CM402180T. | spa |
dc.relation.references | Renault, K.; Fredy, J.W.; Renard, P.Y.; Sabot, C. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. undefined 2018, 29, 2497–2513, doi:10.1021/ACS.BIOCONJCHEM.8B00252. | spa |
dc.relation.references | Roseli, R.B.; Keto, A.B.; Krenske, E.H. Mechanistic Aspects of Thiol Additions to Michael Acceptors: Insights from Computations. Wiley Interdiscip Rev Comput Mol Sci 2023, 13, doi:10.1002/wcms.1636. | spa |
dc.relation.references | Cal, P.M.S.D.; Bernardes, G.J.L.; Gois, P.M.P. Cysteine-Selective Reactions for Antibody Conjugation. Angewandte Chemie - International Edition 2014, 53, 10585–10587, doi:10.1002/anie.201405702. | spa |
dc.relation.references | Renault, K.; Fredy, J.W.; Renard, P.Y.; Sabot, C. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. Bioconjug Chem 2018, 29, 2497–2513, doi:10.1021/acs.bioconjchem.8b00252. | spa |
dc.relation.references | Bartolami, E.; Knoops, J.; Bessin, Y.; Fossépré, M.; Chamieh, J.; Dumy, P.; Surin, M.; Ulrich, S. One-Pot Self-Assembly of Peptide-Based Cage-Type Nanostructures Using Orthogonal Ligations. Chemistry - A European Journal 2017, 23, 14323–14331, doi:10.1002/chem.201702974. | spa |
dc.relation.references | Martínez-Jothar, L.; Doulkeridou, S.; Schiffelers, R.M.; Sastre Torano, J.; Oliveira, S.; van Nostrum, C.F.; Hennink, W.E. Insights into Maleimide-Thiol Conjugation Chemistry: Conditions for Efficient Surface Functionalization of Nanoparticles for Receptor Targeting. Journal of Controlled Release 2018, 282, 101–109, doi:10.1016/J.JCONREL.2018.03.002. | spa |
dc.relation.references | Insuasty-Cepeda, D.S.; Maldonado, M.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Obtaining an Immunoaffinity Monolithic Material: Poly(GMA-Co-EDMA) Functionalized with an HPV-Derived Peptide Using a Thiol–Maleimide Reaction. RSC Adv 2021, 11, 4247–4255, doi:10.1039/D0RA09095F. | spa |
dc.relation.references | Vamisetti, G.B.; Satish, G.; Sulkshane, P.; Mann, G.; Glickman, M.H.; Brik, A. On-Demand Detachment of Succinimides on Cysteine to Facilitate (Semi)Synthesis of Challenging Proteins. J Am Chem Soc 2020, 142, 19558–19569, doi:10.1021/jacs.0c07663. | spa |
dc.relation.references | Stephen H. Frayne, R.M.S. and B.H.N. Dendritic Architectures by Orthogonal Thiol-¬‐Maleimide “Click” and Furan-¬‐Maleimide Dynamic Covalent Chemistries. Org Biomol Chem 2019, 17, 7878–7883, doi:10.1039/x0xx00000x. | spa |
dc.relation.references | Wängler, C.; Maschauer, S.; Prante, O.; Schäfer, M.; Schirrmacher, R.; Bartenstein, P.; Eisenhut, M.; Wängler, B. Multimerization of CRGD Peptides by Click Chemistry: Synthetic Strategies, Chemical Limitations, and Influence on Biological Properties. ChemBioChem 2010, 11, 2168–2181, doi:10.1002/CBIC.201000386. | spa |
dc.relation.references | Van De Vijver, P.; Schmitt, M.; Suylen, D.; Scheer, L.; Thomassen, M.C.L.G.D.; Schurgers, L.J.; Griffin, J.H.; Koenen, R.R.; Hackeng, T.M. Incorporation of Disulfide Containing Protein Modules into Multivalent Antigenic Conjugates: Generation of Antibodies against the Thrombin-Sensitive Region of Murine Protein S. J Am Chem Soc 2012, 134, 19318–19321, doi:10.1021/JA306993T/SUPPL_FILE/JA306993T_SI_001.PDF. | spa |
dc.relation.references | Belbekhouche, S.; Guerrouache, M.; Carbonnier, B. Thiol–Maleimide Michael Addition Click Reaction: A New Route to Surface Modification of Porous Polymeric Monolith. Macromol Chem Phys 2016, 217, 997–1006, doi:10.1002/MACP.201500427. | spa |
dc.relation.references | Nair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chemistry of Materials 2014, 26, 724–744, doi:10.1021/CM402180T/ASSET/IMAGES/CM402180T.SOCIAL.JPEG_V03. | spa |
dc.relation.references | Dudchak, R.; Podolak, M.; Holota, S.; Szewczyk-Roszczenko, O.; Roszczenko, P.; Bielawska, A.; Lesyk, R.; Bielawski, K. Click Chemistry in the Synthesis of Antibody-Drug Conjugates. Bioorg Chem 2024. | spa |
dc.relation.references | Liu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Copper(II)-Catalyzed Single-Step Synthesis of Aryl Thiols from Aryl Halides and 1,2-Ethanedithiol. Adv Synth Catal 2015, 357, 2205–2212, doi:10.1002/adsc.201400941. | spa |
dc.relation.references | Insuasty, D.; Pineda, H.; Rodriguez, A.V.; García, J.; Mauricio, M.; Fierro, R.; Rivera, Z.J. Synthetic Peptide Purification via Solid-Phase Economical , Fast, and Efficient Methodology. Molecules 2019, 24, 1215, doi:10.3390/molecules24071215. | spa |
dc.relation.references | Pineda-Castañeda, H.M.; Maldonado, M.; Rivera-Monroy, Z.J. Efficient Separation of C-Tetramethylcalix[4]Resorcinarene Conformers by Means of Reversed-Phase Solid-Phase Extraction. ACS Omega 2023, 8, 231–237, doi:10.1021/acsomega.2c03218. | spa |
dc.relation.references | Rodríguez, V.; Pineda, H.; Ardila, N.; Insuasty, D.; Cárdenas, K.; Román, J.; Urrea, M.; Ramírez, D.; Fierro, R.; Rivera, Z.; et al. Efficient Fmoc Group Removal Using Diluted 4-Methylpiperidine: An Alternative for a Less-Polluting SPPS-Fmoc/TBu Protocol. Int J Pept Res Ther 2020, 26, 585–587, doi:10.1007/s10989-019-09865-9. | spa |
dc.relation.references | Rodríguez, V.; Pineda, H.; Ardila, N.; Insuasty, D.; Cárdenas, K.; Román, J.; Urrea, M.; Ramírez, D.; Fierro, R.; Rivera, Z.; et al. Efficient Fmoc Group Removal Using Diluted 4-Methylpiperidine: An Alternative for a Less-Polluting SPPS-Fmoc/TBu Protocol. Int J Pept Res Ther 2019, 4–6, doi:10.1007/s10989-019-09865-9. | spa |
dc.relation.references | Insuasty-Cepeda, D.S.; Rodríguez-Mayor, A.V.; Pineda-Castañeda, H.M.; García-Castañeda, J.E.; Maldonado-Villamil, M.; Fierro-Medina, R.; Rivera-Monroy, Z.J. Synthetic Peptide Purification via Solid-Phase Economical , Fast , and Efficient Methodology. Molecules 2019, 24, 1215, doi:10.3390/molecules24071215. | spa |
dc.relation.references | Cockerill, F. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2015. | spa |
dc.relation.references | Velásquez-Silva, B.A.; Castillo-Aguirre, A.; Rivera-Monroy, Z.J.; Maldonado, M. Aminomethylated Calix[4]Resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface. Polymers 2019, Vol. 11, Page 1147 2019, 11, 1147, doi:10.3390/POLYM11071147. | spa |
dc.relation.references | Velásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z.J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J Mol Struct 2017, 1137, 380–386, doi:10.1016/j.molstruc.2017.02.059. | spa |
dc.relation.references | Reynolds, M.R.; Pick, F.S.; Hayward, J.J.; Trant, J.F. A Concise Synthesis of a Methyl Ester 2-Resorcinarene: A Chair-Conformation Macrocycle. Symmetry (Basel) 2021, 13, doi:10.3390/sym13040627. | spa |
dc.relation.references | He, M.; Johnson, R.J.; Escobedo, J.O.; Beck, P.A.; Melancon, B.J.; Treleaven, W.D.; Strongin, R.M.; Lewis, P.T.; Kim, K.K.; St. Luce, N.N.; et al. Chromophore Formation in Resorcinarene Solutions and the Visual Detection of Mono- and Oligosaccharides. J Am Chem Soc 2002, 124, 5000–5009, doi:10.1021/ja017713h. | spa |
dc.relation.references | Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry; Second Edition.; OxfordUniversityPress: Oxford, 2012. | spa |
dc.relation.references | Klein, D. Organic Chemistry; First Edition.; Wiley: Danvers, Massachusetts, 2012. | spa |
dc.relation.references | Wade, L. Química Orgánica; 2011th ed.; Pearson: México, 2012; Vol. 1. | spa |
dc.relation.references | Matsushita, Y.; Matsui, T. Synthesis of Aminomethylated Calix[4]Resorcinarenes. Tetrahedron Lett 1993, 34, 7433–7436, doi:10.1016/S0040-4039(00)60145-4. | spa |
dc.relation.references | Kallen, R.G. Mechanism of Reactions Involving Schiff Base Intermediates. Thiazolidine Formation from L-Cysteine and Formaldehyde. J Am Chem Soc 1971, 93, 6236–6248, doi:10.1021/ja00752a040. | spa |
dc.relation.references | Kamps, J.J.A.G.; Hopkinson, R.J.; Schofield, C.J.; Claridge, T.D.W. How Formaldehyde Reacts with Amino Acids. Commun Chem 2019, 2, doi:10.1038/s42004-019-0224-2. | spa |
dc.relation.references | Kuberski, B.; Pecul, M.; Szumna, A. A Chiral “Frozen” Hydrogen Bonding in C4-Symmetric Inherently Chiral Resorcin[4]Arenes: NMR, X-Ray, Circular Dichroism, and Theoretical Study. European J Org Chem 2008, 3069–3078, doi:10.1002/ejoc.200800247. | spa |
dc.relation.references | Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds: Tables of Spectral Data; Springer Berlin Heidelberg, 2009. | spa |
dc.relation.references | Claridge, T.D.W. High-Resolution NMR Techniques in Organic Chemistry: Third Edition; Elsevier Inc., 2016. | spa |
dc.relation.references | Lide, D.R. CRC Handbook of Chemistry and Physics, 94th Edition, 2013-2014; 2013; ISBN 9781466571143. | spa |
dc.relation.references | Reichardt, C.; Welton, T. Solvent Effects on the Rates of Homogeneous Chemical Reactions. In Solvents and Solvent Effects in Organic Chemistry; Wiley, 2010; pp. 165–357. | spa |
dc.relation.references | Montalbetti, C.A.G.N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron 2005. | spa |
dc.relation.references | Windridge, G.; Jorgensen, E.C. 1-Hydroxybenzotriazole as a Racemization-Suppressing Reagent for the Incorporation of Im-Benzyl-L-Histidine into Peptides. J Am Chem Soc 1971, 93, 6318–6319, doi:10.1021/ja00752a081. | spa |
dc.relation.references | Murphy, L.R.; Meek, T.L.; Allred, A.L.; Allen, L.C. Evaluation and Test of Pauling’s Electronegativity Scale. J Phys Chem A 2000, 104, 5867–5871, doi:10.1021/jp000288e. | spa |
dc.relation.references | Niño-Ramírez, V.A.; Insuasty-Cepeda, D.S.; Rivera-Monroy, Z.J.; Maldonado, M. Evidence of Isomerization in the Michael-Type Thiol-Maleimide Addition: Click Reaction between L-Cysteine and 6-Maleimidehexanoic Acid. Molecules 2022, 27, doi:10.3390/molecules27165064. | spa |
dc.relation.references | Insuasty-Cepeda, D.S.; Maldonado, M.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Obtaining an Immunoaffinity Monolithic Material: Poly(GMA-Co-EDMA) Functionalized with an HPV-Derived Peptide Using a Thiol–Maleimide Reaction. RSC Adv 2021, 11, 4247–4255, doi:10.1039/D0RA09095F. | spa |
dc.relation.references | Huang, W.; Wu, X.; Gao, X.; Yu, Y.; Lei, H.; Zhu, Z.; Shi, Y.; Chen, Y.; Qin, M.; Wang, W.; et al. Maleimide–Thiol Adducts Stabilized through Stretching. Nat Chem 2019, doi:10.1038/s41557-018-0209-2. | spa |
dc.relation.references | Yechouron, A.; Dascal, A.; Stevenson, J.; Mendelson, J. Ability of National Committee for Clinical Laboratory Standards-Recommended Quality Control Strains from the American Type Culture Collection to Detect Errors in Disk Diffusion Susceptibility Tests. J Clin Microbiol 1991, 29, 2758–2762, doi:10.1128/jcm.29.12.2758-2762.1991. | spa |
dc.relation.references | Heil, E.L.; Kuti, J.L.; Bearden, D.T.; Gallagher, J.C. The Essential Role of Pharmacists in Antimicrobial Stewardship. Infect Control Hosp Epidemiol 2016, 37, 753–754. | spa |
dc.relation.references | Barragán-Cárdenas, A.; Urrea-Pelayo, M.; Niño-Ramírez, V.A.; Umaña-Pérez, A.; Vernot, J.P.; Parra-Giraldo, C.M.; Fierro-Medina, R.; Rivera-Monroy, Z.; García-Castañeda, J. Selective Cytotoxic Effect against the MDA-MB-468 Breast Cancer Cell Line of the Antibacterial Palindromic Peptide Derived from Bovine Lactoferricin. RSC Adv 2020, 10, 17593–17601, doi:10.1039/d0ra02688c. | spa |
dc.relation.references | Vargas-Casanova, Y.; Rodríguez-Mayor, A.V.; Cardenas, K.J.; Leal-Castro, A.L.; Muñoz-Molina, L.C.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Synergistic Bactericide and Antibiotic Effects of Dimeric, Tetrameric, or Palindromic Peptides Containing the RWQWR Motif against Gram-Positive and Gram-Negative Strains. RSC Adv 2019, doi:10.1039/c9ra00708c. | spa |
dc.relation.references | Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and Arginine-Rich Antimicrobial Peptides: Structures and Mechanisms of Action. Biochim Biophys Acta Biomembr 2006, 1758, 1184–1202. | spa |
dc.relation.references | He, S.; Deber, C.M. Interaction of Designed Cationic Antimicrobial Peptides with the Outer Membrane of Gram-Negative Bacteria. Sci Rep 2024, 14, doi:10.1038/s41598-024-51716-1. | spa |
dc.relation.references | Bechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J Dent Res 2017, 96, 254–260. | spa |
dc.relation.references | Pineda-Castañeda, H.M.; Maldonado-Villamil, M.; Parra-Giraldo, C.M.; Leal-Castro, A.L.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Peptide-Resorcinarene Conjugates Obtained via Click Chemistry: Synthesis and Antimicrobial Activity. Antibiotics 2023, 12, doi:10.3390/antibiotics12040773. | spa |
dc.relation.references | Malanovic, N.; Lohner, K. Gram-Positive Bacterial Cell Envelopes: The Impact on the Activity of Antimicrobial Peptides. Biochim Biophys Acta Biomembr 2016, 1858, 936–946, doi:10.1016/j.bbamem.2015.11.004. | spa |
dc.relation.references | Jama-Kmiecik, A.; Mączyńska, B.; Frej-Mądrzak, M.; Choroszy-Król, I.; Dudek-Wicher, R.; Piątek, D.; Kujawa, K.; Sarowska, J. The Changes in the Antibiotic Resistance of Staphylococcus Aureus, Streptococcus Pneumoniae, Enterococcus Faecalis and Enterococcus Faecium in the Clinical Isolates of a Multiprofile Hospital over 6 Years (2017–2022). J Clin Med 2025, 14, doi:10.3390/jcm14020332. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.lemb | POLIFENOLES | spa |
dc.subject.lemb | Polyphenols | eng |
dc.subject.lemb | ANTIBIOTICOS PEPTIDOS | spa |
dc.subject.lemb | Peptide antibiotics | eng |
dc.subject.lemb | DROGAS INMUNOCONJUGADAS | spa |
dc.subject.lemb | Antibody-drug conjugates | eng |
dc.subject.lemb | BIOCONJUGADOS | spa |
dc.subject.lemb | Bioconjugates | eng |
dc.subject.proposal | Calix[4]resorcinareno | spa |
dc.subject.proposal | Maleimida | spa |
dc.subject.proposal | Química click | spa |
dc.subject.proposal | Tiol-maleimida | spa |
dc.subject.proposal | Péptidos antimicrobianos (PAMs) | spa |
dc.subject.proposal | LfcinB | spa |
dc.subject.proposal | Reacción de Mannich | spa |
dc.subject.proposal | Conjugados | spa |
dc.subject.proposal | Calix[4]resorcinarene | eng |
dc.subject.proposal | Maleimide | eng |
dc.subject.proposal | Click chemistry | eng |
dc.subject.proposal | Thiol-maleimide | eng |
dc.subject.proposal | Antimicrobial peptides (PAMs) | eng |
dc.subject.proposal | LfcinB | eng |
dc.subject.proposal | Mannich reaction | eng |
dc.subject.proposal | conjugates | eng |
dc.subject.proposal | Conjugados (péptido)-resorcinareno | spa |
dc.subject.proposal | Peptide-resorcinarene conjugates | eng |
dc.title | Obtención de conjugados péptido-resorcinareno mediante reacción de adición de Michael tiol-maleimida y evaluación de su potencial antibacteriano | spa |
dc.title.translated | Obtaining peptide-resorcinarene conjugates by Michael thiol-maleimide addition reaction and evaluation of their antibacterial potential | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022340821.2025.pdf
- Tamaño:
- 19.57 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: