Automatic classification of 21 subtypes of blood cells
dc.contributor.advisor | Romero Castro, Eduardo | spa |
dc.contributor.author | Rodríguez Lozano, Jhonathan Javier | spa |
dc.contributor.referee | Gómez Perdomo, Jonatan | spa |
dc.contributor.researcher | Tarquino Gonzalez, Jonnathan Steve | spa |
dc.contributor.researchgroup | Cim@Lab | |
dc.date.accessioned | 2025-09-04T20:24:57Z | |
dc.date.available | 2025-09-04T20:24:57Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Cytomorphological assessment of bone marrow cells plays a crucial role in diagnosing various hematologic disorders, but the process remains largely manual, relying on trained specialists, which creates a bottleneck in clinical workflows. While deep learning algorithms present a promising solution for automation, most existing models focus on a limited subset of cell types associated with specific diseases and are often treated as black-box systems. This study introduces a novel engineered feature representation, called region-attention embedding, aimed at improving deep learning classification across 21 bone marrow cell subtypes. The embedding organizes cytological features into a structured square matrix based on pre-segmented regions of the cell—cytoplasm, nucleus, and entire cell—thus preserving spatial and regional relationships. When integrated with the Xception and ResNet50 models, this approach highlights region-specific relevance in images, enhancing interpretability. The method was evaluated on the largest publicly available bone marrow cell subtype dataset, using three iterations of 3-fold cross-validation on 80% of the dataset (n = 89,484) and testing on a separate 20% (n = 22,371). The results indicate that the proposed method exceeds the performance of existing models on comparable validation sets, achieving an F1-score of 0.82, and demonstrates strong performance on the unseen test set with an F1-score of 0.56. | eng |
dc.description.abstract | La evaluación citomorfológica de las células de la médula ósea desempeña un papel crucial en el diagnóstico de varios trastornos hematológicos, pero el proceso sigue siendo en gran medida manual, dependiendo de especialistas capacitados, lo que crea un cuello de botella en los flujos de trabajo clínicos. Aunque los algoritmos de aprendizaje profundo ofrecen una solución prometedora para la automatización, la mayoría de los modelos existentes se centran en un subconjunto limitado de tipos celulares asociados con enfermedades específicas y a menudo se tratan como sistemas de caja negra. Este estudio introduce una nueva representación de características diseñada, denominada "region-attention embedding", cuyo objetivo es mejorar la clasificación mediante aprendizaje profundo en 21 subtipos de células de médula ósea. La representación organiza las características citológicas en una matriz estructurada cuadrada basada en regiones pre-segmentadas de la célula: citoplasma, núcleo y célula completa, preservando así las relaciones espaciales y regionales. Cuando se integra con los modelos Xception y ResNet50, este enfoque resalta la relevancia específica de cada región en las imágenes, mejorando la interpretabilidad. El método fue evaluado en el conjunto de datos más grande disponible públicamente sobre subtipos de células de médula ósea, utilizando tres iteraciones de validación cruzada de 3 particiones en el 80% del conjunto de datos (n = 89.484) y pruebas en el 20% restante (n = 22.371). Los resultados indican que el método propuesto supera el rendimiento de los modelos existentes en conjuntos de validación comparables, alcanzando una puntuación F1 de 0,82, y demuestra un rendimiento sólido en el conjunto de prueba no visto con una puntuación F1 de 0,56. (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería de Sistemas y Computación | spa |
dc.description.methods | Metodología cuantitativa. A partir de datos de fuentes secundarias se realizó experimentación con diferentes modelos de machine learning y deep learning, donde se optimizaron parámetros y se seleccionó el mejor modelo de acuerdo a la mética F1-score. | spa |
dc.description.researcharea | Computación aplicada | spa |
dc.format.extent | ix, 32 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88618 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | Agustin, R. I., Arif, A., & Sukorini, U. (2021). Classification of immature white blood cells in acute lymphoblastic leukemia L1 using neural networks particle swarm optimization. Neural Computing and Applications, 33 (17), 10869–10880. doi: 10.1007/s00521-021 -06245-7 | |
dc.relation.references | Al-Dulaimi, K., Al-Sabaawi, A., Resen, R. D., Stephan, J. J., & Zwayen, A. (2019). Using adapted JSEG algorithm with Fuzzy C mean for segmentation and counting of white blood cell and nucleus images.. doi: 10.1109/CSDE48274.2019.9162402 | |
dc.relation.references | Al-Dulaimi, K., Nguyen, K., Banks, J., Chandran, V., & Tomeo-Reyes, I. (2019). Classification of White Blood Cells Using L-Moments Invariant Features of Nuclei Shape. International Conference Image and Vision Computing New Zealand, 2018- Novem(December). doi: 10.1109/IVCNZ.2018.8634678 | |
dc.relation.references | Alharbi, A., Aravinda, C., Lin, M., Venugopala, P., Reddicherla, P., & Shah, M. (2022). Segmentation and Classification of White Blood Cells Using the UNet. Contrast Media and Molecular Imaging, 2022 . doi: 10.1155/2022/5913905 | |
dc.relation.references | Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., . . . Asari, V. K. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics (Switzerland), 8 (3). doi: 10.3390/electronics8030292 | |
dc.relation.references | Alqudah, A., Al-Ta’ani, O., & Al-Badarneh, A. (2018). Automatic segmentation and classification of white blood cells in peripheral blood samples. Journal of Engineering Science and Technology Review, 11 (6), 7–13. doi: 10.25103/jestr.116.02 | |
dc.relation.references | Anilkumar, K. K., Manoj, V. J., & Sagi, T. M. (2020). A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of Leukemia. Biocybernetics and Biomedical Engineering, 40 (4), 1406–1420. doi: 10 .1016/j.bbe.2020.08.010 | |
dc.relation.references | Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2018). Medical Image Analysis using Convolutional Neural Networks: A Review. Journal of Medical Systems, 42 (11), 1–13. doi: 10.1007/s10916-018-1088-1 | |
dc.relation.references | Banik, P. P., Saha, R., & Kim, K.-D. (2020). An Automatic Nucleus Segmentation and CNN Model based Classification Method of White Blood Cell. Expert Systems with Applications, 149 . doi: 10.1016/j.eswa.2020.113211 | |
dc.relation.references | Basnet, J., Alsadoon, A., Prasad, P. W. C., Aloussi, S. A., & Alsadoon, O. H. (2020). A Novel Solution of Using Deep Learning for White Blood Cells Classification: Enhanced Loss Function with Regularization and Weighted Loss (ELFRWL). Neural Processing Letters, 52 (2), 1517–1553. doi: 10.1007/s11063-020-10321-9 | |
dc.relation.references | Bennett, J. M., Catovsky, D., Daniel, M., Flandrin, G., Galton, D., Gralnick, H., & Sultan, C. (1976). Proposals for the Classification of the Acute Leukaemias French-American- British (FAB) Co-operative Group. British Journal of Haematology, 33 (4), 451–458. doi: 10.1111/j.1365-2141.1976.tb03563.x | |
dc.relation.references | Bhadauria, H., Devgun, J. S., Virmani, J., Rawat, J., & Singh, A. (2018). Application of ensemble artificial neural network for the classification of white blood cells using microscopic blood images. International Journal of Computational Systems Engineering, 4 (2/3), 202. doi: 10.1504/ijcsyse.2018.10012650 | |
dc.relation.references | Buttarello, M., & Plebani, M. (2008). Automated Blood Cell Counts. State of the art. Hematopathology, 130 , 104–116 | |
dc.relation.references | Cao, F., Cai, M., Chu, J., Zhao, J., & Zhou, Z. (2017). A novel segmentation algorithm for nucleus in white blood cells based on low-rank representation. Neural Computing and Applications, 28 , 503–511. Retrieved from https:// www.scopus.com/inward/record.uri?eid=2-s2.0-84973137432&doi=10.1007% 2Fs00521-016-2391-8&partnerID=40&md5=a6f675506866f073a0ab3e2f7b6fcccd doi: 10.1007/s00521-016-2391-8 | |
dc.relation.references | Chabot-Richards, D. (2015). White blood cell counts: reference methodology. Clinics in laboratory medicine, 35 (1), 11–24. doi: https://doi.org/10.1016/j.cll.2014.10.007 | |
dc.relation.references | Chandradevan, R., Aljudi, A., Drumheller, B., Kunananthaseelan, M., Nilakshan Amgad, Gutman, D., Cooper, L., & Jaye, D. (2019). Machine-based detection and classification for bone marrow aspirates differential counts. Initial development focusing on nonneoplastic cell. | |
dc.relation.references | Choi, J., Ku, Y., Yoo, B., Kim, J.-A., Lee, D., Chai, Y., . . . Kim, H. (2017). White blood cell differential count of maturation stages in bone marrow smear using dualstage convolutional neural networks. PLoS ONE, 12 (12). doi: 10.1371/journal.pone .0189259 | |
dc.relation.references | Cseke, I. (1992). A fast segmentation scheme for white blood cell images. Proceedings - International Conference on Pattern Recognition, 3 , 530–533. doi: 10.1109/ICPR .1992.202041 | |
dc.relation.references | Das, P. K., Diya, V. A., Meher, S., Panda, R., & Abraham, A. (2022). A Systematic Review on Recent Advancements in Deep and Machine Learning Based Detection and Classification of Acute Lymphoblastic Leukemia. IEEE Access, 10 , 81741–81763. doi: 10.1109/ACCESS.2022.3196037 | |
dc.relation.references | Dinˇci´c, M., Popovi´c, T. B., Kojadinovi´c, M., Trbovich, A. M., & Ili´c, A. (2021). Morphological, fractal, and textural features for the blood cell classification: the case of acute myeloid leukemia. European Biophysics Journal, 50 (8), 1111–1127. Retrieved from https://www.scopus.com/inward/record.uri?eid=2 -s2.0-85116927037&doi=10.1007%2Fs00249-021-01574-w&partnerID=40&md5= a88f0a4c79cf9056084ae2a95681be7f doi: 10.1007/s00249-021-01574-w | |
dc.relation.references | Dong, N., Zhai, M.-D., Chang, J., & Wu, C.-H. (2020). White blood cell classification. ArXiv, abs/2008.0 . Retrieved from https://www.semanticscholar.org/ paper/1c991e7d6f6715fe48de0c72698181c07f383466 | |
dc.relation.references | Dong, N., Zhai, M.-d., Chang, J.-f., & Wu, C.-h. (2021). A self-adaptive approach for white blood cell classification towards point-of-care testing. Applied Soft Computing, 111 . doi: 10.1016/j.asoc.2021.107709 | |
dc.relation.references | Dra lus, G., Mazur, D., & Czmil, A. (2021). Automatic detection and counting of blood cells in smear images using retinanet. Entropy, 23 (11). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119626216&doi=10 .3390%2Fe23111522&partnerID=40&md5=7772e55f73d8ac19e2c75bfe72f121f2 doi: 10.3390/e23111522 | |
dc.relation.references | Ghane, N., Vard, A., Talebi, A., & Nematollahy, P. (2017). Segmentation of white blood cells from microscopic images using a novel combination of K-Means clustering and modified Watershed algorithm. Journal of Medical Signals and Sensors, 7 , 92–101. Retrieved from https://www.semanticscholar.org/paper/ e96588d91be833b5744d5c19d66caa255bc9ff04 doi: 10.4103/2228-7477.205503 | |
dc.relation.references | Globocan. (2020). No Title. Retrieved from https://gco.iarc.fr/today/data/ factsheets/populations/170-colombia-fact-sheets.pdf | |
dc.relation.references | Houwen, B. (2001). The differential cell count. Laboratory Hematology, 7 , 89–100. | |
dc.relation.references | Khan, S., Sajjad, M., Hussain, T., Ullah, A., & Imran, A. S. (2021). A review on traditional machine learning and deep learning models for WBCs classification in blood smear images. IEEE Access, 9 , 10657–10673. doi: 10.1109/ACCESS.2020.3048172 | |
dc.relation.references | Krappe, S., Benz, M., Wittenberg, T., Haferlach, T., & M¨unzenmayer, C. (2015). Automated classification of bone marrow cells in microscopic images for diagnosis of leukemia: a comparison of two classification schemes with respect to the segmentation quality. Medical Imaging 2015: Computer-Aided Diagnosis, 9414 , 94143I. doi: 10.1117/12 .2081946 | |
dc.relation.references | Krappe, S., Wittenberg, T., Haferlach, T., & M¨unzenmayer, C. (2016). Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis. Medical Imaging 2016: Computer-Aided Diagnosis, 9785 , 97853C. doi: 10.1117/12.2216037 | |
dc.relation.references | Kumar, V., Abbas, A., & Aster, J. (2021). Patolog´ıa estructural y funcional (10th ed.; E. H. Sciences, Ed.) | |
dc.relation.references | Lantos, C., Kornblau, S., & Qutub, A. (2018). Quantitative-Morphological and Cytological Analyses in Leukemia. In Hematology: Latest research and clinical advances (pp. 95– 113). doi: http://dx.doi.org/10.5772/intechopen.73675 | |
dc.relation.references | Leong, T. K. M., Lo, W. S., Lee, W. E. Z., Tan, B., Lee, X. Z., Lee, L. W. J. N., . . . Yeong, J. (2021, 10). Leveraging advances in immunopathology and artificial intelligence to analyze in vitro tumor models in composition and space. Advanced drug delivery reviews, 177 , 113959. doi: 10.1016/j.addr.2021.113959 | |
dc.relation.references | Li, Y., Zhu, R., Mi, L., Cao, Y., & Yao, D. (2016). Segmentation of white blood cell from acute lymphoblastic leukemia images using dual-threshold method. Computational and Mathematical Methods in Medicine, 2016 . Retrieved from https:// www.scopus.com/inward/record.uri?eid=2-s2.0-84975142600&doi=10.1155% 2F2016%2F9514707&partnerID=40&md5=9026213f3e15de1eea9d5249b27c0f6f doi: 10.1155/2016/9514707 | |
dc.relation.references | Lina, L., Reynaldo, D., Danny, D., & Chris, A. (2021). White blood cellseDetection from unstained microscopic images using modified watershed segmentation. IAENG International Journal of Computer Science, 48 (4). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0 -85122469930&partnerID=40&md5=6ea07755fb00b51c17d970e6b9b24f25 | |
dc.relation.references | Liu, Y., Fu, Y., & Chen, P. (2019). WBCaps: A Capsule Architecture-based Classification Model Designed for White Blood Cells Identification. In In 2019 41st annual international conference of the ieee engineering in medicine and biology society (embc) (pp. 7027–7030). doi: 10.1109/EMBC.2019.8856700 | |
dc.relation.references | Liu, Z., Liu, J., Xiao, X., Yuan, H., Li, X., Chang, J., & Zheng, C. (2015). Segmentation of white blood cells through nucleus mark watershed operations and mean shift clustering. Sensors (Switzerland), 15 (9), 22561–22586. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941243510&doi= 10.3390%2Fs150922561&partnerID=40&md5=20103dad1c930d279dc49fe8e3f43482 doi: 10.3390/s150922561 | |
dc.relation.references | Long, F., Peng, J.-J., Song, W., Xia, X., & Sang, J. (2021). BloodCaps: A capsule network based model for the multiclassification of human peripheral blood cells. Computer methods and programs in biomedicine, 202 , 105972. doi: 10.1016/j.cmpb.2021.105972 | |
dc.relation.references | Matek, C., Krappe, S., M¨unzenmayer, C., Haferlach, T., & Marr, C. (2021a). An Expert- Annotated Dataset of Bone Marrow Cytology in Hematologic Malignancies [Data set]. The Cancer Imaging Archive. doi: https://doi.org/10.7937/TCIA.AXH3-T579 | |
dc.relation.references | Matek, C., Krappe, S., M¨unzenmayer, C., Haferlach, T., & Marr, C. (2021b). Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood, 138 , 1917–1927. doi: 10.1182/blood.2020010568 | |
dc.relation.references | Matek, C., Schwarz, S., Spiekermann, K., & Marr, C. (2019). Human-level recognition of blast cells in acute myeloid leukemia with convolutional neural networks. Nature Machine Intelligence, 1 (11), 538–544. doi: 10.1101/564039 | |
dc.relation.references | Miao, H., & Xiao, C. (2018). Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled watershed algorithm. Computational and Mathematical Methods in Medicine, 2018 . Retrieved from https://www.semanticscholar.org/paper/0ed981a0596b0e419e64bdcb7a471a1455b7e42b doi: 10.1155/2018/7235795 | |
dc.relation.references | Mohamed, S. T., Ebeid, H. M., Hassanien, A. E., & Tolba, M. F. (2020). Optimized Feed Forward Neural Network for Microscopic White Blood Cell Images Classification (Vol. 921). Retrieved from https://www.scopus.com/ inward/record.uri?eid=2-s2.0-85064035867&doi=10.1007%2F978-3-030 -14118-9 74&partnerID=40&md5=4b9ef2e4da226d99f7d84e9bdbc7e048 doi: 10.1007/978-3-030-14118-9{\ }74 | |
dc.relation.references | Mohd, S., Md, M., & Wan, W. (2018). White blood cell (WBC) counting analysis in blood smear images using various color segmentation methods. Measurement, 116 , 543–555. doi: 10.1016/j.measurement.2017.11.002 | |
dc.relation.references | Mohd, S., Md, M., Wan, W., Norzali, M., & Surayahani, N. (2019). Computer aided system for lymphoblast classification to detectacute lymphoblastic leukemia. Indonesian Journal of Electrical Engineering and Computer Science, 14 (2), 597–607. doi: 10.11591/ijeecs.v14.i2.pp597-607 | |
dc.relation.references | National Library of Medicine. (2020). MedlinePlus. Retrieved from https://medlineplus .gov/spanish/ | |
dc.relation.references | Othman, M. Z., Mohammed, T. S., & Ali, A. B. (2017). Neural network classification of white blood cell using microscopic images. International Journal of Advanced Computer Science and Applications, 8 (5). | |
dc.relation.references | Piuri, V., & Scotti, F. (2004). Morphological classification of blood leucocytes by microscope images. In 2004 ieee international conference on computational intelligence for measurements systems and applications (pp. 103–108). doi: 10.1109/cimsa.2004.1397242 | |
dc.relation.references | Prinyakupt, J., & Pluempitiwiriyawej, C. (2015). Segmentation of white blood cells and comparison of cell morphology by linear and na¨ıve Bayes classifiers. BioMedical Engineering Online, 14 (1), 1–19. doi: 10.1186/s12938-015-0037-1 | |
dc.relation.references | Puttamade Gowda, J., & Prasanna Kumar, S. C. (2019). Segmentation of white blood cells using integrated process of improved spectral angle mapper, gram-schmidt orthoganalization with K-means clustering. International Journal of Innovative Technology and Exploring Engineering, 8 (8), 730– 735. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0 -85069842771&partnerID=40&md5=7a9047d9a9a3defe3beca5d31622a019 | |
dc.relation.references | Rahman, A., & Hasan, M. M. (2018). Automatic Detection of White Blood Cells from Microscopic Images for Malignancy Classification of Acute Lymphoblastic Leukemia. In 2018 international conference on innovation in engineering and technology (pp. 1–6). doi: 10.1109/CIET.2018.8660914 | |
dc.relation.references | Ramoser, H., Laurain, V., Bischof, H., & Ecker, R. (2005). Leukocyte segmentation and classification in blood-smear images. In Annual international conference of the ieee engineering in medicine and biology - proceedings (Vol. 7 VOLS, pp. 3371–3374). doi: 10.1109/iembs.2005.1617200 | |
dc.relation.references | Sobhy, N., Salem, N., & El Dosoky, M. (2016). A comparative study of white blood cells wegmentation using Otsu threshold and Watershed transformation. Journal of Biomedical Engineering and Medical Imaging, 3 (3). doi: 10.14738/jbemi.33.2078 | |
dc.relation.references | Su, M. C., Cheng, C. Y., & Wang, P. C. (2014). A neural-network-based approach to white blood cell classification. The Scientific World Journal, 2014 (January). doi: 10.1155/2014/796371 | |
dc.relation.references | Swerdlow, S., Campo, E., Harris, N., Jaffe, E., Pileri, S., Stein, H., . . . Vardiman, J. (2008). WHO classification of tumours of haematopoietic and lymphoid tissues (S. H. Swer ed., Vol. 2). Retrieved from https://hero.epa.gov/hero/index.cfm/reference/ details/reference id/786623 | |
dc.relation.references | Tareef, A., Song, Y., Cai, W., Wang, Y., Feng, D. D., & Chen, M. (2016). Automatic nuclei and cytoplasm segmentation of leukocytes with color and texture-based image enhancement. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 935–938. | |
dc.relation.references | Tavakoli, S., Ghaffari, A., Kouzehkanan, Z. M., & Hosseini, R. (2021). New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Scientific Reports, 11 (1). doi: 10.1038/s41598-021-98599-0 | |
dc.relation.references | Theera-Umpon, N. (2008). White blood cell segmentation and classification in microscopic bone marrow image. In Fuzzy systems and knowledge discovery (Vol. 5180 LNAI, pp. 787–796). | |
dc.relation.references | Tiwari, P., Qian, J., Li, Q., Wang, B., Gupta, D., Khanna, A., . . . Albuquerque, V. (2018). Detection of subtype blood cells using deep learning. Cognitive Systems Research, 52 , 1036–1044. doi: 10.1016/j.cogsys.2018.08.022 | |
dc.relation.references | Wang, Q., Lin, H. C., Xu, J. R., Huang, P., & Wang, Z. Y. (2018, 10). Current Research and Prospects on Postmortem Interval Estimation. Fa yi xue za zhi , 34 (5), 459–467. doi: 10.12116/j.issn.1004-5619.2018.05.002 | |
dc.relation.references | Wang, Y., & Cao, Y. (2020). A computer-assisted human peripheral blood leukocyte image classification method based on Siamese network. Medical and Biological Engineering and Computing, 58 (7), 1575–1582. Retrieved from https:// www.scopus.com/inward/record.uri?eid=2-s2.0-85084788999&doi=10.1007% 2Fs11517-020-02180-2&partnerID=40&md5=0fdf19ad0e8babae8d9a5a4b9b74fbd3 doi: 10.1007/s11517-020-02180-2 | |
dc.relation.references | Yildirim, M., & C¸ inar, A. (2019). Classification of white blood cells by deep learning methods for diagnosing disease. Revue d’Intelligence Artificielle, 33 (5), 335–340. doi: 10.18280/ria.330502 | |
dc.relation.references | Yu, K., Beam, A., & Kohane, I. (2018). Artificial intelligence in healthcare. Nature biomedical engineering, 2 (10), 719–731. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.proposal | Computational pathology | eng |
dc.subject.proposal | Deep learning | eng |
dc.subject.proposal | Bone marrow cell subtypes | eng |
dc.subject.proposal | Patología computacional | spa |
dc.subject.proposal | Aprendizaje profundo | spa |
dc.subject.proposal | Subtipo de células de médula ósea | spa |
dc.subject.unesco | Biología humana | spa |
dc.subject.unesco | Human biology | eng |
dc.subject.unesco | Sistema de información médica | spa |
dc.subject.unesco | Medical information systems | eng |
dc.subject.unesco | Tecnología de la información (programas) | spa |
dc.subject.unesco | Information technology (software) | eng |
dc.title | Automatic classification of 21 subtypes of blood cells | eng |
dc.title.translated | Clasificación automática de 21 subtipos de células sanguíneas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Model | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Automatic classification of 21 subtypes of blood cells.pdf
- Tamaño:
- 7.15 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: