Relaciones filogenéticas del género Vasconcellea en el sur del Ecuador usando código de barras de ADN.
dc.contributor.advisor | Muñoz Florez, Jaime Eduardo | |
dc.contributor.advisor | Gallego, Gerardo | |
dc.contributor.author | Troya Armijos, Edison Anibal | |
dc.contributor.orcid | 0009-0003-6197-0836 | spa |
dc.contributor.researchgroup | Grupo de Investigación en Diversidad Biológica | spa |
dc.coverage.country | http://vocab.getty.edu/page/tgn/1000051 | |
dc.date.accessioned | 2025-06-27T16:20:49Z | |
dc.date.available | 2025-06-27T16:20:49Z | |
dc.date.issued | 2025-06 | |
dc.description | Ilustraciones, fotografías, mapas, tablas | spa |
dc.description.abstract | Los valles andinos del sur del Ecuador constituyen el centro de biodiversidad de más de 10 especies del género Vasconcellea. La plasticidad fenotípica presente en Vasconcellea complica en cierta forma la descripción de posibles nuevas especies y complejos de especies poco entendidos, con características morfológicas que han llevado a muchos investigadores a ampliar sus estudios a nivel genético. El uso de una secuencia de ADN como código de barras genético, constituye una herramienta tecnológica útil en la identificación de especies a nivel taxonómico a partir de pequeños fragmentos de un individuo y en cualquier momento del desarrollo. En la presente investigación se estudiaron 12 especies de Vasconcellea, cuyos análisis genéticos a partir del locus de ADNcp (matK) y ADNrn (ITS), mostraron especies bien diferenciadas, con altos niveles de variación en la diversidad haplotípica y moderada diversidad nucleotídica. Además, los resultados obtenidos con biomarcadores nuclear ITS y cloroplástico matK no mostraron participación de los parentales putativos V. stipulata y V. pubescens en la formación de V. × heilbornii, conforme lo sugiere Badillo. El hecho de que las tres variedades compartan el mismo haplotipo cloroplástico (Hap1) sugiere un ancestro materno común y una divergencia relativamente reciente. Además, que V. × heilbornii var. pentagona (Babaco) y V. × heilbornii var. fructifragrans compartan el mismo haplotipo nuclear (Hap4) indica una relación genética más estrecha entre estas dos variedades, posiblemente debido a un flujo génico reciente o a un ancestro común más cercano. Por último, la presencia de diferentes haplotipos nucleares en cada variedad refleja una divergencia genética más reciente, posiblemente impulsada por mutaciones, flujo génico, selección natural y deriva genética. Estos patrones son consistentes con un proceso de especiación incipiente donde las variedades están en las primeras etapas de diferenciación genética y adaptación a distintos ambientes. Al parecer, V. pubescens actúa ocasionalmente solo como donante de polen en eventos de hibridaciones interespecíficas, particularmente con V. stipulata a nivel del cloroplasto. (Texto tomado de la fuente). | spa |
dc.description.abstract | The Andean valleys of southern Ecuador constitute the center of biodiversity of more than 10 species of the genus Vasconcellea as documented to date. Despite the relatively small number of species, taxonomic analysis is often complicated due to the frequent interspecific compatibility that affects the distribution and diversity of Vasconcellea, allowing natural hybridizations and introgressions in sympatric areas, resulting in complex hybrid populations with a series of interesting recombinations present in their descendants. The phenotypic plasticity present in Vasconcellea complicates in some way the description of possible new species and poorly understood species complexes, with morphological characteristics that have led many researchers to expand their studies at the genetic level. The use of a DNA sequence as a genetic barcode constitutes a useful technological tool in the identification of species at the taxonomic level from small fragments of an individual and at any time of development. In the present investigation, twelve species of Vasconcellea were studied. The genetic analysis from the cpDNA (matK) and rnDNA (ITS) locus showed well-differentiated species, with high levels of variation in haplotypic diversity and moderate nucleotide diversity. Furthermore, the results obtained with nuclear ITS and chloroplastic matK biomarkers did not show participation of the putative parents V. stipulata and V. pubescens in the formation of V. × heilbornii, as suggested by Badillo. The fact that all three varieties share the same chloroplast haplotype (Hap1) suggests a common maternal ancestor and a relatively recent divergence. Furthermore, the fact that V. × heilbornii var. pentagona (Babaco) and V. × heilbornii var. fructifragrans share the same nuclear haplotype (Hap4) indicates a closer genetic relationship between these two varieties, possibly due to recent gene flow or a closer common ancestor. Finally, the presence of different nuclear haplotypes in each variety reflects a more recent genetic divergence, possibly driven by mutations, gene flow, natural selection and genetic drift. These patterns are consistent with an incipient speciation process where varieties are in the early stages of genetic differentiation and adaptation to different environments. V. pubescens appears to occasionally act only as a pollen donor in interspecific hybridization events, particularly with V. stipulata at the chloroplast leve. | eng |
dc.description.curriculararea | Ciencias Agropecuarias.Sede Palmira | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Biológicas | spa |
dc.description.methods | El uso de una secuencia de ADN como código de barras genético, constituye una herramienta tecnológica útil en la identificación de especies a nivel taxonómico a partir de pequeños fragmentos de un individuo y en cualquier momento del desarrollo. En la presente investigación se estudiaron 12 especies de Vasconcellea, cuyos análisis genéticos a partir del locus de ADNcp (matK) y ADNrn (ITS), mostraron especies bien diferenciadas, con altos niveles de variación en la diversidad haplotípica y moderada diversidad nucleotídica | spa |
dc.description.researcharea | Biotecnología Vegetal | spa |
dc.format.extent | xiv, 96 páginas + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88253 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias | spa |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas | spa |
dc.relation.references | Acosta, M. C., & Premoli, A. C. (2010). Evidence of chloroplast capture in south American Nothofagus (subgenus Nothofagus, Nothofagaceae). Molecular Phylogenetics and evolution, 54(1), 235-242. | spa |
dc.relation.references | Aguirre Planter Erika. 2007. Flujo génico: métodos para estimarlo y marcadores moleculares. pp. 49-61. En: L. E. Eguiarte, V. Souza y X. Aguirre (ed) Ecología molecular. INE, CONABIO y UNAM. INE. | spa |
dc.relation.references | Álvarez, I. J. F. W., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular phylogenetics and evolution, 29(3), 417-434. | spa |
dc.relation.references | Aradhya MK, Manshardt RM, Zee F, Morden CW (1999) A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region. Genet Res Crop Evol 46:579–586 | spa |
dc.relation.references | Azofeifa D., A. (2006). Uso de marcadores moleculares en plantas; aplicaciones en frutales del trópico. Agronomía Mesoamericana 17(2): 221-242. 2006. | spa |
dc.relation.references | Badillo VM (1967) Acerca de la naturalezea hibrida de Carica pentagona, Carica chrysopetala y Carica fructifragrans, frutales del Ecuador y Colombia. Revista Facultad de Agronomía Universidad Central de Venezuela. Maracay, Venezuela. pp. 4:3–14 | spa |
dc.relation.references | Badillo VM (1971) La Familia Caricaceae. Asociación de Profesores. Universidad Central de Venezuela. Maracay, Venezuela. pp. 7-11. | spa |
dc.relation.references | Badillo VM (1993) Caricaceae. Segundo esquema. Rev. Fac. Agron. UCV 43: 1-111. | spa |
dc.relation.references | Badillo VM (1997). Neotipificación de Carica pubescens Lenné et Koch y de Carica quercifolia. (St. Hil) Hieron. y nuevos registros de la familia para Ecuador. Ernstia 6:201-205 | spa |
dc.relation.references | Badillo VM (2000). Carica L. vs Vasconcellea St. Hil. (Caricaceae), con la rehabilitación de este último. Ernstia 10:74-79 | spa |
dc.relation.references | Badillo, VM (2001). Nota correctiva Vasconcellea St. Hill. y no Vasconcella (Caricaceae). Ernstia 11(1): 75-76. | spa |
dc.relation.references | Badillo, V. M., Van den Eynden, V., & Van Damme, P. (2000). Carica palandensis (Caricaceae), a New Species from Ecuador. Novon, 10(1), 4–6. | spa |
dc.relation.references | Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., & Donoghue, M. J. (1995). The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri botanical garden, 247-277. | spa |
dc.relation.references | Barthet, M., & Hilu, K. (2007). Expression of matk: functional and evolutionary implications. American Journal of Botany 94(8): 1402–1412. 2007. | spa |
dc.relation.references | Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual review of Ecology and Systematics, 16(1), 113-148. | spa |
dc.relation.references | Burnham, R. J., & Graham, A. (1999). The history of neotropical vegetation: new developments and status. Annals of the Missouri Botanical Garden, 546-589. | spa |
dc.relation.references | Camin, J. H., & Sokal, R. R. (1965). A method for deducing branching sequences in phylogeny. Evolution, 311-326. | spa |
dc.relation.references | Cavalli-Sforza, L. L., & Edwards, A. W. (1967). Phylogenetic analysis. Models and estimation procedures. American journal of human genetics, 19(3 Pt 1), 233. | spa |
dc.relation.references | Carvalho, F. A., & Renner, S. S. (2012). A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogenet Evol 65:46–53 | spa |
dc.relation.references | Carvalho, F.A.; Renner, S.S. 2014: The Phylogeny of the Caricaceae. In: Ming R.; Moore P. (ed.) Genetics and Genomics of Papaya. Vol. 10. In: Plant Genetics and Genomics: Crops and Models. Springer, New York, NY. 81–92. | spa |
dc.relation.references | CBOL Plant Working Group (2009) A DNA Barcode for Land Plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12794-12797. | spa |
dc.relation.references | Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y. y Leon, C., 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. En: PLoS ONE, 5(1). DOI: 10.1371/journal.pone.0008613. | spa |
dc.relation.references | Corrêa, N. C., Mendes, I. C., Gomes, M. T. R., Kalapothakis, E., Chagas, B. C., Lopes, M. T., & Salas, C. E. (2011). Molecular cloning of a mitogenic proteinase from Carica candamarcensis: its potential use in wound healing. Phytochemistry, 72(16), 1947-1954. | spa |
dc.relation.references | Coppens d’Eeckenbrugge G, Drew R, Kyndt T, Scheldeman X (2013) Vasconcellea for papaya improvement. In Ming R, Moore P (eds) Genetics and genomics of papaya. Springer Science+Business Media, New York. | spa |
dc.relation.references | Cossio, F. 1988. Il Babaco. Edizioni Calderini Edagricole, Bologna, Italy, 60 p. | spa |
dc.relation.references | Costa FR, Pereira TNS, Hodnett GL, Pereira MG, Stelly DM (2008) Fluorescent in situ hybridization of 18S and 5S rDNA in papaya (Carica papaya L.) and wild relatives. Caryologia 61:411-416 | spa |
dc.relation.references | Crisci, J. V. (1983). Taxonomic congruence: A brief discussion. In Numerical Taxonomy (pp. 92-96). Berlin, Heidelberg: Springer Berlin Heidelberg. | spa |
dc.relation.references | Caetano, CM, Lagos Burbano, TC, Sandoval Sierra, CL, Posada Tique, CA y Caetano Nunes, DG (2008). Citogenética de especies de Vasconcellea (Caricaceae). Acta Agronómica, 57(4), 241-245. | spa |
dc.relation.references | Daniel H. Huson, David Bryant, Application of Phylogenetic Networks in Evolutionary Studies, Molecular Biology and Evolution, Volume 23, Issue 2, February 2006, Pages 254–267. | spa |
dc.relation.references | Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. George Allen & Unwin Ltd, London | spa |
dc.relation.references | de Zerpa DM (1959) Citología de híbridos interespecíficos en Carica. Agron Trop 8: 135-144 | spa |
dc.relation.references | Doyle, J.J. and Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12(1):13-15. | spa |
dc.relation.references | Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American statistical Association, 82(397), 171-185. | spa |
dc.relation.references | Ems, S.C., Morden, C.W., Dixon, K.W. 1995. Transcription, splicing, and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol. Biol. 29, 621-733. | spa |
dc.relation.references | Fazekas A. J., Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, et al. (2008) Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PLoS ONE 3(7): e2802. | spa |
dc.relation.references | Fazekas, A. J., Kesanakurti, P. R., Burgess, K. S., Percy, D. M., Graham, S. W., Barrett, S. C., Newmaster, S. G., Hajibabaei, M., & Husband, B. C. (2009). Are plant species inherently harder to discriminate than animal species using DNA barcoding markers?. Molecular ecology resources, 9 Suppl s1, 130–139. | spa |
dc.relation.references | Fazekas, A. J., Kuzmina, M. L., Newmaster, S. G., & Hollingsworth, P. M. (2012). DNA barcoding methods for land plants. In DNA barcodes (pp. 223-252). Humana Press, Totowa, NJ. | spa |
dc.relation.references | Fehrer, J., Gemeinholzer, B., Chrtek Jr, J., & Bräutigam, S. (2007). Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molecular phylogenetics and evolution, 42(2), 347-361. | spa |
dc.relation.references | Ferreira, M. E., Fernández, J. N., & Grattapaglia, D. (1998). Introducción al uso de marcadores moleculares en el análisis genético. | spa |
dc.relation.references | Felsenstein, J. (2008). Comparative methods with sampling error and within-species variation: contrasts revisited and revised. The American Naturalist, 171(6), 713-725. | spa |
dc.relation.references | Freeman, J. S., Jackson, H. D., Steane, D. A., McKinnon, G. E., Dutkowski, G. W., Potts, B. M., & Vaillancourt, R. E. (2001). Chloroplast DNA phylogeography of Eucalyptus globulus. Australian Journal of Botany, 49(5), 585-596. | spa |
dc.relation.references | Fluxus-engineering. (2015). Fluxus-engineering.com Version date 24 December 2015. Copyright© 2015 Fluxus Technology. All rights reserved. | spa |
dc.relation.references | Gao, T., Yao, H., Song, J., Liu, C., Zhu, Y., Ma, X., Pang, X., Xu, H., & Chen, S. (2010). Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. Journal of ethnopharmacology, 130(1), 116–121. | spa |
dc.relation.references | Garcia-Jacas, N., Susanna, A., Garnatje, T., & Vilatersana, R. (2001). Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): a combined nuclear and chloroplast DNA analysis. Annals of Botany, 87(4), 503-515. | spa |
dc.relation.references | Gheno-Heredia, Y. (2000). Morfogénesis in vitro de Carica cauliflora Jacq. (Maestría). Universidad Veracruzana. | spa |
dc.relation.references | Hall, T. A. (1999). BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. | spa |
dc.relation.references | Hebert, P. D., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321. | spa |
dc.relation.references | Hillis, D. M., Huelsenbeck, J. P., & Cunningham, C. W. (1994). Application and accuracy of molecular phylogenies. Science, 264(5159), 671-677. | spa |
dc.relation.references | Hilu, K. W., & Liang, G. (1997). The matK gene: sequence variation and application in plant systematics. American journal of botany, 84(6), 830-839.Garcia-Jacas et al. 2001 | spa |
dc.relation.references | Hollingsworth, Peter & Forrest, Laura & Spouge, John & Hajibabaei, Mehrdad & Ratnasingham, Sujeevan & Bank, Michelle & Chase, Mark & Cowan, Robyn & Erickson, David & Fazekas, Aron & Graham, Sean & James, Karen & Kim, Ki-Joong & Kress, W. & Schneider, Harald & Alphenstahl, Jonathan & Barrett, Spencer & van den Berg, Cassio & Bogarín, Diego & Little, Damon. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences. 106. 12794-12797. | spa |
dc.relation.references | Hollingsworth, P. M., Graham, S. W., & Little, D. P. (2011). Choosing and using a plant DNA barcode. PloS one, 6(5), e19254. | spa |
dc.relation.references | Horovitz, S. 1954. Determinación del sexo en Carica papaya L.: estructura hipotética de los cromosomas sexuales. Agronomía Tropical (Maracay), 3(4): 229-249. | spa |
dc.relation.references | Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. science, 294(5550), 2310-2314. | spa |
dc.relation.references | Jiménez, Y., Romero, J. & Scheldeman, X. 1998. Colección, caracterización y descripción de Carica × heilbornii nm. pentagona B.; Carica pubescens (A.DC.) Solms-Laub. y Carica stipulata B., en la provincia de Loja. Revista de Difusión Técnica y Científica de la Facultad de Ciencias Agrícolas (Universidad Nacional de Loja), 29(1-2): 43-54. | spa |
dc.relation.references | Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12). | spa |
dc.relation.references | Kelchner, S. A. (2002). Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. American Journal of Botany, 89(10), 1651-1669. | spa |
dc.relation.references | Kluge, A. G., & Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Biology, 18(1), 1-32. | spa |
dc.relation.references | Koch, M. A., Dobes, C., & Mitchell-Olds, T. (2003). Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Molecular biology and evolution, 20(3), 338–350. https://doi.org/10.1093/molbev/msg046 | spa |
dc.relation.references | Kolaczkowski, B., & Thornton, J. W. (2004). Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature, 431(7011), 980-984. | spa |
dc.relation.references | Kress, W., 2017. Plant DNA barcodes: applications today and in the future. En: Journal of Systematics and Evolution, 55(4), pp.291-307. DOI:10.1111/jse.12254. | spa |
dc.relation.references | Kyndt, T., Droogenbroeck, B. V., Haegeman, A., Roldan-Ruiz, I., & Gheysen, G. (2006). Cross-species microsatellite amplification in Vasconcellea and related genera and their use in germplasm classification. Genome, 49(7), 786-798. | spa |
dc.relation.references | Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T. G., & Savolainen, V. (2008). DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2923–2928. https://doi.org/10.1073/pnas.0709936105 | spa |
dc.relation.references | León-Yánez, S., R. Valencia, N. Pitmam, L. Endara, C. Ulloa Ulloa y H. Navarrete (Eds). 2019. Libro Rojo de Plantas Endémicas del Ecuador. Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito. <https://bioweb.bio/floraweb/librorojo> | spa |
dc.relation.references | Linder, CR, Moret, BM, Nakhleh, L., & Warnow, T. (2004, January). Evolution of networks (reticulates): biology, models and algorithms. At the Ninth Pacific Symposium on Biocomputing (PSB). | spa |
dc.relation.references | Magdalita PM, Drew RA, Adkins SW, Godwin ID (1997a) Morphological, molecular and cytological analysis of Carica papaya x C. cauliflora interspecific hybrids. Theor Appl Genet 95:224-229 | spa |
dc.relation.references | Manshardt RM, Wenslaff TF (1989b) Interspecific hybridisation of papaya with other Carica species. J Am Soc Hortic Sci 114:689–694 | spa |
dc.relation.references | Manly, B. F. J. 1997. Randomization. Bootstrap and Monte Carlo Methods in Biology. Chapman and Hall, Londres. | spa |
dc.relation.references | Maloukh, L., Kumarappan, A., Jarrar, M., Salehi, J., El-Wakil, H., & Rajya Lakshmi, T. V. (2017). Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants. 3 Biotech, 7(2), 144. https://doi.org/10.1007/s13205-017-0746-1 | spa |
dc.relation.references | Medina, D, Yaguache, B. 2002. Filogenia de Caricas – Vasconcellas del sur del Ecuador. (Pregrado). Universidad Nacional de Loja. | spa |
dc.relation.references | Merino Merino, D. 1989. El cultivo del babaco. Ediciones Mundi-Prensa, Madrid, Spain, 87 p. | spa |
dc.relation.references | MINAM (2018). Priorización de las zonas de prospección para la elaboración de las líneas de base de la papaya. https://bioseguridad.minam.gob.pe/wp-content/ | spa |
dc.relation.references | Mohr, G., Perlman, P. S., & Lambowitz, A. M. (1993). Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Research, 21(22), 4991-4997. | spa |
dc.relation.references | Moreno N. P. 1980. Flora de Veracruz: Caricaceae. Fascículo 10. Instituto Nacional de Investigaciones sobre Recursos Bióticos. Xalapa, México. 20 p. | spa |
dc.relation.references | Morton, J.F. 1987. Fruits of warm climates. Creative Resource Systems, Winterville, U.S.A., 505 p. | spa |
dc.relation.references | Muasya, A. M., Simpson, D. A., & Chase, M. W. (2002). Phylogenetic relationships in Cyperus L. sl (Cyperaceae) inferred from plastid DNA sequence data. Botanical Journal of the Linnean Society, 138(2), 145-153. | spa |
dc.relation.references | Müller, K. F., Borsch, T., & Hilu, K. W. (2006). Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms. Molecular phylogenetics and evolution, 41(1), 99-117. | spa |
dc.relation.references | National Research Council. 1989. Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. National Academy Press, Washington DC, U.S.A., 415 p | spa |
dc.relation.references | Newmaster, S., Fazekas, A.J., Steeves, A. y Janovec, J., 2007. Testing candidate plant barcode regions in the Myristicaceae. En: Molecular Ecology Notes, 8(3), pp.480-90. DOI:10.1111/j.1471-8286.2007.02002.x. | spa |
dc.relation.references | Nuez, F., & Carrillo, J. M. (2000). Los marcadores genéticos en la mejora vegetal. España: Editorial Universidad Politécnica de Valencia. Sociedad Española de Ciencias Hortícola | spa |
dc.relation.references | Olson ME (2002) Intergeneric relationships whitin the Caricaceae-Moringaceae clade (Brassicales) and potential morphological synapomorphies of the clade and its families. Int J Plant Sci 163:51–65 | spa |
dc.relation.references | Okuyama, Y., & Kato, M. (2009). Unveiling cryptic species diversity of flowering plants: successful biological species identification of Asian Mitella using nuclear ribosomal DNA sequences. BMC Evolutionary Biology, 9, 1-16. | spa |
dc.relation.references | Orhan N. St. John’s wort (Hypericum perforatum) laboratory guidance document. Austin, TX: ABCAHP-NCNPR Botanical Adulterants Prevention Program. 2021 | spa |
dc.relation.references | Peña, Carlos. "Metodos de inferencia filogenetica." Revista peruana de biología, vol. 18, no. 2, 2011, p. 265+. | spa |
dc.relation.references | Pang, X., Shi, L., Song, J., Chen, X., & Chen, S. (2013). Use of the potential DNA barcode ITS2 to identify herbal materials. Journal of natural medicines, 67, 571-575. | spa |
dc.relation.references | Pérez, Julio E., & Alfonsi, Carmen, & Muñoz, Carlos. (2010). Towards a new evolutionary theory. Interciencia, 35 (11), 862-868. | spa |
dc.relation.references | Perrier, X., Flori, A., & Bonnot, F. (2003). Genetic diversity of cultivated tropical plants. Enfield, Science Publishers. Montpellier. pp 43 - 76. Data analysis methods. In: Hamon, P., Seguin, M., Perrier, X., Glaszmann, J. C. Ed. | spa |
dc.relation.references | PROSEA. 1992. Plant resources of South-east Asia. Vol. 2 Edible fruits and nuts. PROSEA, Bogor Indonesia, 446 p. | spa |
dc.relation.references | Rodríguez Díez, A. (2013). Análisis biogeográfico de las especies sudafricanas del género" Anthoxanthum L.". | spa |
dc.relation.references | Rogers, S. O., & Bendich, A. J. (1987). Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Molecular Biology, 9(5), 509-520. | spa |
dc.relation.references | Restrepo MT, Duval M-F, Coppens d’Eeckenbrugge G, Jiménez D, Vega J, Van Droogenbroeck B (2004a) Study of cpDNA diversity in mountain papayas and the common papaya using PCR-RFLP markers. Proc Interamer Soc Trop Hortic 48:101–107 | spa |
dc.relation.references | Restrepo MT, Jiménez D, Coppens d’Eeckenbrugge G, Vega J (2004b) Morphological diversity of cultivated mountain papayas (Vasconcellea spp.) in Ecuador. Proc Interamer Soc Trop Hortic 48:119–123 | spa |
dc.relation.references | Rieseberg, L. H., & Soltis, D. E. (1991). Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants. | spa |
dc.relation.references | Romeijn-Peeters E (2004). Biodiversity of the genus Vasconcellea (Caricaceae) in Ecuador: a morphological approach. PhD thesis. Faculty of Sciences, Ghent Univerisity, Belgium. | spa |
dc.relation.references | Ronse Decraene, L.P. & Smets, E.F. 1999. The floral development and anatomy of Carica papaya (Caricaceae). Canadian Journal of Botany, 77: 582-598. | spa |
dc.relation.references | Rozas, J., & Rozas, R. (1995). DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Bioinformatics, 11(6), 621-625. | spa |
dc.relation.references | Sang, T., Crawford, D. J., & Stuessy, T. F. (1995). Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences, 92(15), 6813-6817. | spa |
dc.relation.references | Scheldeman, Xavier. (2002). Distribution and potential of Cherimoya (Annona cherimola Mill.) and highland papayas (Vasconcellea spp.) in Ecuador. | spa |
dc.relation.references | Scheldeman, X., Romero Motoche, J. P., Van Damme, V., Heyens, V., Van Damme, P. (2003). Potential of highland papayas (Vasconcella spp.) in southern Ecuador. Lyonia 5(1): 73-80. | spa |
dc.relation.references | Scheldeman, X., Willemen, L., Coppens d’Eeckenbrugge, G., Romeijn-Peeter, E., Restrepo, M.T., Romero Motoche J., Jiménez, D., Lobo, M., Medina, C.I., Reyes, C., Rodríguez, D., Ocampo, J.A., Van Damme, P., Goetgebeur, P. 2007. Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. Biodiversity and Conservation, 16(6):1867-1884. | spa |
dc.relation.references | Scheldeman X, Kyndt T, Coppens d’Eeckenbrugge G, Ming R, Drew R, Van Droogenbroeck B, Van Damme P, Moore PH (2011) Vasconcellea and Carica. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 213–249. | spa |
dc.relation.references | Slatkin, M. (1985a). Gene flow and the genetic structure of natural populations. Science, 229(4702), 1000-1003. | spa |
dc.relation.references | Schmitz, A. & Riesner, D., 2006. Purification of nucleic acids by selective precipitation with polyethylene glycol 6000. Analytical Biochemistry, 354(2), pp. 311 - 313. | spa |
dc.relation.references | Siddall, M. E. (1998). Success of parsimony in the four‐taxon case: long‐branch repulsion by likelihood in the Farris zone. Cladistics, 14(3), 209-220. | spa |
dc.relation.references | Solís-Ramos, Laura & Andrade-Torres, Antonio. (2005). ¿Qué son los marcadores moleculares? La Ciencia y el Hombre. Enero - abril. Vol. XVIII (1): 46-46. | spa |
dc.relation.references | Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution. | spa |
dc.relation.references | Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., Vermat,T., Corthier, G., Brochmann, Ch. y Willerslev, E., 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. En: Nucleic Acids Research, 35(3), e14. DOI:https://doi.org/10.1093/nar/gkl938. | spa |
dc.relation.references | Takezaki, N., & Nei, M. (1996). Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 144(1), 389-399. | spa |
dc.relation.references | Tineo D, Bustamante DE, Calderon MS, Mendoza JE, Huaman E, Oliva M (2020) An integrative approach reveals five new species of highland papayas (Caricaceae, Vasconcellea) from northern Peru. PLoS ONE 15(12): e0242469. https://doi.org/10.1371/journal.pone.0242469 | spa |
dc.relation.references | Van Droogenbroeck BV, Breyne P, Goetghebeur P, Romeijn-Peeters E, Kyndt T, Gheysen G (2002). AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theorical and Applied Genetics 105(2):289-297 | spa |
dc.relation.references | Van Droogenbroeck B, Kyndt T, Maertens I, Romeijn-Peeters E, Scheldeman X, Romero-Motochi JP, Van Damme P, Goetghebeur P, Gheysen G. Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theor Appl Genet. 2004 May;108(8):1473-86. doi: 10.1007/s00122-003-1575-7. Epub 2004 Jan 30. PMID: 14752605. | spa |
dc.relation.references | Van Droogenbroeck, B., Kyndt, T., Romeijn-Peeters, E., Van Thuyne, W., Goetghebeur, P., Romero-Motochi, J. P., & Gheysen, G. (2006). Evidence of natural hybridization and introgression between Vasconcellea species (Caricaceae) from southern Ecuador revealed by chloroplast, mitochondrial and nuclear DNA markers. Annals of Botany, 97(5), 793-805. | spa |
dc.relation.references | Wanke, S., Jaramillo, M., Borsch, T., Samain, M.-S., Quandt, D., & Neinhuis, C. (2007). Evolution of Piperales - matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Molecular Phylogenetics and Evolution, 42(2), 477–497. | spa |
dc.relation.references | Wiens, J. J. (1998). Combining data sets with different phylogenetic histories. Systematic Biology, 47(4), 568-581. | spa |
dc.relation.references | Wilkie, A.D., & Forrest, L.L. (2013). The collection and storage of plant material for DNA extraction: The Teabag Method. The Gardens' Bulletin, Singapore, 65, 231-234 | spa |
dc.relation.references | Zerpa, D. M. 1980. Comportamiento meiótico de la descendencia híbrida producida al transferir el carácter bisexual de Carica pubescens a Carica stipulata. Rev Fac Agron (Maracay) 11(1-4): 5-47. | spa |
dc.relation.references | Horovitz, S., & Jiménez, H. (1967). Cruzamientos interespecíficos e intergenéricos en Caricaceas y sus implicaciones fitotécnicas. Agronomia Tropical, 17(4), 323-343. | spa |
dc.relation.references | Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267. | spa |
dc.relation.references | Jiménez, H., Horovitz, S. (1958) Cruzabilidad entre especies de Carica. Agronomía Tropical, 7: 207-215.95 | spa |
dc.relation.references | Kyndt, T., Romeijn-Peeters, E., Van Droogenbroeck, B., Romero-Motochi, J. P., Gheysen, G., & Goetghebeur, P. (2005a). Species relationships in the genus Vasconcellea (Caricaceae) based on molecular and morphological evidence. American journal of botany, 92(6), 1033–1044. https://doi.org/10.3732/ajb.92.6.1033 | spa |
dc.relation.references | Kyndt, T., Van Droogenbroeck, B., Romeijn-Peeters, E., Romero-Motochi, J. P., Scheldeman, X., Goetghebeur, P., Van Damme, P., & Gheysen, G. (2005b). Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data. Molecular phylogenetics and evolution, 37(2), 442–459. https://doi.org/10.1016/j.ympev.2005.06.017 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Filogenia | |
dc.subject.agrovoc | Phylogeny | |
dc.subject.agrovoc | Delimitación de especies | |
dc.subject.agrovoc | Species delimitation | |
dc.subject.agrovoc | Marcador genético | |
dc.subject.agrovoc | Genetic markers | |
dc.subject.agrovoc | DNA barcoding | |
dc.subject.agrovoc | Secuencia de ADN | |
dc.subject.agrovoc | DNA sequences | |
dc.subject.agrovoc | Diversidad genética | |
dc.subject.agrovoc | Genetic diversity | |
dc.subject.agrovoc | Conservación de recursos genéticos | |
dc.subject.agrovoc | Genetic resources conservation | |
dc.subject.agrovoc | Taxonomía | |
dc.subject.agrovoc | Taxonomy | |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.proposal | Diversidad genética | spa |
dc.subject.proposal | Haplotipo | spa |
dc.subject.proposal | ITS | spa |
dc.subject.proposal | matK | spa |
dc.subject.proposal | Genetic diversity | eng |
dc.subject.proposal | Haplotype | eng |
dc.title | Relaciones filogenéticas del género Vasconcellea en el sur del Ecuador usando código de barras de ADN. | spa |
dc.title.translated | Phylogenetic relationships of the genus Vasconcellea in southern Ecuador using DNA barcoding | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1103202147.2025.pdf
- Tamaño:
- 3.72 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- "Tesis de Maestría en Ciencias Biológicas"