Automatic classification of 21 subtypes of blood cells

dc.contributor.advisorRomero Castro, Eduardospa
dc.contributor.authorRodríguez Lozano, Jhonathan Javierspa
dc.contributor.refereeGómez Perdomo, Jonatanspa
dc.contributor.researcherTarquino Gonzalez, Jonnathan Stevespa
dc.contributor.researchgroupCim@Lab
dc.date.accessioned2025-09-04T20:24:57Z
dc.date.available2025-09-04T20:24:57Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractCytomorphological assessment of bone marrow cells plays a crucial role in diagnosing various hematologic disorders, but the process remains largely manual, relying on trained specialists, which creates a bottleneck in clinical workflows. While deep learning algorithms present a promising solution for automation, most existing models focus on a limited subset of cell types associated with specific diseases and are often treated as black-box systems. This study introduces a novel engineered feature representation, called region-attention embedding, aimed at improving deep learning classification across 21 bone marrow cell subtypes. The embedding organizes cytological features into a structured square matrix based on pre-segmented regions of the cell—cytoplasm, nucleus, and entire cell—thus preserving spatial and regional relationships. When integrated with the Xception and ResNet50 models, this approach highlights region-specific relevance in images, enhancing interpretability. The method was evaluated on the largest publicly available bone marrow cell subtype dataset, using three iterations of 3-fold cross-validation on 80% of the dataset (n = 89,484) and testing on a separate 20% (n = 22,371). The results indicate that the proposed method exceeds the performance of existing models on comparable validation sets, achieving an F1-score of 0.82, and demonstrates strong performance on the unseen test set with an F1-score of 0.56.eng
dc.description.abstractLa evaluación citomorfológica de las células de la médula ósea desempeña un papel crucial en el diagnóstico de varios trastornos hematológicos, pero el proceso sigue siendo en gran medida manual, dependiendo de especialistas capacitados, lo que crea un cuello de botella en los flujos de trabajo clínicos. Aunque los algoritmos de aprendizaje profundo ofrecen una solución prometedora para la automatización, la mayoría de los modelos existentes se centran en un subconjunto limitado de tipos celulares asociados con enfermedades específicas y a menudo se tratan como sistemas de caja negra. Este estudio introduce una nueva representación de características diseñada, denominada "region-attention embedding", cuyo objetivo es mejorar la clasificación mediante aprendizaje profundo en 21 subtipos de células de médula ósea. La representación organiza las características citológicas en una matriz estructurada cuadrada basada en regiones pre-segmentadas de la célula: citoplasma, núcleo y célula completa, preservando así las relaciones espaciales y regionales. Cuando se integra con los modelos Xception y ResNet50, este enfoque resalta la relevancia específica de cada región en las imágenes, mejorando la interpretabilidad. El método fue evaluado en el conjunto de datos más grande disponible públicamente sobre subtipos de células de médula ósea, utilizando tres iteraciones de validación cruzada de 3 particiones en el 80% del conjunto de datos (n = 89.484) y pruebas en el 20% restante (n = 22.371). Los resultados indican que el método propuesto supera el rendimiento de los modelos existentes en conjuntos de validación comparables, alcanzando una puntuación F1 de 0,82, y demuestra un rendimiento sólido en el conjunto de prueba no visto con una puntuación F1 de 0,56. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería de Sistemas y Computaciónspa
dc.description.methodsMetodología cuantitativa. A partir de datos de fuentes secundarias se realizó experimentación con diferentes modelos de machine learning y deep learning, donde se optimizaron parámetros y se seleccionó el mejor modelo de acuerdo a la mética F1-score.spa
dc.description.researchareaComputación aplicadaspa
dc.format.extentix, 32 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88618
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.indexedBiremespa
dc.relation.referencesAgustin, R. I., Arif, A., & Sukorini, U. (2021). Classification of immature white blood cells in acute lymphoblastic leukemia L1 using neural networks particle swarm optimization. Neural Computing and Applications, 33 (17), 10869–10880. doi: 10.1007/s00521-021 -06245-7
dc.relation.referencesAl-Dulaimi, K., Al-Sabaawi, A., Resen, R. D., Stephan, J. J., & Zwayen, A. (2019). Using adapted JSEG algorithm with Fuzzy C mean for segmentation and counting of white blood cell and nucleus images.. doi: 10.1109/CSDE48274.2019.9162402
dc.relation.referencesAl-Dulaimi, K., Nguyen, K., Banks, J., Chandran, V., & Tomeo-Reyes, I. (2019). Classification of White Blood Cells Using L-Moments Invariant Features of Nuclei Shape. International Conference Image and Vision Computing New Zealand, 2018- Novem(December). doi: 10.1109/IVCNZ.2018.8634678
dc.relation.referencesAlharbi, A., Aravinda, C., Lin, M., Venugopala, P., Reddicherla, P., & Shah, M. (2022). Segmentation and Classification of White Blood Cells Using the UNet. Contrast Media and Molecular Imaging, 2022 . doi: 10.1155/2022/5913905
dc.relation.referencesAlom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., . . . Asari, V. K. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics (Switzerland), 8 (3). doi: 10.3390/electronics8030292
dc.relation.referencesAlqudah, A., Al-Ta’ani, O., & Al-Badarneh, A. (2018). Automatic segmentation and classification of white blood cells in peripheral blood samples. Journal of Engineering Science and Technology Review, 11 (6), 7–13. doi: 10.25103/jestr.116.02
dc.relation.referencesAnilkumar, K. K., Manoj, V. J., & Sagi, T. M. (2020). A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of Leukemia. Biocybernetics and Biomedical Engineering, 40 (4), 1406–1420. doi: 10 .1016/j.bbe.2020.08.010
dc.relation.referencesAnwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2018). Medical Image Analysis using Convolutional Neural Networks: A Review. Journal of Medical Systems, 42 (11), 1–13. doi: 10.1007/s10916-018-1088-1
dc.relation.referencesBanik, P. P., Saha, R., & Kim, K.-D. (2020). An Automatic Nucleus Segmentation and CNN Model based Classification Method of White Blood Cell. Expert Systems with Applications, 149 . doi: 10.1016/j.eswa.2020.113211
dc.relation.referencesBasnet, J., Alsadoon, A., Prasad, P. W. C., Aloussi, S. A., & Alsadoon, O. H. (2020). A Novel Solution of Using Deep Learning for White Blood Cells Classification: Enhanced Loss Function with Regularization and Weighted Loss (ELFRWL). Neural Processing Letters, 52 (2), 1517–1553. doi: 10.1007/s11063-020-10321-9
dc.relation.referencesBennett, J. M., Catovsky, D., Daniel, M., Flandrin, G., Galton, D., Gralnick, H., & Sultan, C. (1976). Proposals for the Classification of the Acute Leukaemias French-American- British (FAB) Co-operative Group. British Journal of Haematology, 33 (4), 451–458. doi: 10.1111/j.1365-2141.1976.tb03563.x
dc.relation.referencesBhadauria, H., Devgun, J. S., Virmani, J., Rawat, J., & Singh, A. (2018). Application of ensemble artificial neural network for the classification of white blood cells using microscopic blood images. International Journal of Computational Systems Engineering, 4 (2/3), 202. doi: 10.1504/ijcsyse.2018.10012650
dc.relation.referencesButtarello, M., & Plebani, M. (2008). Automated Blood Cell Counts. State of the art. Hematopathology, 130 , 104–116
dc.relation.referencesCao, F., Cai, M., Chu, J., Zhao, J., & Zhou, Z. (2017). A novel segmentation algorithm for nucleus in white blood cells based on low-rank representation. Neural Computing and Applications, 28 , 503–511. Retrieved from https:// www.scopus.com/inward/record.uri?eid=2-s2.0-84973137432&doi=10.1007% 2Fs00521-016-2391-8&partnerID=40&md5=a6f675506866f073a0ab3e2f7b6fcccd doi: 10.1007/s00521-016-2391-8
dc.relation.referencesChabot-Richards, D. (2015). White blood cell counts: reference methodology. Clinics in laboratory medicine, 35 (1), 11–24. doi: https://doi.org/10.1016/j.cll.2014.10.007
dc.relation.referencesChandradevan, R., Aljudi, A., Drumheller, B., Kunananthaseelan, M., Nilakshan Amgad, Gutman, D., Cooper, L., & Jaye, D. (2019). Machine-based detection and classification for bone marrow aspirates differential counts. Initial development focusing on nonneoplastic cell.
dc.relation.referencesChoi, J., Ku, Y., Yoo, B., Kim, J.-A., Lee, D., Chai, Y., . . . Kim, H. (2017). White blood cell differential count of maturation stages in bone marrow smear using dualstage convolutional neural networks. PLoS ONE, 12 (12). doi: 10.1371/journal.pone .0189259
dc.relation.referencesCseke, I. (1992). A fast segmentation scheme for white blood cell images. Proceedings - International Conference on Pattern Recognition, 3 , 530–533. doi: 10.1109/ICPR .1992.202041
dc.relation.referencesDas, P. K., Diya, V. A., Meher, S., Panda, R., & Abraham, A. (2022). A Systematic Review on Recent Advancements in Deep and Machine Learning Based Detection and Classification of Acute Lymphoblastic Leukemia. IEEE Access, 10 , 81741–81763. doi: 10.1109/ACCESS.2022.3196037
dc.relation.referencesDinˇci´c, M., Popovi´c, T. B., Kojadinovi´c, M., Trbovich, A. M., & Ili´c, A. (2021). Morphological, fractal, and textural features for the blood cell classification: the case of acute myeloid leukemia. European Biophysics Journal, 50 (8), 1111–1127. Retrieved from https://www.scopus.com/inward/record.uri?eid=2 -s2.0-85116927037&doi=10.1007%2Fs00249-021-01574-w&partnerID=40&md5= a88f0a4c79cf9056084ae2a95681be7f doi: 10.1007/s00249-021-01574-w
dc.relation.referencesDong, N., Zhai, M.-D., Chang, J., & Wu, C.-H. (2020). White blood cell classification. ArXiv, abs/2008.0 . Retrieved from https://www.semanticscholar.org/ paper/1c991e7d6f6715fe48de0c72698181c07f383466
dc.relation.referencesDong, N., Zhai, M.-d., Chang, J.-f., & Wu, C.-h. (2021). A self-adaptive approach for white blood cell classification towards point-of-care testing. Applied Soft Computing, 111 . doi: 10.1016/j.asoc.2021.107709
dc.relation.referencesDra lus, G., Mazur, D., & Czmil, A. (2021). Automatic detection and counting of blood cells in smear images using retinanet. Entropy, 23 (11). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119626216&doi=10 .3390%2Fe23111522&partnerID=40&md5=7772e55f73d8ac19e2c75bfe72f121f2 doi: 10.3390/e23111522
dc.relation.referencesGhane, N., Vard, A., Talebi, A., & Nematollahy, P. (2017). Segmentation of white blood cells from microscopic images using a novel combination of K-Means clustering and modified Watershed algorithm. Journal of Medical Signals and Sensors, 7 , 92–101. Retrieved from https://www.semanticscholar.org/paper/ e96588d91be833b5744d5c19d66caa255bc9ff04 doi: 10.4103/2228-7477.205503
dc.relation.referencesGlobocan. (2020). No Title. Retrieved from https://gco.iarc.fr/today/data/ factsheets/populations/170-colombia-fact-sheets.pdf
dc.relation.referencesHouwen, B. (2001). The differential cell count. Laboratory Hematology, 7 , 89–100.
dc.relation.referencesKhan, S., Sajjad, M., Hussain, T., Ullah, A., & Imran, A. S. (2021). A review on traditional machine learning and deep learning models for WBCs classification in blood smear images. IEEE Access, 9 , 10657–10673. doi: 10.1109/ACCESS.2020.3048172
dc.relation.referencesKrappe, S., Benz, M., Wittenberg, T., Haferlach, T., & M¨unzenmayer, C. (2015). Automated classification of bone marrow cells in microscopic images for diagnosis of leukemia: a comparison of two classification schemes with respect to the segmentation quality. Medical Imaging 2015: Computer-Aided Diagnosis, 9414 , 94143I. doi: 10.1117/12 .2081946
dc.relation.referencesKrappe, S., Wittenberg, T., Haferlach, T., & M¨unzenmayer, C. (2016). Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis. Medical Imaging 2016: Computer-Aided Diagnosis, 9785 , 97853C. doi: 10.1117/12.2216037
dc.relation.referencesKumar, V., Abbas, A., & Aster, J. (2021). Patolog´ıa estructural y funcional (10th ed.; E. H. Sciences, Ed.)
dc.relation.referencesLantos, C., Kornblau, S., & Qutub, A. (2018). Quantitative-Morphological and Cytological Analyses in Leukemia. In Hematology: Latest research and clinical advances (pp. 95– 113). doi: http://dx.doi.org/10.5772/intechopen.73675
dc.relation.referencesLeong, T. K. M., Lo, W. S., Lee, W. E. Z., Tan, B., Lee, X. Z., Lee, L. W. J. N., . . . Yeong, J. (2021, 10). Leveraging advances in immunopathology and artificial intelligence to analyze in vitro tumor models in composition and space. Advanced drug delivery reviews, 177 , 113959. doi: 10.1016/j.addr.2021.113959
dc.relation.referencesLi, Y., Zhu, R., Mi, L., Cao, Y., & Yao, D. (2016). Segmentation of white blood cell from acute lymphoblastic leukemia images using dual-threshold method. Computational and Mathematical Methods in Medicine, 2016 . Retrieved from https:// www.scopus.com/inward/record.uri?eid=2-s2.0-84975142600&doi=10.1155% 2F2016%2F9514707&partnerID=40&md5=9026213f3e15de1eea9d5249b27c0f6f doi: 10.1155/2016/9514707
dc.relation.referencesLina, L., Reynaldo, D., Danny, D., & Chris, A. (2021). White blood cellseDetection from unstained microscopic images using modified watershed segmentation. IAENG International Journal of Computer Science, 48 (4). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0 -85122469930&partnerID=40&md5=6ea07755fb00b51c17d970e6b9b24f25
dc.relation.referencesLiu, Y., Fu, Y., & Chen, P. (2019). WBCaps: A Capsule Architecture-based Classification Model Designed for White Blood Cells Identification. In In 2019 41st annual international conference of the ieee engineering in medicine and biology society (embc) (pp. 7027–7030). doi: 10.1109/EMBC.2019.8856700
dc.relation.referencesLiu, Z., Liu, J., Xiao, X., Yuan, H., Li, X., Chang, J., & Zheng, C. (2015). Segmentation of white blood cells through nucleus mark watershed operations and mean shift clustering. Sensors (Switzerland), 15 (9), 22561–22586. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941243510&doi= 10.3390%2Fs150922561&partnerID=40&md5=20103dad1c930d279dc49fe8e3f43482 doi: 10.3390/s150922561
dc.relation.referencesLong, F., Peng, J.-J., Song, W., Xia, X., & Sang, J. (2021). BloodCaps: A capsule network based model for the multiclassification of human peripheral blood cells. Computer methods and programs in biomedicine, 202 , 105972. doi: 10.1016/j.cmpb.2021.105972
dc.relation.referencesMatek, C., Krappe, S., M¨unzenmayer, C., Haferlach, T., & Marr, C. (2021a). An Expert- Annotated Dataset of Bone Marrow Cytology in Hematologic Malignancies [Data set]. The Cancer Imaging Archive. doi: https://doi.org/10.7937/TCIA.AXH3-T579
dc.relation.referencesMatek, C., Krappe, S., M¨unzenmayer, C., Haferlach, T., & Marr, C. (2021b). Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood, 138 , 1917–1927. doi: 10.1182/blood.2020010568
dc.relation.referencesMatek, C., Schwarz, S., Spiekermann, K., & Marr, C. (2019). Human-level recognition of blast cells in acute myeloid leukemia with convolutional neural networks. Nature Machine Intelligence, 1 (11), 538–544. doi: 10.1101/564039
dc.relation.referencesMiao, H., & Xiao, C. (2018). Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled watershed algorithm. Computational and Mathematical Methods in Medicine, 2018 . Retrieved from https://www.semanticscholar.org/paper/0ed981a0596b0e419e64bdcb7a471a1455b7e42b doi: 10.1155/2018/7235795
dc.relation.referencesMohamed, S. T., Ebeid, H. M., Hassanien, A. E., & Tolba, M. F. (2020). Optimized Feed Forward Neural Network for Microscopic White Blood Cell Images Classification (Vol. 921). Retrieved from https://www.scopus.com/ inward/record.uri?eid=2-s2.0-85064035867&doi=10.1007%2F978-3-030 -14118-9 74&partnerID=40&md5=4b9ef2e4da226d99f7d84e9bdbc7e048 doi: 10.1007/978-3-030-14118-9{\ }74
dc.relation.referencesMohd, S., Md, M., & Wan, W. (2018). White blood cell (WBC) counting analysis in blood smear images using various color segmentation methods. Measurement, 116 , 543–555. doi: 10.1016/j.measurement.2017.11.002
dc.relation.referencesMohd, S., Md, M., Wan, W., Norzali, M., & Surayahani, N. (2019). Computer aided system for lymphoblast classification to detectacute lymphoblastic leukemia. Indonesian Journal of Electrical Engineering and Computer Science, 14 (2), 597–607. doi: 10.11591/ijeecs.v14.i2.pp597-607
dc.relation.referencesNational Library of Medicine. (2020). MedlinePlus. Retrieved from https://medlineplus .gov/spanish/
dc.relation.referencesOthman, M. Z., Mohammed, T. S., & Ali, A. B. (2017). Neural network classification of white blood cell using microscopic images. International Journal of Advanced Computer Science and Applications, 8 (5).
dc.relation.referencesPiuri, V., & Scotti, F. (2004). Morphological classification of blood leucocytes by microscope images. In 2004 ieee international conference on computational intelligence for measurements systems and applications (pp. 103–108). doi: 10.1109/cimsa.2004.1397242
dc.relation.referencesPrinyakupt, J., & Pluempitiwiriyawej, C. (2015). Segmentation of white blood cells and comparison of cell morphology by linear and na¨ıve Bayes classifiers. BioMedical Engineering Online, 14 (1), 1–19. doi: 10.1186/s12938-015-0037-1
dc.relation.referencesPuttamade Gowda, J., & Prasanna Kumar, S. C. (2019). Segmentation of white blood cells using integrated process of improved spectral angle mapper, gram-schmidt orthoganalization with K-means clustering. International Journal of Innovative Technology and Exploring Engineering, 8 (8), 730– 735. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0 -85069842771&partnerID=40&md5=7a9047d9a9a3defe3beca5d31622a019
dc.relation.referencesRahman, A., & Hasan, M. M. (2018). Automatic Detection of White Blood Cells from Microscopic Images for Malignancy Classification of Acute Lymphoblastic Leukemia. In 2018 international conference on innovation in engineering and technology (pp. 1–6). doi: 10.1109/CIET.2018.8660914
dc.relation.referencesRamoser, H., Laurain, V., Bischof, H., & Ecker, R. (2005). Leukocyte segmentation and classification in blood-smear images. In Annual international conference of the ieee engineering in medicine and biology - proceedings (Vol. 7 VOLS, pp. 3371–3374). doi: 10.1109/iembs.2005.1617200
dc.relation.referencesSobhy, N., Salem, N., & El Dosoky, M. (2016). A comparative study of white blood cells wegmentation using Otsu threshold and Watershed transformation. Journal of Biomedical Engineering and Medical Imaging, 3 (3). doi: 10.14738/jbemi.33.2078
dc.relation.referencesSu, M. C., Cheng, C. Y., & Wang, P. C. (2014). A neural-network-based approach to white blood cell classification. The Scientific World Journal, 2014 (January). doi: 10.1155/2014/796371
dc.relation.referencesSwerdlow, S., Campo, E., Harris, N., Jaffe, E., Pileri, S., Stein, H., . . . Vardiman, J. (2008). WHO classification of tumours of haematopoietic and lymphoid tissues (S. H. Swer ed., Vol. 2). Retrieved from https://hero.epa.gov/hero/index.cfm/reference/ details/reference id/786623
dc.relation.referencesTareef, A., Song, Y., Cai, W., Wang, Y., Feng, D. D., & Chen, M. (2016). Automatic nuclei and cytoplasm segmentation of leukocytes with color and texture-based image enhancement. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 935–938.
dc.relation.referencesTavakoli, S., Ghaffari, A., Kouzehkanan, Z. M., & Hosseini, R. (2021). New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Scientific Reports, 11 (1). doi: 10.1038/s41598-021-98599-0
dc.relation.referencesTheera-Umpon, N. (2008). White blood cell segmentation and classification in microscopic bone marrow image. In Fuzzy systems and knowledge discovery (Vol. 5180 LNAI, pp. 787–796).
dc.relation.referencesTiwari, P., Qian, J., Li, Q., Wang, B., Gupta, D., Khanna, A., . . . Albuquerque, V. (2018). Detection of subtype blood cells using deep learning. Cognitive Systems Research, 52 , 1036–1044. doi: 10.1016/j.cogsys.2018.08.022
dc.relation.referencesWang, Q., Lin, H. C., Xu, J. R., Huang, P., & Wang, Z. Y. (2018, 10). Current Research and Prospects on Postmortem Interval Estimation. Fa yi xue za zhi , 34 (5), 459–467. doi: 10.12116/j.issn.1004-5619.2018.05.002
dc.relation.referencesWang, Y., & Cao, Y. (2020). A computer-assisted human peripheral blood leukocyte image classification method based on Siamese network. Medical and Biological Engineering and Computing, 58 (7), 1575–1582. Retrieved from https:// www.scopus.com/inward/record.uri?eid=2-s2.0-85084788999&doi=10.1007% 2Fs11517-020-02180-2&partnerID=40&md5=0fdf19ad0e8babae8d9a5a4b9b74fbd3 doi: 10.1007/s11517-020-02180-2
dc.relation.referencesYildirim, M., & C¸ inar, A. (2019). Classification of white blood cells by deep learning methods for diagnosing disease. Revue d’Intelligence Artificielle, 33 (5), 335–340. doi: 10.18280/ria.330502
dc.relation.referencesYu, K., Beam, A., & Kohane, I. (2018). Artificial intelligence in healthcare. Nature biomedical engineering, 2 (10), 719–731.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.proposalComputational pathologyeng
dc.subject.proposalDeep learningeng
dc.subject.proposalBone marrow cell subtypeseng
dc.subject.proposalPatología computacionalspa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalSubtipo de células de médula óseaspa
dc.subject.unescoBiología humanaspa
dc.subject.unescoHuman biologyeng
dc.subject.unescoSistema de información médicaspa
dc.subject.unescoMedical information systemseng
dc.subject.unescoTecnología de la información (programas)spa
dc.subject.unescoInformation technology (software)eng
dc.titleAutomatic classification of 21 subtypes of blood cellseng
dc.title.translatedClasificación automática de 21 subtipos de células sanguíneasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentModel
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Automatic classification of 21 subtypes of blood cells.pdf
Tamaño:
7.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: