Modelación numérica bidimensional de la dinámica de sedimentación en un embalse tropical.

dc.contributor.advisorGómez Giraldo, Evelio Andrés
dc.contributor.authorCórdoba Yepes, Stephany
dc.coverage.regionAntioquia, Colombia
dc.date.accessioned2021-10-13T16:00:10Z
dc.date.available2021-10-13T16:00:10Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLos procesos de sedimentación limitan la vida útil de los embalses, esto a su vez representa una amenaza para la sostenibilidad de la energía hidroeléctrica, que representa el 70 % de la capacidad instalada en Colombia. En esta tesis se estudió la dinámica espacio temporal de la morfología del lecho y de los principales procesos de transporte de sedimentos dentro del embalse tropical Porce II, ubicado en el departamento de Antioquia, Colombia. Para esto se calibró y validó el modelo hidro-morfodinámico bidimensional Delft3D-2D a partir de información histórica hidrosedimentológica y de niveles de operación de la central. A partir del modelo se analizaron alternativas para la adaptación y remoción de sedimentos dentro del embalse. La sedimentación en Porce II se caracteriza por un delta de depositación avanzando longitudinalmente y por unas barras/diques laterales que generan una represión del flujo en los brazos de afluentes secundarios, estas características fueron bien representadas por el modelo bidimensional. Dentro del proceso de calibración se destaca el uso del factor de aceleración morfológica, comúnmente usado para reducir el tiempo de computo de simulaciones morfodinámicas de largo plazo en cuerpos de agua con comportamientos cíclicos definidos. En este trabajo se observó una buena representación al aplicarlo a escenarios donde las condiciones de frontera no son periódicas, siempre que se seleccione adecuadamente la escala temporal. Además, se encontró relevancia en la definición de parámetros asociados al flujo turbulento y a la rugosidad del lecho en la simulación de cambios batimétricos. Los resultados de la modelación evidenciaron la influencia del descenso de niveles, durante la operación de la central, para mantener la comunicación con los brazos de afluentes secundarios. Además, sugirieron mayor efectividad en alternativas de remoción cuando la evacuación de sedimentos se da en cercanías al delta de depositación. (Texto tomado de la fuente)spa
dc.description.abstractThe sedimentation process reduces reservoir lifespan and represents a threat to the sustainability of hydropower, which represents 70% of the installed capacity in Colombia. In this thesis, morphological spatio-temporal dynamics of bed and principal transport processes of sediments inside the tropical reservoir Porce II in Antioquia, Colombia, was studied. For this purpose, the two-dimensional hydro-morphodynamic model Delft3D-2D was calibrated and validated based on historical hydro-sedimentological information and hydroelectric operating levels. Also, adaptation and removal sediment reservoir strategies were analyzed. The sedimentation process in Porce II is characterized by a delta, which advances in a longitudinal way and by lateral barriers, that generates flow repression on the secondary affluents. The proposed model configuration has a proper representation of those characteristics. A morphological acceleration factor was included in the calibration process, commonly used to reduce the computational requirements for long-term morphodynamic simulations in defined cyclical behavior of water bodies. Here it is demonstrated that this factor could be used in simulations whit non-periodical boundary conditions, holding the model accuracy as long as the time scale is selected correctly. In addition, the selected parameters related to turbulent fluxes and the reservoir bottom roughness play an essential role in improving the model skill. The presented results show the influence of the reservoir levels to keep the communication with the secondary affluents. Besides, the results suggest greater effectiveness in removal alternatives when sediment evacuation occurs near the delta.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaHidráulica e Hidrodinámicaspa
dc.format.extentvi, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80536
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAcolgen (2021). Capacidad Instalada en Colombia.spa
dc.relation.referencesAguirre Iñiguez, D. V., Bui, M. D., Giehl, S., Reisenbüchler, M., & Rutschmann, P. (2019). Development of a hydro-morphodynamic model for sediment management in the rosenheim reservoir. In XXVIth TELEMAC-MASCARET User Conference, 15th to 17th October 2019, Toulouse.spa
dc.relation.referencesAndersen, T. J., Fredsoe, J., & Pejrup, M. (2007). In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV). Estuarine, Coastal and Shelf Science, 75 (3).spa
dc.relation.referencesAnnandale, G. W., Morris, G. L., & Karki, P. (2016). Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Run-of-River Hydropower. The World Bank.spa
dc.relation.referencesAQUAVEO (2021). SRH Model. https://www.aquaveo.com/software/sms-srh.spa
dc.relation.referencesBagnold, R. A. (1973). The nature of saltation and of 'bed-load' transport in water. PROC. ROY. SOC. LONDON, SERIES A, 332 (1591 (1973)).spa
dc.relation.referencesBengtsson, L., Herschy, R., & Fairbridge, R. (2012). Encyclopedia of Lakes and Reservoirs.spa
dc.relation.referencesBetancur Pérez, G. (2013). Metodología para la Selección de Modelos Hidrodinámicos Tridimensionales.spa
dc.relation.referencesBlanckaert, K., Glasson, L., Jagers, H. R. A., & Slo_, C. (2003). Quasi-3D simulation of flow in sharp open-channel bends with horizontal and developed bed topography. In RCEM, (pp. 652-663).spa
dc.relation.referencesBrown, C. B. (1944). Discussion of Sedimentation in Reservoirs. In Proceedings of the American Society of Civil Engineers.spa
dc.relation.referencesBrune, G. M. (1953). Trap efficiency of reservoirs. Eos, Transactions American Geophysical Union, 34 (3).spa
dc.relation.referencesChow, V. T. (1959). Open-channel hydraulics. McGraw-Hill civil engineering series.spa
dc.relation.referencesChurchill, M. (1947). Discussion of “Analysis and Use of Reservoir Sedimentation Data". In Proceedings of the Federal Inter-Agency Sedimentation Conference.spa
dc.relation.referencesCrespo, P. D., Mosselman, E., Giardino, A., Becker, A., Ottevanger, W., Nabi, M., & Arias- Hidalgo, M. (2019). Sediment budget analysis of the Guayas River using a process-based model. Hydrology and Earth System Sciences, 23 (6).spa
dc.relation.referencesDebnath, K., Nikora, V., Aberle, J., Westrich, B., & Muste, M. (2007). Erosion of Cohesive Sediments: Resuspension, Bed Load, and Erosion Patterns from Field Experiments.spa
dc.relation.referencesJournal of Hydraulic Engineering, 133 (5).spa
dc.relation.referencesDeltares (2013a). Delft3D-FLOW User Manual.spa
dc.relation.referencesDeltares (2013a). Delft3D-FLOW User Manual.spa
dc.relation.referencesDeltares (2013c). Delft3D-RGFGRID User Manual.spa
dc.relation.referencesDHI (2021). MIKE 21/3. https://www.mikepoweredbydhi.com/products/mike-21-3.spa
dc.relation.referencesEinstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows. Number 1026. US Government Printing Office.spa
dc.relation.referencesEPM (2003). Batimetría del Embalse Porce II, Año 2002. Technical report.spa
dc.relation.referencesEPM (2003). Batimetría del Embalse Porce II, Año 2002. Technical report.spa
dc.relation.referencesEPM (2016). Batimetría del Embalse Porce II, Año 2015. Technical report.spa
dc.relation.referencesEPM (2020). Diagnóstico de la sedimentación en embalses de EPM. Technical report, Empresas Públicas de Medellín.spa
dc.relation.referencesGarcía, M. H. (2007). ASCE manual of practice 110-sedimentation engineering: Processes, measurements, modeling, and practice. In Examining the Confluence of Environmental and Water Concerns - Proceedings of the World Environmental and Water Resources Congress 2006.spa
dc.relation.referencesGarcía Sanchez, J. (2002). Sedimentación en embalses. In Manual de Ingeniería de Ríos. México.spa
dc.relation.referencesHarris, T. W. (2015). Critical shear stress for erosion of fine and coarse-grained sediments in georgia.spa
dc.relation.referencesHerrling, G. & Winter, C. (2014). Morphological and sedimentological response of a mixedenergy barrier island tidal inlet to storm and fair-weather conditions. Earth Surface Dynamics, 2 (1).spa
dc.relation.referencesHerrling, G. & Winter, C. (2017). Spatiotemporal variability of sedimentology and morphology in the East Frisian barrier island system. Geo-Marine Letters, 37 (2).spa
dc.relation.referencesIBER (2021). IBER. https://www.iberaula.es/53/iber-model/modules.spa
dc.relation.referencesJi, Z.-G. (2008). Hydrodynamics and Water Quality. Hoboken, NJ, USA: John Wiley & Sons, Inc.spa
dc.relation.referencesKrone, R. B. (1999). Effects of Bed Structure on Erosion of Cohesive Sediments. Journal of Hydraulic Engineering, 125 (12).spa
dc.relation.referencesLajczak, A. (1996). Modelling the long-term course of non-flushed reservoir sedimentation and estimating the life of dams. Earth surface processes and landforms, 21 (12), 1091-1107.spa
dc.relation.referencesLargo, D. (2011). Caracterización Espacio - Temporal De la Estructura Térmica del Embalse Porce II. PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesLauer, J. W., Viparelli, E., & Piégay, H. (2016). Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir. Advances in Water Resources, 93.spa
dc.relation.referencesLee, S.-C. & Mehta, A. J. (1994). Cohesive sediment erosion. Technical report, FLORIDA UNIV GAINESVILLE DEPT OF COASTAL AND OCEANOGRAPHIC ENGINEERING.spa
dc.relation.referencesLees, B. J. (1981). Relationship between eddy viscosity of seawater and eddy diffusivity of suspended particles. Geo-Marine Letters, 1 (3-4).spa
dc.relation.referencesLesser, G. R., Roelvink, J. A., van Kester, J. A., & Stelling, G. S. (2004). Development and validation of a three-dimensional morphological model. Coastal Engineering, 51 (8-9).spa
dc.relation.referencesMaa, J. P.-Y., Kwon, J.-I., Hwang, K.-N., & Ha, H.-K. (2008). Critical Bed-Shear Stress for Cohesive Sediment Deposition under Steady Flows. Journal of Hydraulic Engineering, 134 (12).spa
dc.relation.referencesMillares, A., Polo, M., Moñino, A., Herrero, J., & Losada, M. (2014). Bedload dynamics and associated snowmelt influence in mountainous and semiarid alluvial rivers. Geomorphology, 206, 330-342.spa
dc.relation.referencesMorgan, J. A., Kumar, N., Horner-Devine, A. R., Ahrendt, S., Istanbullouglu, E., & Bandaragoda, C. (2020). The use of a morphological acceleration factor in the simulation of large-scale fluvial morphodynamics. Geomorphology, 356, 107088.spa
dc.relation.referencesMorris, G. (2015). Management alternatives to combat reservoir sedimentation. First International Workshop on Sediment Bypass Tunnels.spa
dc.relation.referencesMorris, G. L., Fan, J. (1998). Reservoir Sedimentation Handbook. Aging.spa
dc.relation.referencesNavarro, H. R. (2004). Flume measurements of erosion characterstics of soil at bridge foundations in georgia.spa
dc.relation.referencesNCCHE (2017). CCHE2D-Sed Model. https://www.ncche.olemiss.edu/cche2d-sed-model.spa
dc.relation.referencesNezu, I. & Nakagawa, H. (1993). Turbulence in open channel flows.spa
dc.relation.referencesOmer, A. Y., Ali, Y. S., Roelvink, J. A., Dastgheib, A., Paron, P., & Crosato, A. (2015). Modelling of sedimentation processes inside Roseires Reservoir (Sudan). Earth Surface Dynamics.spa
dc.relation.referencesPalmieri, A., Shah, F., Annandale, G. W., & Dinar, A. (2003). Reservoir Conservation. The RESCON Approach. Washington, D.C.spa
dc.relation.referencesPapanicolaou, A. T. N., Elhakeem, M., Krallis, G., Prakash, S., & Edinger, J. (2008). Sediment Transport Modeling Review|Current and Future Developments. Journal of Hydraulic Engineering, 134 (1), 1-14.spa
dc.relation.referencesPartheniades, E. (1965). Erosion and Deposition of Cohesive Soils. Journal of the Hydraulics Division, 91 (1).spa
dc.relation.referencesPerea, I. M. (2013). Modelación del delta de sedimento en un embalse que presenta rápidas fluctuaciones de nivel.spa
dc.relation.referencesPoveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala interdecadal hasta la escala diurna. Rev. Acad. Colomb. Cienc, 28 (107), 201-222.spa
dc.relation.referencesRamos, R. (2007). Modelación del Efecto del Viento Sobre la Estructura Térmica del Embalse Porce II. PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesRoelvink, J. A. (2006). Coastal morphodynamic evolution techniques. Coastal Engineering, 53 (2-3).spa
dc.relation.referencesRoldán Pérez, G. & Ramírez Restrepo, J. J. (2008). Fundamentos de limnología neotropical.spa
dc.relation.referencesSalehi, M. & Strom, K. (2012). Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations. Continental Shelf Research, 47.spa
dc.relation.referencesSchuurman, F., Marra, W. A., & Kleinhans, M. G. (2013). Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. Journal of geophysical research: Earth Surface, 118 (4), 2509-2527.spa
dc.relation.referencesSegal, E., Shouse, P. J., Bradford, S. A., Skaggs, T. H., & Corwin, D. L. (2009). Measuring particle size distribution using laser diffraction: Implications for predicting soil hydraulic properties. Soil Science, 174 (12).spa
dc.relation.referencesShi, B., Wang, Y. P., Yang, Y., Li, M., Li, P., Ni, W., & Gao, J. (2015). Determination of Critical Shear Stresses for Erosion and Deposition Based on in Situ Measurements of Currents and Waves over an Intertidal Mudat. Journal of Coastal Research, 31 (6).spa
dc.relation.referencesShields, A. (1936). Application of similarity principles and turbulence research to bed-load movement.spa
dc.relation.referencesSIEL (2018). Estadísticas y variables de generación.spa
dc.relation.referencesSutherland, J., Peet, A. H., & Soulsby, R. L. (2004). Evaluating the performance of morphological models. Coastal Engineering, 51 (8-9).spa
dc.relation.referencesUribe Suárez, D. A. (2015). Simulación de la Hidrodinámica Marina en la Región de Cartagena con Aplicaciones al Transporte de Sedimentos.spa
dc.relation.referencesU.S. Deparment of the Interior (2006). Erosion and Sedimentation Manual. Denver, CO.spa
dc.relation.referencesUSSD (2015). Modeling Sediment Movement in Reservoirs. Technical report, Denver, CO.spa
dc.relation.referencesVan der Wegen, M. & Roelvink, J. (2008). Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. Journal of Geophysical Research: Oceans, 113 (C3).spa
dc.relation.referencesvan Rijn, L. (1993). Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas.spa
dc.relation.referencesVan Rijn, L. C. (1984). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering.spa
dc.relation.referencesvan Rijn, L. C., Wasltra, D. J., Grasmeijer, B., Sutherland, J., Pan, S., & Sierra, J. P. (2003). The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based pro_le models. Coastal Engineering, 47 (3).spa
dc.relation.referencesVelásquez, L. (2013). Modelación del transporte de sedimentos en el golfo de Urabá, Colombia. Universidad EAFIT Escuela de Ingeniería. Departamento de geología. Medellín.spa
dc.relation.referencesVelásquez, L. (2013). Modelación del transporte de sedimentos en el golfo de Urabá, Colombia. Universidad EAFIT Escuela de Ingeniería. Departamento de geología. Medellín.spa
dc.relation.referencesWang, Z., Xia, J., Deng, S., Zhang, J., & Li, T. (2017). One-dimensional morphodynamic model coupling open-channel flow and turbidity current in reservoir. Journal of Hydrology and Hydromechanics, 65 (1), 68-79.spa
dc.relation.referencesWentworth, C. K. (1922). A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30 (5).spa
dc.relation.referencesWest, J. R., Oduyemi, K. O., Bale, A. J., & Morris, A. W. (1990). The field measurement of sediment transport parameters in estuaries. Estuarine, Coastal and Shelf Science, 30 (2).spa
dc.relation.referencesWilliams, R. D., Measures, R., Hicks, D. M., & Brasington, J. (2016). Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river. Water Resources Research, 52 (8).spa
dc.relation.referencesXM (2021). Parámetros técnicos del sin.spa
dc.relation.referencesYen, B. C. (2002). Open Channel Flow Resistance. Journal of Hydraulic Engineering, 128 (1).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembWater-power electric plants
dc.subject.lembCentrales hidroeléctricas
dc.subject.lembSedimentation and deposition
dc.subject.proposalMorfodinámicaspa
dc.subject.proposalLimnología tropicalspa
dc.subject.proposalModelación numéricaspa
dc.subject.proposalSedimentaciónspa
dc.subject.proposalTropical limnologyeng
dc.subject.proposalNumerical modelingeng
dc.subject.proposalSedimentationeng
dc.subject.proposalMorphodynamiceng
dc.titleModelación numérica bidimensional de la dinámica de sedimentación en un embalse tropical.spa
dc.title.translatedTwo-dimensional numerical model of sedimentation dynamics in a tropical reservoir.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037641117.2021.pdf
Tamaño:
45.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: