Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad

dc.contributor.advisorRestrepo Martínez, Alejandrospa
dc.contributor.advisorBranch Bedoya, John Williamspa
dc.contributor.authorBriñez de león, Juan Carlosspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupGIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificialspa
dc.date.accessioned2020-08-24T19:08:01Zspa
dc.date.available2020-08-24T19:08:01Zspa
dc.date.issued2020-07-30spa
dc.description.abstractLa evaluación experimental del campo de esfuerzos es de importancia en múltiples áreas de la ingeniería porque describe la respuesta mecánica que exhibe una estructura al ser sometida a cargas de distinta naturaleza. En este campo de trabajo, los estudios de fotoelasticidad digital sobresalen entre otras técnicas por ser no invasivos, de campo completo, y altamente computacionales. No obstante, su implementación reporta limitaciones en términos de las múltiples configuraciones del polariscopio requeridas para adquirir las imágenes, cantidad de subprocesos computacionales, sesgo en zonas de concentración de esfuerzos, desempeños dependientes de la geometría de la estructura, e imposibilidad de identificar puntos isotrópicos y zonas de inconsistencias. Frente a las oportunidades de estudios en fotoelasticidad digital, esta investigación desarrolla un método basado en casos dinámicos donde la descripción y clasificación del comportamiento temporal del color son utilizados como estrategia clave para la evaluación del campo de esfuerzos en situaciones donde las técnicas convencionales reportan limitaciones. Dentro de los procesos realizados en este trabajo, inicialmente se presenta una conceptualización del campo de esfuerzos en estructuras cargadas, su relación con las propiedades ópticas birrefringentes, y los parámetros que intervienen en la formación de las imágenes con franjas de color. Con ello un repositorio híbrido de imágenes es generado. Posterior a la generación de las imágenes, una estrategia basada en la extracción, selección y clasificación de características es implementada teniendo en cuenta métodos convencionales, la longitud de arco y el conocimiento previo del comportamiento temporal del color dependiendo de las categorías de esfuerzos a la que se asocia. Los resultados demuestran que el método de clasificación de las dinámicas del color presenta mejor desempeño que los métodos convencionales seleccionados y sus derivaciones híbridas propuestas para su mejoramiento.spa
dc.description.abstractEvaluating the stress field is an important task in multiple engineering areas because it describes the mechanical response that a structure resist under load application. In this study field, digital photoelasticity stand out among other techniques for being non-invasive, full-field, and highly computational. However, its application reports drawbacks in terms of the multiple polariscope configurations it requires to acquire the images, number of computational procedures, lost information in stress concentration zones, performance that dependent on the structure geometry, and the impossibility of identifying isotropic points and inconsistency zones. Taking advantages of the research opportunities in digital photoelasticity, this work develops a method for evaluating the stress information in dynamic cases. Here, describing and classifying the temporal behavior of color in photoelasticity image sequences are used as a key strategy for the evaluation of the stress field in situations where conventional techniques report limitations. Into the processes carried out in this work, a conceptualization of the stress field in loaded structures, its relationship with birefringent optical properties, and the parameters involved in the formation of images with color fringes are initially presented. With this a hybrid image repository is generated. After the generation of the images, a strategy based on the extraction, selection and classification of characteristics is implemented considering conventional methods, the arc length and the prior knowledge of the temporal behavior of the color depending on the stress categories to which they are associated to. The results demonstrate that the new method of classifying color dynamics presents better performance than the selected conventional methods and their hybrid derivations proposed to improve them.spa
dc.description.degreelevelDoctoradospa
dc.format.extent273spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78194
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.referencesBriñez-de León, J. C., Restrepo-Martínez, A., & Branch-Bedoya, J. W. (2019). Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity. Optics and Lasers in Engineering, 122, 195-208.spa
dc.relation.referencesToro, H. F., Briñez-de León, J. C., Martinez, A. R., & Bedoya, J. W. B. (2018). Fringe patterns recognition in digital photoelasticity images using texture features and multispectral wavelength analysis. Optical Engineering, 57(9), 093105.spa
dc.relation.referencesBriñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch, (2018). Computational hybrid phase shifting technique applied to digital photoelasticity, In Optik - International Journal for Light and Electron Optics, Volume 157, Pages 287-297, ISSN 0030-4026spa
dc.relation.referencesPérez, U., Camilo, J., Motta, G. C., Briñez-de León, J. C., & Restrepo-Martínez, A. (2017). Validación del uso de fotoelasticidad como herramienta para los cursos de Mecánica de Sólidos. Revista EIA, 14(28), 117-131spa
dc.relation.referencesBriñez-de León, J. C.; Fandiño Toro, Hermes A; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de resolución en imágenes de fotoelasticidad: caso carga dinámica. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José Caldasspa
dc.relation.referencesFandiño Toro, Hermes A; Briñez-de León, J. C.; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de campos de esfuerzos utilizando fotoelasticidad visible e infrarroja. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José Caldasspa
dc.relation.referencesBriñez-de León, J. C., Alejandro Restrepo, John W. Branch y Carlos Madrigal. Desenvolvimiento de fase RGB aplicado a secuencias de imágenes de fotoelasticidad capturadas de la tracción de películas plásticas. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali - Colombia. 16-20 de Noviembre de 2015spa
dc.relation.referencesBriñez-de León, J. C., Alejandro Restrepo, John W. Branch. Evaluación Temporal de los Ordenes de Franjas de Color Utilizando Análisis de Saturación en Secuencias de Imágenes de Fotoelasticidad. Décimo segundo Congreso Iberoamericano de Ingeniería Mecánica (CIBIM XII- 2015), Guayaquil-Ecuador. Noviembre 10-13 de 2015spa
dc.relation.referencesFernando Melendez, Briñez-de León, J. C., Alejandro Restrepo, John W. Branch. Identificación de variaciones del efecto de la temperatura en la deformación de películas plásticas analizando el comportamiento temporal de la fotoelasticidad. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali- Colombia. 16-20 de Noviembre de 2015spa
dc.relation.referencesBriñez-de León, J. C., A. R. Martínez and J. W. B. Bedoya, "High stress concentration analysis using RGB intensity changes in dynamic photoelasticity videos," 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, 2016, pp. 1-7.doi: 10.1109/STSIVA.2016.7743324spa
dc.relation.referencesBriñez-de León, J. C., Alejandro Restrepo M.; John W. Branch; Time-space analysis in photoelasticity images using recurrent neural networks to detect zones with stress concentration. Proc. SPIE 9971, Applications of Digital Image Processing XXXIX, 99712P (September 28, 2016); doi:10.1117/12.2237373spa
dc.relation.referencesBriñez-de León, J. C., Hermes Alexander Fandiño-Toro, Alejandro Restrepo-Martínez, John W. Branch. Evaluación de la pérdida de resolución en imágenes de fotoelasticidad debido al incremento de la carga. VIII Congreso Internacional de Ingeniería Mecánica y Mecatrónica y IV de Materiales, Energía y Medioambiente, Medellín, Colombia. 2017/4/26spa
dc.relation.referencesBriñez-de León, J. C., D. A. Patiño Cortes, A. Restrepo Martínez, and J. W. Branch Bedoya, "Computational Detection of Salient Information to Identify High Stress and Ambiguity Regions in Digital Photoelasticity Images," in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper IM4E.2spa
dc.relation.referencesBriñez-de León, J. C., Alejandro Restrepo M., John W. Branch, "Computational reduction of the image sets required in conventional phase shifting methods applied to digital photoelasticity" Proc. SPIE 10395, Optics and Photonics for Information Processing XI, 103950K (24 August 2017); doi: 10.1117/12.2273431spa
dc.relation.referencesHermes Fandiño Toro, Briñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch Bedoya, "Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity," Proc. SPIE 10396, Applications of Digital Image Processing XL, 103962D (19 September 2017); doi: 10.1117/12.2273258spa
dc.relation.referencesJuan Camilo Urango Pérez, Guillermo Carmen Motta, Briñez-de León, J. C., Alejandro Restrepo Martinez. Validation of the photoelasticity method as a tool for the enhancement of learning and design processes in solid mechanics. Congreso Internacional de Formación y Modelación en Ciencias Básicas. Universidad de Medellín. 2017. Página 217. ISBN-ebook: 978-958-8992-46-7spa
dc.relation.referencesBriñez-de León, J. C., H. A. Fandiño Toro, A. Restrepo M, and J. W. Branch, "Bayer and demosaicking effect for imaging the stress field in digital photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper IW2B.3.spa
dc.relation.referencesBriñez-de León, J. C., Fandiño, H. A., Restrepo, A., & Branch, J. W. (2018, September). Computational analysis of stress map variations by industrial light sources and load additions in digital photoelasticity. In Optics and Photonics for Information Processing XII (Vol. 10751, p. 107510G). International Society for Optics and Photonicsspa
dc.relation.referencesH. F. Toro, Briñez-de León, J. C., A. Restrepo Martínez, and J. W. Branch Bedoya, "Relevance analysis for texture descriptors in studies of dynamic photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper JM4A.37spa
dc.relation.referencesBriñez-de León, J. C., Martínez, A. R., & Bedoya, J. W. B. (2019, June). Fast Fourier Transform as Color Variation Descriptor for Imaging the Stress Field from Photoelasticity Videos. In Imaging Systems and Applications (pp. JW2A-46). Optical Society of Americaspa
dc.relation.referencesToro, H. F., Briñez-de León, J. C., RestrepoMartínez, A., & Branch, J. W. (2019, June). Texture analysis for evaluating the Bayer and demosaicking effects in photoelasticity images. In Computational Optical Sensing and Imaging (pp. JW2A-50). Optical Society of Americaspa
dc.relation.referencesRestrepo-Martinez, A., & Briñez-de León, J. C., (2019, September). Dynamic color descriptor based Frenet-Serret to classify stress zones from pixel variations recorded in photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 111360G). International Society for Optics and Photonicsspa
dc.relation.referencesBriñez-de León, J. C., Mery, D., Restrepo, A., & Branch, J. W. (2019, September). One-dimensional local binary pattern based color descriptor to classify stress values from photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 1113607). International Society for Optics and Photonics.spa
dc.relation.referencesH. J. Jiménez, “Comportamiento mecánico y microestructural de la aleación AlMgSi para conductores eléctricos,” Rev. UIS Ing., vol. 18, no. 2, pp. 199–211, 2019.spa
dc.relation.referencesS. Sazesh, A. Ghassemi, R. Ebrahimi, and M. Khodaei, “Experimental and Numerical Analysis of Titanium/HA FGM for Dental Implantation,” Int. J. Adv. Des. Manuf. Technol., vol. 10, no. 1, pp. 57–74, 2017.spa
dc.relation.referencesK. Ramesh, “Experimental Stress Analysis,” J. Appl. Mech., vol. 33, no. 1, p. 237, 2011.spa
dc.relation.referencesM. Akay and N. Aslan, “Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis,” J. Biomed. Mater. Res., vol. 31, no. 2, pp. 167–182, 1996.spa
dc.relation.referencesJ. F. Doyle, Modern Experimental Stress Analysis: Completing the Solution of Partially Specified Problems. 2005.spa
dc.relation.referencesK. Ramesh, T. Kasimayan, and B. Neethi Simon, “Digital photoelasticity - A comprehensive review,” J. Strain Anal. Eng. Des., vol. 46, no. 4, pp. 245–266, 2011.spa
dc.relation.referencesJ. C. Briñez, A. Restrepo, and F. López, “Métricas de similitud aplicadas para el análisis de imágenes de fotoelasticidad,” Dyna, vol. 80, no. 179, pp. 42–50, 2013.spa
dc.relation.referencesJ. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A general deep learning framework for inverse problems,” SIAM J. Imaging Sci., vol. 11, no. 2, pp. 991–1048, 2018.spa
dc.relation.referencesK. Jin, M. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. iIage Process., vol. 26, no. 9, pp. 4509–4522, 2017.spa
dc.relation.referencesR. Montanini, M. Scafidi, G. Staiti, A. Marcianò, L. D’Acquisto, and G. Oteri, “Misfit evaluation of dental implant-supported metal frameworks manufactured with different techniques: Photoelastic and strain gauge measurements,” J. Eng. Med., vol. 230, no. 12, pp. 1106–1116, 2016.spa
dc.relation.referencesC. C and E. Gabrielli, “Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads,” J. Phys. Conf. Ser., vol. 778, no. 1, pp. 1–14, 2017.spa
dc.relation.referencesF. C. Li and A. Kishen, “Deciphering dentin tissue biomechanics using digital moiré interferometry: A narrative review,” Opt. Lasers Eng., vol. 107, no. March, pp. 273–280, 2018.spa
dc.relation.referencesS. Yoneyama and S. Arikawa, “Instantaneous phase-stepping interferometry based on a pixelated micro-polarizer array,” Theor. Appl. Mech. Lett., vol. 6, no. 4, pp. 162–166, 2016.spa
dc.relation.referencesC. S. Narayanamurthy, G. Pedrini, and W. Osten, “Digital holographic photoelasticity,” Appl. Opt., vol. 56, no. 13, pp. F213–F217, 2017.spa
dc.relation.referencesR. Subramanyam and K. Ramesh, “Photoelastic study on the effect of flow induced residual stresses on fracture parameters,” Theor. Appl. Fract. Mech., vol. 85, pp. 320–327, 2016.spa
dc.relation.referencesT. Nikova and E. Stoykova, “Design of a photoelastic measurement of principal stresses by a phase-shifting method,” Phys. Scr., vol. T162, no. January, pp. 1–5, 2014.spa
dc.relation.referencesS. Alsiya, C. J. Lekshmi, B. P. J. Priya, and R. C. Mehta, “Image processing algorithm for fringe analysis in photoelasticity,” Sch. J. Eng. Technol., vol. 4, no. 7, pp. 325–328, 2016.spa
dc.relation.referencesJ. A. Quiroga and J. A. Gómez-Pedrero, “Application of principal component analysis in phase-shifting photoelasticity,” Opt. Express, vol. 24, no. 6, p. 5984, 2016.spa
dc.relation.referencesD. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng., vol. 30, no. 3–4, pp. 229–249, 1998.spa
dc.relation.referencesJ. Carazo-Alvarez, S. J. Haake, and E. A. Patterson, “Completely automated photoelastic fringe analysis,” Opt. Lasers Eng., vol. 21, no. 3, pp. 133–149, 1994.spa
dc.relation.referencesW. Shang, X. Ji, and X. Yang, “Study on several problems of automatic full-field isoclinic parameter measurement by digital phase shifting photoelasticity,” Optik., vol. 126, no. 19, pp. 1981–1985, 2015.spa
dc.relation.referencesM. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity-Issues, implementation and application,” Opt. Lasers Eng., vol. 46, no. 3, pp. 257–271, 2008.spa
dc.relation.referencesM. Ramji and K. Ramesh, “A new six-step phase shifting technique using mixed-polariscope in digital photoelasticity,” Key Eng. Mater., vol. 326–328, pp. 35–38, 2009.spa
dc.relation.referencesA. Ajovalasit, S. Barone, and G. Petrucci, “A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity,” J. Strain Anal. Eng. Des., vol. 33, no. 3, pp. 207–216, 2002.spa
dc.relation.referencesM. Solaguren-Beascoa Fernández, “Data Acquisition Techniques in Photoelasticity,” Exp. Tech., vol. 35, no. 6, pp. 71–79, 2011.spa
dc.relation.referencesP. Magalhães, F. Vieira, C. Magalhães, J. Ribeiro, and I. Rios, “Numerical method to digital photoelasticity using plane polariscope,” Opt. Express, vol. 24, no. 12, p. 12617, 2016.spa
dc.relation.referencesA. Ajovalasit, G. Petrucci, and M. Scafidi, “Measurement of edge residual stresses in glass by the phase-shifting method,” Opt. Lasers Eng., vol. 49, no. 5, pp. 652–657, 2011.spa
dc.relation.referencesJ. R. Lesniak, M. J. Zickel, C. S. Welch, and D. F. Johnson, “An innovative polariscope for photoelastic stress analysis,” Proc. Sem Spring Conf. Exp. Mech., pp. 219–224, 1997.spa
dc.relation.referencesS. Yoneyama and K. Moriwaki, “Simultaneous observation of phase-stepped photoelastic fringes using a pixelated microretarder array,” Opt. Eng., vol. 45, no. 8, p. 083604, 2006.spa
dc.relation.referencesE. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instrum., vol. 69, no. 4, pp. 1574–1580, 1998.spa
dc.relation.referencesS. Sircar and K. Bhattacharya, “Measurement of birefringence using polarization phase-shifting Mach–Zehnder interferometer,” Opt. Eng., vol. 54, no. 11, p. 113112, 2015.spa
dc.relation.referencesK. Ashokan and K. Ramesh, “A novel approach for ambiguity removal in isochromatic phasemap in digital photoelasticity,” Meas. Sci. Technol., vol. 17, no. 11, pp. 2891–2896, 2006.spa
dc.relation.referencesM. Ramji and K. Ramesh, “Adaptive quality guided phase unwrapping algorithm for whole-field digital photoelastic parameter estimation of complex models,” Strain, vol. 46, no. 2, pp. 184–194, 2010.spa
dc.relation.referencesP. Siegmann, F. Díaz-Garrido, and E. A. Patterson, “Robust approach to regularize an isochromatic fringe map,” Appl. Opt., vol. 48, no. 22, p. E24, 2009.spa
dc.relation.referencesP. Pinit, “Automated Detection of Singularities from Orientation Map of Isoclinics in,” 21st Conf. Mech. Eng. Netw. Thail., no. October, 2007.spa
dc.relation.referencesK. Ramesh, M. P. Hariprasad, and V. Ramakrishnan, “Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity,” Opt. Eng., vol. 54, no. 8, p. 081205, 2015.spa
dc.relation.referencesC. Buckberry and D. Towers, “New approaches to the full-field analysis of photoelastic stress patterns,” Opt. Lasers Eng., vol. 24, no. 5–6, pp. 415–428, 1996.spa
dc.relation.referencesM.-J. Huang, “Isoclinic ambiguity unwrapping of circular ring under diametric dompression,” ICEM 14 – 14th Int. Conf. Exp. Mech., vol. 6, p. 32002, 2010.spa
dc.relation.referencesJ. Wu and M. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Opt. Eng., vol. 54, no. 8, p. 081207, 2015.spa
dc.relation.referencesK. Ramesh and D. K. Tamrakar, “Improved determination of retardation in digital photoelasticity by load stepping,” Opt. Lasers Eng., vol. 33, no. 6, pp. 387–400, 2000.spa
dc.relation.referencesA. D. Nurse, “Load-stepping photoelasticity: New developments using temporal phase unwrapping,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 57–70, 2002.spa
dc.relation.referencesV. Ramakrishnan and K. Ramesh, “Scanning schemes in white light Photoelasticity – Part I: Critical assessment of existing schemes,” Opt. Lasers Eng., vol. 92, pp. 129–140, 2017.spa
dc.relation.referencesV. Ramakrishnan and K. Ramesh, “Scanning schemes in white light photoelasticity – Part II: Novel fringe resolution guided scanning scheme,” Opt. Lasers Eng., vol. 92, pp. 141–149, 2017.spa
dc.relation.referencesM. P. Haripras and K. Ramesh, “Analysis of contact zones from whole field isochromatics using reflection photoelasticity,” Opt. Lasers Eng., vol. 105, no. September 2017, pp. 86–92, 2018.spa
dc.relation.referencesK. Ramesh and A. Pandey, “An improved normalization technique for white light photoelasticity,” Opt. Lasers Eng., vol. 109, no. February, pp. 7–16, 2018.spa
dc.relation.referencesB. N. Simon, T. Kasimayan, and K. Ramesh, “The influence of ambient illumination on colour adaptation in three fringe photoelasticity,” Opt. Lasers Eng., vol. 49, no. 2, pp. 258–264, 2011.spa
dc.relation.referencesK. Ramesh, M. P. Hariprasad, and S. Bhuvanewari, “Digital photoelastic analysis applied to implant dentistry,” Opt. Lasers Eng., vol. 87, pp. 204–213, 2016.spa
dc.relation.referencesA. Pandey and K. Ramesh, “Development of a new normalization technique for twelve fringe photoelasticity (TFP),” Conf. Proc. Soc. Exp. Mech. Ser., vol. 12, pp. 177–180, 2019.spa
dc.relation.referencesJ. A. Quiroga, M. Servin, and J. L. Marroquin, “Regularized phase tracking technique for demodulation of isochromatics from a single tricolour image,” Meas. Sci. Technol., vol. 13, no. 1, pp. 132–140, 2002.spa
dc.relation.referencesG. S. Grewal and V. N. Dubey, “Inverse problem of photoelastic fringe mapping using neural networks,” Meas. Sci. Technol., vol. 18, no. 5, pp. 1361–1366, 2007.spa
dc.relation.referencesL. Roy and A. J. Rosakis, “An experimental study of impact-induced failure events in homogeneous layered materials using dynamic photoelasticity and high-speed photography,” Opt. Lasers Eng., vol. 40, no. 4, pp. 263–288, 2003.spa
dc.relation.referencesW. C. Wang and Y. H. Tsai, “Digital dynamic photoelastic and numerical stress analyses of a strip,” J. Vib. Control, vol. 12, no. 8, pp. 927–938, 2006.spa
dc.relation.referencesA. Asundi, M. R. Sajan, and L. Tong, “Dynamic photoelasticity using TDI imaging,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 3–16, 2002.spa
dc.relation.referencesF. Huang and A. Sugimoto, Image and Video Technology – PSIVT 2013 Workshops, no. October. 2013.spa
dc.relation.referencesL. Wang, Y. Ju, H. Xie, G. Ma, L. Mao, and K. He, “The mechanical and photoelastic properties of 3D printable stress-visualized materials,” Sci. Rep., vol. 7, no. 1, pp. 1–9, 2017.spa
dc.relation.referencesY. Ju, L. Wang, H. Xie, G. Ma, Z. Zheng, and L. Mao, “Visualization and Transparentization of the Structure and Stress Field of Aggregated Geomaterials Through 3D Printing and Photoelastic Techniques,” Rock Mech. Rock Eng., vol. 50, no. 6, pp. 1383–1407, 2017.spa
dc.relation.referencesA. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of RGB photoelasticity,” Opt. Lasers Eng., vol. 68, pp. 58–73, 2015.spa
dc.relation.referencesHung, K-M., and C-C. Ma. "Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions." Experimental mechanics 43.2 (2003): 216-224.spa
dc.relation.referencesVoloshin, Arkady S., and C. P. Burger. "Half-fringe photoelasticity: a new approach to whole-field stress analysis." Experimental Mechanics 23.3 (1983): 304-313.spa
dc.relation.referencesRamesh, K., and D. Sreedhar. "Optically enhanced tiling (OET) in digital fringe pattern analysis." Strain 34.4 (1998): 127-130.spa
dc.relation.referencesHecker, F. W., and H. Abeln. "Digital Phase-shifting photoelasticity." Optics and the Information Age. Vol. 813. International Society for Optics and Photonics, 1987.spa
dc.relation.referencesAsundi, Anand, Liu Tong, and Chai Gin Boay. "Dynamic phase-shifting photoelasticity." Applied Optics 40.22 (2001): 3654-3658.spa
dc.relation.referencesSu, Xianyu, Anand Krishna Asundi, and M. R. Sajan. "Phase unwrapping in photoelasticity." International Conference on Experimental Mechanics: Advances and Applications. Vol. 2921. International Society for Optics and Photonics, 1997.spa
dc.relation.referencesEkman, Matthew J., and Andrew D. Nurse. "Completely automated determination of two-dimensional photoelastic parameters using load stepping." Optical Engineering 37 (1998).spa
dc.relation.referencesSurendra, Kamadi Vara Naga, and KR Yogendra Simha. "Digital Image Analysis around isotropic points for photoelastic pattern recognition." Optical Engineering 54.8 (2015): 081209.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.proposalDigital photoelasticityeng
dc.subject.proposalBirefringenceeng
dc.subject.proposalColor fringe patternseng
dc.subject.proposalStress fieldeng
dc.subject.proposalProcesamiento digital de secuencias de imágenesspa
dc.subject.proposalReconocimiento de patronesspa
dc.subject.proposalPattern recognitioneng
dc.subject.proposalComputational hybrid methods.eng
dc.titleEvaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidadspa
dc.title.alternativeStress field evaluation by the analysis, description, and classification of temporal dynamics in photoelasticity image sequencesspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
88032810.2020.pdf
Tamaño:
11.53 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: