Relaciones filogenéticas del género Vasconcellea en el sur del Ecuador usando código de barras de ADN.

dc.contributor.advisorMuñoz Florez, Jaime Eduardo
dc.contributor.advisorGallego, Gerardo
dc.contributor.authorTroya Armijos, Edison Anibal
dc.contributor.orcid0009-0003-6197-0836spa
dc.contributor.researchgroupGrupo de Investigación en Diversidad Biológicaspa
dc.coverage.countryhttp://vocab.getty.edu/page/tgn/1000051
dc.date.accessioned2025-06-27T16:20:49Z
dc.date.available2025-06-27T16:20:49Z
dc.date.issued2025-06
dc.descriptionIlustraciones, fotografías, mapas, tablasspa
dc.description.abstractLos valles andinos del sur del Ecuador constituyen el centro de biodiversidad de más de 10 especies del género Vasconcellea. La plasticidad fenotípica presente en Vasconcellea complica en cierta forma la descripción de posibles nuevas especies y complejos de especies poco entendidos, con características morfológicas que han llevado a muchos investigadores a ampliar sus estudios a nivel genético. El uso de una secuencia de ADN como código de barras genético, constituye una herramienta tecnológica útil en la identificación de especies a nivel taxonómico a partir de pequeños fragmentos de un individuo y en cualquier momento del desarrollo. En la presente investigación se estudiaron 12 especies de Vasconcellea, cuyos análisis genéticos a partir del locus de ADNcp (matK) y ADNrn (ITS), mostraron especies bien diferenciadas, con altos niveles de variación en la diversidad haplotípica y moderada diversidad nucleotídica. Además, los resultados obtenidos con biomarcadores nuclear ITS y cloroplástico matK no mostraron participación de los parentales putativos V. stipulata y V. pubescens en la formación de V. × heilbornii, conforme lo sugiere Badillo. El hecho de que las tres variedades compartan el mismo haplotipo cloroplástico (Hap1) sugiere un ancestro materno común y una divergencia relativamente reciente. Además, que V. × heilbornii var. pentagona (Babaco) y V. × heilbornii var. fructifragrans compartan el mismo haplotipo nuclear (Hap4) indica una relación genética más estrecha entre estas dos variedades, posiblemente debido a un flujo génico reciente o a un ancestro común más cercano. Por último, la presencia de diferentes haplotipos nucleares en cada variedad refleja una divergencia genética más reciente, posiblemente impulsada por mutaciones, flujo génico, selección natural y deriva genética. Estos patrones son consistentes con un proceso de especiación incipiente donde las variedades están en las primeras etapas de diferenciación genética y adaptación a distintos ambientes. Al parecer, V. pubescens actúa ocasionalmente solo como donante de polen en eventos de hibridaciones interespecíficas, particularmente con V. stipulata a nivel del cloroplasto. (Texto tomado de la fuente).spa
dc.description.abstractThe Andean valleys of southern Ecuador constitute the center of biodiversity of more than 10 species of the genus Vasconcellea as documented to date. Despite the relatively small number of species, taxonomic analysis is often complicated due to the frequent interspecific compatibility that affects the distribution and diversity of Vasconcellea, allowing natural hybridizations and introgressions in sympatric areas, resulting in complex hybrid populations with a series of interesting recombinations present in their descendants. The phenotypic plasticity present in Vasconcellea complicates in some way the description of possible new species and poorly understood species complexes, with morphological characteristics that have led many researchers to expand their studies at the genetic level. The use of a DNA sequence as a genetic barcode constitutes a useful technological tool in the identification of species at the taxonomic level from small fragments of an individual and at any time of development. In the present investigation, twelve species of Vasconcellea were studied. The genetic analysis from the cpDNA (matK) and rnDNA (ITS) locus showed well-differentiated species, with high levels of variation in haplotypic diversity and moderate nucleotide diversity. Furthermore, the results obtained with nuclear ITS and chloroplastic matK biomarkers did not show participation of the putative parents V. stipulata and V. pubescens in the formation of V. × heilbornii, as suggested by Badillo. The fact that all three varieties share the same chloroplast haplotype (Hap1) suggests a common maternal ancestor and a relatively recent divergence. Furthermore, the fact that V. × heilbornii var. pentagona (Babaco) and V. × heilbornii var. fructifragrans share the same nuclear haplotype (Hap4) indicates a closer genetic relationship between these two varieties, possibly due to recent gene flow or a closer common ancestor. Finally, the presence of different nuclear haplotypes in each variety reflects a more recent genetic divergence, possibly driven by mutations, gene flow, natural selection and genetic drift. These patterns are consistent with an incipient speciation process where varieties are in the early stages of genetic differentiation and adaptation to different environments. V. pubescens appears to occasionally act only as a pollen donor in interspecific hybridization events, particularly with V. stipulata at the chloroplast leve.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Biológicasspa
dc.description.methodsEl uso de una secuencia de ADN como código de barras genético, constituye una herramienta tecnológica útil en la identificación de especies a nivel taxonómico a partir de pequeños fragmentos de un individuo y en cualquier momento del desarrollo. En la presente investigación se estudiaron 12 especies de Vasconcellea, cuyos análisis genéticos a partir del locus de ADNcp (matK) y ADNrn (ITS), mostraron especies bien diferenciadas, con altos niveles de variación en la diversidad haplotípica y moderada diversidad nucleotídicaspa
dc.description.researchareaBiotecnología Vegetalspa
dc.format.extentxiv, 96 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88253
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicasspa
dc.relation.referencesAcosta, M. C., & Premoli, A. C. (2010). Evidence of chloroplast capture in south American Nothofagus (subgenus Nothofagus, Nothofagaceae). Molecular Phylogenetics and evolution, 54(1), 235-242.spa
dc.relation.referencesAguirre Planter Erika. 2007. Flujo génico: métodos para estimarlo y marcadores moleculares. pp. 49-61. En: L. E. Eguiarte, V. Souza y X. Aguirre (ed) Ecología molecular. INE, CONABIO y UNAM. INE.spa
dc.relation.referencesÁlvarez, I. J. F. W., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular phylogenetics and evolution, 29(3), 417-434.spa
dc.relation.referencesAradhya MK, Manshardt RM, Zee F, Morden CW (1999) A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region. Genet Res Crop Evol 46:579–586spa
dc.relation.referencesAzofeifa D., A. (2006). Uso de marcadores moleculares en plantas; aplicaciones en frutales del trópico. Agronomía Mesoamericana 17(2): 221-242. 2006.spa
dc.relation.referencesBadillo VM (1967) Acerca de la naturalezea hibrida de Carica pentagona, Carica chrysopetala y Carica fructifragrans, frutales del Ecuador y Colombia. Revista Facultad de Agronomía Universidad Central de Venezuela. Maracay, Venezuela. pp. 4:3–14spa
dc.relation.referencesBadillo VM (1971) La Familia Caricaceae. Asociación de Profesores. Universidad Central de Venezuela. Maracay, Venezuela. pp. 7-11.spa
dc.relation.referencesBadillo VM (1993) Caricaceae. Segundo esquema. Rev. Fac. Agron. UCV 43: 1-111.spa
dc.relation.referencesBadillo VM (1997). Neotipificación de Carica pubescens Lenné et Koch y de Carica quercifolia. (St. Hil) Hieron. y nuevos registros de la familia para Ecuador. Ernstia 6:201-205spa
dc.relation.referencesBadillo VM (2000). Carica L. vs Vasconcellea St. Hil. (Caricaceae), con la rehabilitación de este último. Ernstia 10:74-79spa
dc.relation.referencesBadillo, VM (2001). Nota correctiva Vasconcellea St. Hill. y no Vasconcella (Caricaceae). Ernstia 11(1): 75-76.spa
dc.relation.referencesBadillo, V. M., Van den Eynden, V., & Van Damme, P. (2000). Carica palandensis (Caricaceae), a New Species from Ecuador. Novon, 10(1), 4–6.spa
dc.relation.referencesBaldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., & Donoghue, M. J. (1995). The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri botanical garden, 247-277.spa
dc.relation.referencesBarthet, M., & Hilu, K. (2007). Expression of matk: functional and evolutionary implications. American Journal of Botany 94(8): 1402–1412. 2007.spa
dc.relation.referencesBarton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual review of Ecology and Systematics, 16(1), 113-148.spa
dc.relation.referencesBurnham, R. J., & Graham, A. (1999). The history of neotropical vegetation: new developments and status. Annals of the Missouri Botanical Garden, 546-589.spa
dc.relation.referencesCamin, J. H., & Sokal, R. R. (1965). A method for deducing branching sequences in phylogeny. Evolution, 311-326.spa
dc.relation.referencesCavalli-Sforza, L. L., & Edwards, A. W. (1967). Phylogenetic analysis. Models and estimation procedures. American journal of human genetics, 19(3 Pt 1), 233.spa
dc.relation.referencesCarvalho, F. A., & Renner, S. S. (2012). A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogenet Evol 65:46–53spa
dc.relation.referencesCarvalho, F.A.; Renner, S.S. 2014: The Phylogeny of the Caricaceae. In: Ming R.; Moore P. (ed.) Genetics and Genomics of Papaya. Vol. 10. In: Plant Genetics and Genomics: Crops and Models. Springer, New York, NY. 81–92.spa
dc.relation.referencesCBOL Plant Working Group (2009) A DNA Barcode for Land Plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12794-12797.spa
dc.relation.referencesChen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y. y Leon, C., 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. En: PLoS ONE, 5(1). DOI: 10.1371/journal.pone.0008613.spa
dc.relation.referencesCorrêa, N. C., Mendes, I. C., Gomes, M. T. R., Kalapothakis, E., Chagas, B. C., Lopes, M. T., & Salas, C. E. (2011). Molecular cloning of a mitogenic proteinase from Carica candamarcensis: its potential use in wound healing. Phytochemistry, 72(16), 1947-1954.spa
dc.relation.referencesCoppens d’Eeckenbrugge G, Drew R, Kyndt T, Scheldeman X (2013) Vasconcellea for papaya improvement. In Ming R, Moore P (eds) Genetics and genomics of papaya. Springer Science+Business Media, New York.spa
dc.relation.referencesCossio, F. 1988. Il Babaco. Edizioni Calderini Edagricole, Bologna, Italy, 60 p.spa
dc.relation.referencesCosta FR, Pereira TNS, Hodnett GL, Pereira MG, Stelly DM (2008) Fluorescent in situ hybridization of 18S and 5S rDNA in papaya (Carica papaya L.) and wild relatives. Caryologia 61:411-416spa
dc.relation.referencesCrisci, J. V. (1983). Taxonomic congruence: A brief discussion. In Numerical Taxonomy (pp. 92-96). Berlin, Heidelberg: Springer Berlin Heidelberg.spa
dc.relation.referencesCaetano, CM, Lagos Burbano, TC, Sandoval Sierra, CL, Posada Tique, CA y Caetano Nunes, DG (2008). Citogenética de especies de Vasconcellea (Caricaceae). Acta Agronómica, 57(4), 241-245.spa
dc.relation.referencesDaniel H. Huson, David Bryant, Application of Phylogenetic Networks in Evolutionary Studies, Molecular Biology and Evolution, Volume 23, Issue 2, February 2006, Pages 254–267.spa
dc.relation.referencesDarlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. George Allen & Unwin Ltd, Londonspa
dc.relation.referencesde Zerpa DM (1959) Citología de híbridos interespecíficos en Carica. Agron Trop 8: 135-144spa
dc.relation.referencesDoyle, J.J. and Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12(1):13-15.spa
dc.relation.referencesEfron, B. (1987). Better bootstrap confidence intervals. Journal of the American statistical Association, 82(397), 171-185.spa
dc.relation.referencesEms, S.C., Morden, C.W., Dixon, K.W. 1995. Transcription, splicing, and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol. Biol. 29, 621-733.spa
dc.relation.referencesFazekas A. J., Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, et al. (2008) Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PLoS ONE 3(7): e2802.spa
dc.relation.referencesFazekas, A. J., Kesanakurti, P. R., Burgess, K. S., Percy, D. M., Graham, S. W., Barrett, S. C., Newmaster, S. G., Hajibabaei, M., & Husband, B. C. (2009). Are plant species inherently harder to discriminate than animal species using DNA barcoding markers?. Molecular ecology resources, 9 Suppl s1, 130–139.spa
dc.relation.referencesFazekas, A. J., Kuzmina, M. L., Newmaster, S. G., & Hollingsworth, P. M. (2012). DNA barcoding methods for land plants. In DNA barcodes (pp. 223-252). Humana Press, Totowa, NJ.spa
dc.relation.referencesFehrer, J., Gemeinholzer, B., Chrtek Jr, J., & Bräutigam, S. (2007). Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molecular phylogenetics and evolution, 42(2), 347-361.spa
dc.relation.referencesFerreira, M. E., Fernández, J. N., & Grattapaglia, D. (1998). Introducción al uso de marcadores moleculares en el análisis genético.spa
dc.relation.referencesFelsenstein, J. (2008). Comparative methods with sampling error and within-species variation: contrasts revisited and revised. The American Naturalist, 171(6), 713-725.spa
dc.relation.referencesFreeman, J. S., Jackson, H. D., Steane, D. A., McKinnon, G. E., Dutkowski, G. W., Potts, B. M., & Vaillancourt, R. E. (2001). Chloroplast DNA phylogeography of Eucalyptus globulus. Australian Journal of Botany, 49(5), 585-596.spa
dc.relation.referencesFluxus-engineering. (2015). Fluxus-engineering.com Version date 24 December 2015. Copyright© 2015 Fluxus Technology. All rights reserved.spa
dc.relation.referencesGao, T., Yao, H., Song, J., Liu, C., Zhu, Y., Ma, X., Pang, X., Xu, H., & Chen, S. (2010). Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. Journal of ethnopharmacology, 130(1), 116–121.spa
dc.relation.referencesGarcia-Jacas, N., Susanna, A., Garnatje, T., & Vilatersana, R. (2001). Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): a combined nuclear and chloroplast DNA analysis. Annals of Botany, 87(4), 503-515.spa
dc.relation.referencesGheno-Heredia, Y. (2000). Morfogénesis in vitro de Carica cauliflora Jacq. (Maestría). Universidad Veracruzana.spa
dc.relation.referencesHall, T. A. (1999). BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.spa
dc.relation.referencesHebert, P. D., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321.spa
dc.relation.referencesHillis, D. M., Huelsenbeck, J. P., & Cunningham, C. W. (1994). Application and accuracy of molecular phylogenies. Science, 264(5159), 671-677.spa
dc.relation.referencesHilu, K. W., & Liang, G. (1997). The matK gene: sequence variation and application in plant systematics. American journal of botany, 84(6), 830-839.Garcia-Jacas et al. 2001spa
dc.relation.referencesHollingsworth, Peter & Forrest, Laura & Spouge, John & Hajibabaei, Mehrdad & Ratnasingham, Sujeevan & Bank, Michelle & Chase, Mark & Cowan, Robyn & Erickson, David & Fazekas, Aron & Graham, Sean & James, Karen & Kim, Ki-Joong & Kress, W. & Schneider, Harald & Alphenstahl, Jonathan & Barrett, Spencer & van den Berg, Cassio & Bogarín, Diego & Little, Damon. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences. 106. 12794-12797.spa
dc.relation.referencesHollingsworth, P. M., Graham, S. W., & Little, D. P. (2011). Choosing and using a plant DNA barcode. PloS one, 6(5), e19254.spa
dc.relation.referencesHorovitz, S. 1954. Determinación del sexo en Carica papaya L.: estructura hipotética de los cromosomas sexuales. Agronomía Tropical (Maracay), 3(4): 229-249.spa
dc.relation.referencesHuelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. science, 294(5550), 2310-2314.spa
dc.relation.referencesJiménez, Y., Romero, J. & Scheldeman, X. 1998. Colección, caracterización y descripción de Carica × heilbornii nm. pentagona B.; Carica pubescens (A.DC.) Solms-Laub. y Carica stipulata B., en la provincia de Loja. Revista de Difusión Técnica y Científica de la Facultad de Ciencias Agrícolas (Universidad Nacional de Loja), 29(1-2): 43-54.spa
dc.relation.referencesKearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12).spa
dc.relation.referencesKelchner, S. A. (2002). Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. American Journal of Botany, 89(10), 1651-1669.spa
dc.relation.referencesKluge, A. G., & Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Biology, 18(1), 1-32.spa
dc.relation.referencesKoch, M. A., Dobes, C., & Mitchell-Olds, T. (2003). Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Molecular biology and evolution, 20(3), 338–350. https://doi.org/10.1093/molbev/msg046spa
dc.relation.referencesKolaczkowski, B., & Thornton, J. W. (2004). Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature, 431(7011), 980-984.spa
dc.relation.referencesKress, W., 2017. Plant DNA barcodes: applications today and in the future. En: Journal of Systematics and Evolution, 55(4), pp.291-307. DOI:10.1111/jse.12254.spa
dc.relation.referencesKyndt, T., Droogenbroeck, B. V., Haegeman, A., Roldan-Ruiz, I., & Gheysen, G. (2006). Cross-species microsatellite amplification in Vasconcellea and related genera and their use in germplasm classification. Genome, 49(7), 786-798.spa
dc.relation.referencesLahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T. G., & Savolainen, V. (2008). DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2923–2928. https://doi.org/10.1073/pnas.0709936105spa
dc.relation.referencesLeón-Yánez, S., R. Valencia, N. Pitmam, L. Endara, C. Ulloa Ulloa y H. Navarrete (Eds). 2019. Libro Rojo de Plantas Endémicas del Ecuador. Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito. <https://bioweb.bio/floraweb/librorojo>spa
dc.relation.referencesLinder, CR, Moret, BM, Nakhleh, L., & Warnow, T. (2004, January). Evolution of networks (reticulates): biology, models and algorithms. At the Ninth Pacific Symposium on Biocomputing (PSB).spa
dc.relation.referencesMagdalita PM, Drew RA, Adkins SW, Godwin ID (1997a) Morphological, molecular and cytological analysis of Carica papaya x C. cauliflora interspecific hybrids. Theor Appl Genet 95:224-229spa
dc.relation.referencesManshardt RM, Wenslaff TF (1989b) Interspecific hybridisation of papaya with other Carica species. J Am Soc Hortic Sci 114:689–694spa
dc.relation.referencesManly, B. F. J. 1997. Randomization. Bootstrap and Monte Carlo Methods in Biology. Chapman and Hall, Londres.spa
dc.relation.referencesMaloukh, L., Kumarappan, A., Jarrar, M., Salehi, J., El-Wakil, H., & Rajya Lakshmi, T. V. (2017). Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants. 3 Biotech, 7(2), 144. https://doi.org/10.1007/s13205-017-0746-1spa
dc.relation.referencesMedina, D, Yaguache, B. 2002. Filogenia de Caricas – Vasconcellas del sur del Ecuador. (Pregrado). Universidad Nacional de Loja.spa
dc.relation.referencesMerino Merino, D. 1989. El cultivo del babaco. Ediciones Mundi-Prensa, Madrid, Spain, 87 p.spa
dc.relation.referencesMINAM (2018). Priorización de las zonas de prospección para la elaboración de las líneas de base de la papaya. https://bioseguridad.minam.gob.pe/wp-content/spa
dc.relation.referencesMohr, G., Perlman, P. S., & Lambowitz, A. M. (1993). Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Research, 21(22), 4991-4997.spa
dc.relation.referencesMoreno N. P. 1980. Flora de Veracruz: Caricaceae. Fascículo 10. Instituto Nacional de Investigaciones sobre Recursos Bióticos. Xalapa, México. 20 p.spa
dc.relation.referencesMorton, J.F. 1987. Fruits of warm climates. Creative Resource Systems, Winterville, U.S.A., 505 p.spa
dc.relation.referencesMuasya, A. M., Simpson, D. A., & Chase, M. W. (2002). Phylogenetic relationships in Cyperus L. sl (Cyperaceae) inferred from plastid DNA sequence data. Botanical Journal of the Linnean Society, 138(2), 145-153.spa
dc.relation.referencesMüller, K. F., Borsch, T., & Hilu, K. W. (2006). Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms. Molecular phylogenetics and evolution, 41(1), 99-117.spa
dc.relation.referencesNational Research Council. 1989. Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. National Academy Press, Washington DC, U.S.A., 415 pspa
dc.relation.referencesNewmaster, S., Fazekas, A.J., Steeves, A. y Janovec, J., 2007. Testing candidate plant barcode regions in the Myristicaceae. En: Molecular Ecology Notes, 8(3), pp.480-90. DOI:10.1111/j.1471-8286.2007.02002.x.spa
dc.relation.referencesNuez, F., & Carrillo, J. M. (2000). Los marcadores genéticos en la mejora vegetal. España: Editorial Universidad Politécnica de Valencia. Sociedad Española de Ciencias Hortícolaspa
dc.relation.referencesOlson ME (2002) Intergeneric relationships whitin the Caricaceae-Moringaceae clade (Brassicales) and potential morphological synapomorphies of the clade and its families. Int J Plant Sci 163:51–65spa
dc.relation.referencesOkuyama, Y., & Kato, M. (2009). Unveiling cryptic species diversity of flowering plants: successful biological species identification of Asian Mitella using nuclear ribosomal DNA sequences. BMC Evolutionary Biology, 9, 1-16.spa
dc.relation.referencesOrhan N. St. John’s wort (Hypericum perforatum) laboratory guidance document. Austin, TX: ABCAHP-NCNPR Botanical Adulterants Prevention Program. 2021spa
dc.relation.referencesPeña, Carlos. "Metodos de inferencia filogenetica." Revista peruana de biología, vol. 18, no. 2, 2011, p. 265+.spa
dc.relation.referencesPang, X., Shi, L., Song, J., Chen, X., & Chen, S. (2013). Use of the potential DNA barcode ITS2 to identify herbal materials. Journal of natural medicines, 67, 571-575.spa
dc.relation.referencesPérez, Julio E., & Alfonsi, Carmen, & Muñoz, Carlos. (2010). Towards a new evolutionary theory. Interciencia, 35 (11), 862-868.spa
dc.relation.referencesPerrier, X., Flori, A., & Bonnot, F. (2003). Genetic diversity of cultivated tropical plants. Enfield, Science Publishers. Montpellier. pp 43 - 76. Data analysis methods. In: Hamon, P., Seguin, M., Perrier, X., Glaszmann, J. C. Ed.spa
dc.relation.referencesPROSEA. 1992. Plant resources of South-east Asia. Vol. 2 Edible fruits and nuts. PROSEA, Bogor Indonesia, 446 p.spa
dc.relation.referencesRodríguez Díez, A. (2013). Análisis biogeográfico de las especies sudafricanas del género" Anthoxanthum L.".spa
dc.relation.referencesRogers, S. O., & Bendich, A. J. (1987). Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Molecular Biology, 9(5), 509-520.spa
dc.relation.referencesRestrepo MT, Duval M-F, Coppens d’Eeckenbrugge G, Jiménez D, Vega J, Van Droogenbroeck B (2004a) Study of cpDNA diversity in mountain papayas and the common papaya using PCR-RFLP markers. Proc Interamer Soc Trop Hortic 48:101–107spa
dc.relation.referencesRestrepo MT, Jiménez D, Coppens d’Eeckenbrugge G, Vega J (2004b) Morphological diversity of cultivated mountain papayas (Vasconcellea spp.) in Ecuador. Proc Interamer Soc Trop Hortic 48:119–123spa
dc.relation.referencesRieseberg, L. H., & Soltis, D. E. (1991). Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants.spa
dc.relation.referencesRomeijn-Peeters E (2004). Biodiversity of the genus Vasconcellea (Caricaceae) in Ecuador: a morphological approach. PhD thesis. Faculty of Sciences, Ghent Univerisity, Belgium.spa
dc.relation.referencesRonse Decraene, L.P. & Smets, E.F. 1999. The floral development and anatomy of Carica papaya (Caricaceae). Canadian Journal of Botany, 77: 582-598.spa
dc.relation.referencesRozas, J., & Rozas, R. (1995). DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Bioinformatics, 11(6), 621-625.spa
dc.relation.referencesSang, T., Crawford, D. J., & Stuessy, T. F. (1995). Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences, 92(15), 6813-6817.spa
dc.relation.referencesScheldeman, Xavier. (2002). Distribution and potential of Cherimoya (Annona cherimola Mill.) and highland papayas (Vasconcellea spp.) in Ecuador.spa
dc.relation.referencesScheldeman, X., Romero Motoche, J. P., Van Damme, V., Heyens, V., Van Damme, P. (2003). Potential of highland papayas (Vasconcella spp.) in southern Ecuador. Lyonia 5(1): 73-80.spa
dc.relation.referencesScheldeman, X., Willemen, L., Coppens d’Eeckenbrugge, G., Romeijn-Peeter, E., Restrepo, M.T., Romero Motoche J., Jiménez, D., Lobo, M., Medina, C.I., Reyes, C., Rodríguez, D., Ocampo, J.A., Van Damme, P., Goetgebeur, P. 2007. Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. Biodiversity and Conservation, 16(6):1867-1884.spa
dc.relation.referencesScheldeman X, Kyndt T, Coppens d’Eeckenbrugge G, Ming R, Drew R, Van Droogenbroeck B, Van Damme P, Moore PH (2011) Vasconcellea and Carica. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 213–249.spa
dc.relation.referencesSlatkin, M. (1985a). Gene flow and the genetic structure of natural populations. Science, 229(4702), 1000-1003.spa
dc.relation.referencesSchmitz, A. & Riesner, D., 2006. Purification of nucleic acids by selective precipitation with polyethylene glycol 6000. Analytical Biochemistry, 354(2), pp. 311 - 313.spa
dc.relation.referencesSiddall, M. E. (1998). Success of parsimony in the four‐taxon case: long‐branch repulsion by likelihood in the Farris zone. Cladistics, 14(3), 209-220.spa
dc.relation.referencesSolís-Ramos, Laura & Andrade-Torres, Antonio. (2005). ¿Qué son los marcadores moleculares? La Ciencia y el Hombre. Enero - abril. Vol. XVIII (1): 46-46.spa
dc.relation.referencesTamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution.spa
dc.relation.referencesTaberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., Vermat,T., Corthier, G., Brochmann, Ch. y Willerslev, E., 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. En: Nucleic Acids Research, 35(3), e14. DOI:https://doi.org/10.1093/nar/gkl938.spa
dc.relation.referencesTakezaki, N., & Nei, M. (1996). Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 144(1), 389-399.spa
dc.relation.referencesTineo D, Bustamante DE, Calderon MS, Mendoza JE, Huaman E, Oliva M (2020) An integrative approach reveals five new species of highland papayas (Caricaceae, Vasconcellea) from northern Peru. PLoS ONE 15(12): e0242469. https://doi.org/10.1371/journal.pone.0242469spa
dc.relation.referencesVan Droogenbroeck BV, Breyne P, Goetghebeur P, Romeijn-Peeters E, Kyndt T, Gheysen G (2002). AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theorical and Applied Genetics 105(2):289-297spa
dc.relation.referencesVan Droogenbroeck B, Kyndt T, Maertens I, Romeijn-Peeters E, Scheldeman X, Romero-Motochi JP, Van Damme P, Goetghebeur P, Gheysen G. Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theor Appl Genet. 2004 May;108(8):1473-86. doi: 10.1007/s00122-003-1575-7. Epub 2004 Jan 30. PMID: 14752605.spa
dc.relation.referencesVan Droogenbroeck, B., Kyndt, T., Romeijn-Peeters, E., Van Thuyne, W., Goetghebeur, P., Romero-Motochi, J. P., & Gheysen, G. (2006). Evidence of natural hybridization and introgression between Vasconcellea species (Caricaceae) from southern Ecuador revealed by chloroplast, mitochondrial and nuclear DNA markers. Annals of Botany, 97(5), 793-805.spa
dc.relation.referencesWanke, S., Jaramillo, M., Borsch, T., Samain, M.-S., Quandt, D., & Neinhuis, C. (2007). Evolution of Piperales - matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Molecular Phylogenetics and Evolution, 42(2), 477–497.spa
dc.relation.referencesWiens, J. J. (1998). Combining data sets with different phylogenetic histories. Systematic Biology, 47(4), 568-581.spa
dc.relation.referencesWilkie, A.D., & Forrest, L.L. (2013). The collection and storage of plant material for DNA extraction: The Teabag Method. The Gardens' Bulletin, Singapore, 65, 231-234spa
dc.relation.referencesZerpa, D. M. 1980. Comportamiento meiótico de la descendencia híbrida producida al transferir el carácter bisexual de Carica pubescens a Carica stipulata. Rev Fac Agron (Maracay) 11(1-4): 5-47.spa
dc.relation.referencesHorovitz, S., & Jiménez, H. (1967). Cruzamientos interespecíficos e intergenéricos en Caricaceas y sus implicaciones fitotécnicas. Agronomia Tropical, 17(4), 323-343.spa
dc.relation.referencesHuson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267.spa
dc.relation.referencesJiménez, H., Horovitz, S. (1958) Cruzabilidad entre especies de Carica. Agronomía Tropical, 7: 207-215.95spa
dc.relation.referencesKyndt, T., Romeijn-Peeters, E., Van Droogenbroeck, B., Romero-Motochi, J. P., Gheysen, G., & Goetghebeur, P. (2005a). Species relationships in the genus Vasconcellea (Caricaceae) based on molecular and morphological evidence. American journal of botany, 92(6), 1033–1044. https://doi.org/10.3732/ajb.92.6.1033spa
dc.relation.referencesKyndt, T., Van Droogenbroeck, B., Romeijn-Peeters, E., Romero-Motochi, J. P., Scheldeman, X., Goetghebeur, P., Van Damme, P., & Gheysen, G. (2005b). Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data. Molecular phylogenetics and evolution, 37(2), 442–459. https://doi.org/10.1016/j.ympev.2005.06.017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocFilogenia
dc.subject.agrovocPhylogeny
dc.subject.agrovocDelimitación de especies
dc.subject.agrovocSpecies delimitation
dc.subject.agrovocMarcador genético
dc.subject.agrovocGenetic markers
dc.subject.agrovocDNA barcoding
dc.subject.agrovocSecuencia de ADN
dc.subject.agrovocDNA sequences
dc.subject.agrovocDiversidad genética
dc.subject.agrovocGenetic diversity
dc.subject.agrovocConservación de recursos genéticos
dc.subject.agrovocGenetic resources conservation
dc.subject.agrovocTaxonomía
dc.subject.agrovocTaxonomy
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalDiversidad genéticaspa
dc.subject.proposalHaplotipospa
dc.subject.proposalITSspa
dc.subject.proposalmatKspa
dc.subject.proposalGenetic diversityeng
dc.subject.proposalHaplotypeeng
dc.titleRelaciones filogenéticas del género Vasconcellea en el sur del Ecuador usando código de barras de ADN.spa
dc.title.translatedPhylogenetic relationships of the genus Vasconcellea in southern Ecuador using DNA barcodingspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1103202147.2025.pdf
Tamaño:
3.72 MB
Formato:
Adobe Portable Document Format
Descripción:
"Tesis de Maestría en Ciencias Biológicas"

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia_Edison_Troya.pdf
Tamaño:
256.42 KB
Formato:
Adobe Portable Document Format
Descripción: