Guía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicales

dc.contributor.advisorOspina Montoya, Álvaro León
dc.contributor.advisorFranco Cardona, Carlos Jaime (Thesis advisor)
dc.contributor.authorAmariles Franco, Diego Alejandro
dc.date.accessioned2022-04-04T13:45:25Z
dc.date.available2022-04-04T13:45:25Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractEn el 2019 la UPME presento los resultados del primer balance de energía útil en Colombia, en este estudio, se identificó que en el año 2015 de la energía producida (1077 PJ), solo el 33% era útil, es decir 338,3 PJ, además, indicaba que si se reemplaza por tecnologías de referencia y mejores tecnologías se podría tener un ahorro potencial de 6,6 a 11 mil millones de dólares al año (UPME, 2019a). En el sector terciario, el aire acondicionado, podría tener un potencial de ahorro de energía de 3,5 a 5,5 PJ al año y en dinero de 140 a 250 millones de dólares al año (UPME, 2019a), lo cual podría representar 0,05 a 0,09% del PIB de Colombia (DANE, 2021). En la revisión de literatura se identificaron metodologías para mejorar la eficiencia energética de las edificaciones desde el diseño de los sistemas de aire acondicionado, abordando puntos específicos del diseño, como lo son la selección de sistemas primarios(Tian, Si, Shi, & Fang, 2019), selección de criterios(Bennett, Edeling, Muller, & Zouggari, 2015), con este análisis se encuentra que hace falta una visión holística y heurística en los diseños de los sistemas de aire acondicionado, por lo cual el objetivo de este trabajo es el desarrollo de una guía metodológica de diseño basado en el uso eficiente de energía para sistemas HVAC en edificaciones en países tropicales, esto se hace con base en tres pilares, comparación temprana de equipos y sistemas, selección de equipos teniendo en cuenta el corto y largo plazo y por último teniendo en cuenta las condiciones de operación y como esto afecta el rendimiento de los sistemas. (Terxto tomado de la fuente)spa
dc.description.abstractIn 2019, the UPME presented the results of the first useful energy balance in Colombia, in this study, it was identified that in 2015 of the energy produced (1077 PJ), only 33% was useful, that is, 338.3 PJ Furthermore, it indicated that if it is replaced by reference technologies and better technologies, there could be a potential saving of 6,6 to 11 billion dollars per year (UPME, 2019a). In the tertiary sector, air conditioning could have an energy saving potential of 3.5 to 5.5 PJ per year and in money of 140 to 250 million dollars per year (UPME, 2019a), which could represent 0.05 to 0.09% of Colombia's PIB (DANE, 2021). In the literature review, methodologies were identified to improve the energy efficiency of buildings from the design of air conditioning systems, addressing specific design points, such as the selection of primary systems (Tian, Si, Shi, & Fang, 2019), selection of criteria (Bennett, Edeling, Muller, & Zouggari, 2015), with this analysis it is found that a holistic and heuristic vision is needed in the designs of air conditioning systems, for which The objective of this work is the development of a design methodological guide based on the efficient use of energy for HVAC systems in buildings in tropical countries, this is done based on three pillars, early comparison of equipment and systems, selection of equipment having taking into account the short and long term and finally taking into account the operating conditions and how this affects the performance of the systems.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Sistemas Energéticosspa
dc.description.researchareaEficiencia energética en edificacionesspa
dc.format.extentxv, 99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81436
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticosspa
dc.relation.referencesAirflow. (2015). Manual de difusión del Aire.spa
dc.relation.referencesAparicio Ruiz, P., Sánchez De La Flor, F. J., Molina Felix, J. L., Salmerón Lissén, J., & Guadix Martín, J. (2016). Applying the HVAC systems in an integrated optimization method for residential building’s design. A case study in Spain. Energy and Buildings, 119, 74–84. https://doi.org/10.1016/j.enbuild.2016.03.023spa
dc.relation.referencesArroyo, P., Tommelein, I. D., Ballard, G., & Rumsey, P. (2016). Choosing by advantages: A case study for selecting an HVAC system for a net zero energy museum. Energy and Buildings, 111, 26–36. https://doi.org/10.1016/j.enbuild.2015.10.023spa
dc.relation.referencesAscione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017a). Energy retrofit of educational buildings: Transient energy simulations, model calibration and multi-objective optimization towards nearly zero-energy performance. Energy and Buildings, 144, 303–319. https://doi.org/10.1016/j.enbuild.2017.03.056spa
dc.relation.referencesAscione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017b). Resilience of robust cost-optimal energy retrofit of buildings to global warming: A multi-stage, multi-objective approach. Energy and Buildings, 153, 150–167. https://doi.org/10.1016/j.enbuild.2017.08.004spa
dc.relation.referencesASHRAE. (2014). 2014 ASHRAE HANDBOOK.spa
dc.relation.referencesASHRAE. (2015). 2015 ASHRAE HANDBOOK.spa
dc.relation.referencesAUTODESK. (2021a). ECOTEC. Retrieved May 17, 2021, from https://www.asidek.es/arquitectura-e-ingenieria/autodesk-ecotect-analysis/spa
dc.relation.referencesAUTODESK. (2021b). Green Building Studio. Retrieved May 17, 2021, from https://gbs.autodesk.com/GBS/spa
dc.relation.referencesAUTODESK. (2021c). Insight. Retrieved May 17, 2021, from https://insight360.autodesk.com/oneenergyspa
dc.relation.referencesAvgelis, A., & Papadopoulos, A. M. (2009). Application of multicriteria analysis in designing HVAC systems. Energy and Buildings, 41(7), 774–780. https://doi.org/10.1016/j.enbuild.2009.02.011spa
dc.relation.referencesBac, U., Alaloosi, K. A. M. S., & Turhan, C. (2021). A comprehensive evaluation of the most suitable HVAC system for an industrial building by using a hybrid building energy simulation and multi criteria decision making framework. Journal of Building Engineering, 37(January), 102153. https://doi.org/10.1016/j.jobe.2021.102153spa
dc.relation.referencesBecchio, C., Corgnati, S. P., Orlietti, L., & Spigliantini, G. (2015). Proposal for a modified cost-optimal approach by introducing benefits evaluation. Energy Procedia, 82, 445–451. https://doi.org/10.1016/j.egypro.2015.11.835spa
dc.relation.referencesBennett, D., Edeling, A., Muller, C., & Zouggari, Y. (2015). Energy conservation and improved IAQ with existing ventilation standards. Healthy Buildings Europe 2015, HB 2015 - Conference Proceedings, 2015-May(September).spa
dc.relation.referencesBERKELEY LAB. (2021). WINDOW. Retrieved May 17, 2021, from https://windows.lbl.gov/software/windowspa
dc.relation.referencesBerquist, J., Tessier, A., O’brien, W., Attar, R., & Khan, A. (2017). An investigation of generative design for heating, ventilation, and air-conditioning. Simulation Series, 49(11), 132–139. https://doi.org/10.22360/simaud.2017.simaud.018spa
dc.relation.referencesBrown, H. L. (1985). Energy Analysis of 108 Industrial Processes (THE FAIRMONT PRESS INC, Ed.).spa
dc.relation.referencesCARRIER. (1970). Carrier Manual de Aire Acondicionado.pdf.spa
dc.relation.referencesCARRIER. (2020). Carrier air conditioning, heating, refrigeration and HVACR products and services. Retrieved July 8, 2020, from https://www.carrier.com/carrier/en/worldwide/spa
dc.relation.referencesChatzopoulou, M. A., Fisk, D., Keirstead, J., & Markides, C. N. (2016). Informing low carbon HVAC systems modelling and design, using a global sensitivity analysis framework. ASME 2016 10th International Conference on Energy Sustainability, ES 2016, Collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 1(December). https://doi.org/10.1115/ES2016-59593spa
dc.relation.referencesChen, C. J., Chen, S. Y., Li, S. H., & Chiu, H. T. (2017). Green BIM-based building energy performance analysis. Computer-Aided Design and Applications, 14(5), 650–660. https://doi.org/10.1080/16864360.2016.1273582spa
dc.relation.referencesChen, S. Y. (2018). A green building information modelling approach: Building energy performance analysis and design optimization. MATEC Web of Conferences, 169. https://doi.org/10.1051/matecconf/201816901004spa
dc.relation.referencesCho, J., Kim, Y., Koo, J., & Park, W. (2018). Energy-cost analysis of HVAC system for office buildings: Development of a multiple prediction methodology for HVAC system cost estimation. Energy and Buildings, 173, 562–576. https://doi.org/10.1016/j.enbuild.2018.05.019spa
dc.relation.referencesComision Federal de Energia. (2020). cO. Retrieved from https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRENegocio/Tarifas/GranDemandaMTO.aspxspa
dc.relation.referencesCommission, E. (2009). Reference Document on Best Available Techniques for PROCESS. (February).spa
dc.relation.referencesConnecticut, & Protection, D. of E. and E. (n.d.). Energy Efficiency. Retrieved from https://portal.ct.gov/DEEP/Energy/Energy-Efficiencyspa
dc.relation.referencesCYPE. (2021). CYPETHERMS LOAD. Retrieved May 17, 2021, from http://cypetherm-loads.cype.es/spa
dc.relation.referencesDAIKIN. (2020). Daikin Global. Retrieved July 8, 2020, from https://www.daikin.com/spa
dc.relation.referencesDANE. (2021). Producto Interno Bruto -PIB- nacional trimestral. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/pib-informacion-tecnicaspa
dc.relation.referencesDesignBuilder. (2021). DesignBuilder. Retrieved May 17, 2021, from https://www.designbuilder-lat.com/caracteristicas/descripcion-generalspa
dc.relation.referencesDEXMA. (2020). LEGISLACIÓN DE ENERGÍA Y SOSTENIBILIDAD UNA GUÍA GLOBAL PARA GESTORES ENERGÉTICOS.spa
dc.relation.referencesDongellini, M., & Morini, G. L. (2019). On-off cycling losses of reversible air-to-water heat pump systems as a function of the unit power modulation capacity. Energy Conversion and Management, 196(March), 966–978. https://doi.org/10.1016/j.enconman.2019.06.022spa
dc.relation.referencesEDERSA. (2020). CUADRO TARIFARIO PROVISORIO Aprobado por. 21, 2020. Retrieved from http://www.edersa.com.ar/V3.0/wp-content/uploads/2020/05/CT-Mayo-2020-Julio-2020.pdfspa
dc.relation.referencesEfficiency, E. (2019a). BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL AND NONRESIDENTIAL BUILDINGS FOR THE 2019 BUILDING. (December 2018). Retrieved from https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiencyspa
dc.relation.referencesEfficiency, E. (2019b). REFERENCE APPENDICES FOR THE 2019 BUILDING. (December 2018).spa
dc.relation.referencesEIA. (2020). Electric Power Monthly. Retrieved from https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_aspa
dc.relation.referencesElnabawi, M. H. (2020). Building Information Modeling-Based Building Energy Modeling: Investigation of Interoperability and Simulation Results. Frontiers in Built Environment, 6(December), 1–19. https://doi.org/10.3389/fbuil.2020.573971spa
dc.relation.referencesEPM. Octubre 2019 Industrial y Comercial. , (2019).spa
dc.relation.referencesESP-r. (2021). ESP-r. Retrieved May 17, 2021, from http://www.esru.strath.ac.uk/Courseware/ESP-r/tour/spa
dc.relation.referencesEUROSTAT. (2020a). Electricity prices for household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.dospa
dc.relation.referencesEUROSTAT. (2020b). Electricity prices for non-household consumers - bi-annual data (from 2007 onwards). Retrieved from https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.dospa
dc.relation.referencesFoucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23, 272–288. https://doi.org/10.1016/j.rser.2013.03.004spa
dc.relation.referencesFRAUNHOFER. (2021). WUFI. Retrieved May 17, 2021, from https://wufi.de/en/spa
dc.relation.referencesFunds, I., & Schemes, E. O. (2019). Clean energy for all The new Energy efficiency measures. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/technical_memo_energyefficiency.pdfspa
dc.relation.referencesGagarin, V. G., Lushin, K. I., Kozlov, V. V., & Neklyudov, A. Y. (2016). Path of Optimized Engineering of HVAC Systems. Procedia Engineering, 146, 103–111. https://doi.org/10.1016/j.proeng.2016.06.359spa
dc.relation.referencesGao, H., Koch, C., & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied Energy, 238(December 2018), 320–343. https://doi.org/10.1016/j.apenergy.2019.01.032spa
dc.relation.referencesGatley, D. P. (2013). Understanding Psychrometrics Third Edition.spa
dc.relation.referencesGLACIAR. (2020). Glaciar Ingeniería | Sistemas de enfriamiento evaporativo. Retrieved July 8, 2020, from https://glaciaringenieria.com.co/spa
dc.relation.referencesglobal petrol prices. (2020). Brazil electricity prices. Retrieved from https://www.globalpetrolprices.com/Brazil/electricity_prices/spa
dc.relation.referencesGoberna, R. (n.d.). Ventilacion Industrial.pdf (1st ed.). 1992.spa
dc.relation.referencesGourlis, G., & Kovacic, I. (2017). Building Information Modelling for analysis of energy efficient industrial buildings – A case study. Renewable and Sustainable Energy Reviews, 68, 953–963. https://doi.org/10.1016/j.rser.2016.02.009spa
dc.relation.referencesGovernment Canada. (2021). RETScreen. Retrieved May 17, 2021, from https://www.nrcan.gc.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465spa
dc.relation.referencesGovernment, F. (2017). Saving Energy in Industrial Companies : Case Studies of Energy Efficiency Programs in Large U . S . Industrial Corporations and the Role of Ratepayer-Funded Support Industrial Energy Efficiency and Combined Heat and Power. (March 2017).spa
dc.relation.referencesHamedani, M. N., & Smith, R. E. (2015). Evaluation of Performance Modelling: Optimizing Simulation Tools to Stages of Architectural Design. Procedia Engineering, 118, 774–780. https://doi.org/10.1016/j.proeng.2015.08.513spa
dc.relation.referencesHong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90–106. https://doi.org/10.1016/j.apenergy.2014.03.052spa
dc.relation.referencesHopfe, C. J., Augenbroe, G. L. M., & Hensen, J. L. M. (2013). Multi-criteria decision making under uncertainty in building performance assessment. Building and Environment, 69, 81–90. https://doi.org/10.1016/j.buildenv.2013.07.019spa
dc.relation.referencesIonescu, C., Baracu, T., Vlad, G., Necula, H., & Badea, A. (2015). The historical evolution of the energy ef fi cient buildings. 49, 243–253. https://doi.org/10.1016/j.rser.2015.04.062spa
dc.relation.referencesJallow, A. K., Lee, S., Castronovo, F., Zhang, Y., Chunduri, S., & Messner, J. I. (2013). Process-based information exchanges mapping for energy efficient retrofit projects. Computing in Civil Engineering - Proceedings of the 2013 ASCE International Workshop on Computing in Civil Engineering, 234–241. https://doi.org/10.1061/9780784413029.030spa
dc.relation.referencesJames J. Hirsch. (2021). DOE-2. Retrieved May 17, 2021, from https://www.doe2.com/spa
dc.relation.referencesKamel, E., & Memari, A. M. (2018). Automated Building Energy Modeling and Assessment Tool (ABEMAT). Energy, 147, 15–24. https://doi.org/10.1016/j.energy.2018.01.023spa
dc.relation.referencesKim, D., Cho, H., Koh, J., & Im, P. (2020). Net-zero energy building design and life-cycle cost analysis with air-source variable refrigerant flow and distributed photovoltaic systems. Renewable and Sustainable Energy Reviews, 118(November 2019), 109508. https://doi.org/10.1016/j.rser.2019.109508spa
dc.relation.referencesKim, Y. J., Ahn, K. U., & Park, C. S. (2014). Decision making of HVAC system using Bayesian Markov chain Monte Carlo method. Energy and Buildings, 72, 112–121. https://doi.org/10.1016/j.enbuild.2013.12.039spa
dc.relation.referencesKolokotsa, D., Diakaki, C., Grigoroudis, E., Stavrakakis, G., & Kalaitzakis, K. (2009). Decision support methodologies on the energy efficiency and energy management in buildings. 3, 121–146. https://doi.org/10.3763/aber.2009.0305spa
dc.relation.referencesKoulamas, C., Kalogeras, A. P., Pacheco-Torres, R., Casillas, J., & Ferrarini, L. (2018). Suitability analysis of modeling and assessment approaches in energy efficiency in buildings. Energy and Buildings, 158, 1662–1682. https://doi.org/10.1016/j.enbuild.2017.12.002spa
dc.relation.referencesLaw, P. (2005). ENERGY POLICY ACT OF 2005 An Act. 1–551. Retrieved from https://www.govinfo.gov/content/pkg/PLAW-109publ58/pdf/PLAW-109publ58.pdfspa
dc.relation.referencesLG. (2020). LG Air Conditioning Technologies. Retrieved July 8, 2020, from https://www.lghvac.com/spa
dc.relation.referencesLuigi Schibuola , Massimiliano Scarpa, and C. T. (2013). MODELLING OF HVAC SYSTEM COMPONENTS FOR BUILDING DYNAMIC SIMULATION Air-to-water on-off control. 1103–1109.spa
dc.relation.referencesMahiwal, S. G., Bhoi, M. K., & Bhatt, N. (2021). Evaluation of energy use intensity (EUI) and energy cost of commercial building in India using BIM technology. Asian Journal of Civil Engineering, (0123456789). https://doi.org/10.1007/s42107-021-00352-5spa
dc.relation.referencesMauro, G. M., Hamdy, M., Vanoli, G. P., Bianco, N., & Hensen, J. L. M. (2015). A new methodology for investigating the cost-optimality of energy retrofitting a building category. Energy and Buildings, 107, 456–478. https://doi.org/10.1016/j.enbuild.2015.08.044spa
dc.relation.referencesMéndez Echenagucia, T., Capozzoli, A., Cascone, Y., & Sassone, M. (2015). The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Applied Energy, 154, 577–591. https://doi.org/10.1016/j.apenergy.2015.04.090spa
dc.relation.referencesNREL, ANL, LBNL, ORNL, and P. (2021). OpenStudio. Retrieved May 17, 2021, from https://www.openstudio.net/spa
dc.relation.referencesOffice of Energy Efficiency & Renewable Energy. (2020). Federal Laws and Requirements Search. Retrieved from https://www4.eere.energy.gov/femp/requirements/spa
dc.relation.referencesOLADE. (2018). MRV Methodology For Energy Efficiency Implementation Measures In Commercial And Public Buildings For Countries Of The Caribbean Region 1.spa
dc.relation.referencesPantelic, J., Raphael, B., & Tham, K. W. (2012). A preference driven multi-criteria optimization tool for HVAC design and operation. Energy and Buildings, 55, 118–126. https://doi.org/10.1016/j.enbuild.2012.04.021spa
dc.relation.referencesPetersen, P. M., & Sullivan, J. O. (2012). Energy Efficient Design – a methodology applied in major international projects. 181–192.spa
dc.relation.referencesPicallo-Perez, A., Catrini, P., Piacentino, A., & Sala, J. M. (2019). A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems. Energy, 180, 819–837. https://doi.org/10.1016/j.energy.2019.05.098spa
dc.relation.referencesRafati Sokhangoo, L., Orenga Panizza, R., Nik-Bakht, M., & Han, S. H. (2019). Conceptual cost models for energy simulation in building projects. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 2019-June(Jalaei 2015), 1–10.spa
dc.relation.referencesRomain Farel, A. B., & Loges, chemin de la P. des. (2014). Energy Efficiency of Industrial Systems : A Design Research Perspective. (August). https://doi.org/10.1115/DETC2014-35056spa
dc.relation.referencesRoman, N. D., Bre, F., Fachinotti, V. D., & Lamberts, R. (2020). Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review. Energy and Buildings, 217. https://doi.org/10.1016/j.enbuild.2020.109972spa
dc.relation.referencesRWTH Aachen University, E.ON Energy Research Center, I. for E. E. B. and I. C. (EBC). (2021). AixLib. Retrieved May 17, 2021, from https://github.com/RWTH-EBC/AixLibspa
dc.relation.referencesSAMSUNG. (2000). Technical Data Book VRF STANDAR.spa
dc.relation.referencesSAMSUNG. (2020). Samsung HVAC. Retrieved July 8, 2020, from https://www.samsunghvac.com/spa
dc.relation.referencesShahrestani, M., Yao, R., & Cook, G. K. (2018). A fuzzy multiple attribute decision making tool for HVAC&R systems selection with considering the future probabilistic climate changes and electricity decarbonisation plans in the UK. Energy and Buildings, 159, 398–418. https://doi.org/10.1016/j.enbuild.2017.10.089spa
dc.relation.referencesShahrestani, M., Yao, R., Cook, G. K., & Clements-Croome, D. (2018). Decision-making on HVAC&R systems selection: a critical review. Intelligent Buildings International, 10(3), 133–153. https://doi.org/10.1080/17508975.2017.1333948spa
dc.relation.referencesSharif, S. A., & Hammad, A. (2019). Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost and Life-Cycle Assessment. Journal of Building Engineering, 21(November 2018), 429–445. https://doi.org/10.1016/j.jobe.2018.11.006spa
dc.relation.referencesSingh, M. M., Singaravel, S., Klein, R., & Geyer, P. (2020). Quick energy prediction and comparison of options at the early design stage. Advanced Engineering Informatics, 46(July), 101185. https://doi.org/10.1016/j.aei.2020.101185spa
dc.relation.referencesSOLEMNA. (2021). DIVA. Retrieved May 17, 2021, from https://www.solemma.com/divaspa
dc.relation.referencesSoler & Palau. (1997). Manual práctico de Ventilación. In Real Farmacopea Española I Tomo. Madrid: (Vol. 1). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Sistemas+de+Ventilaci?n#8spa
dc.relation.referencesSolmaz, A. S. (2019). A critical review on building performance simulation tools. Alam Cipta, 12(2), 7–21.spa
dc.relation.referencesStanescu, M., Kajl, S., & Lamarche, L. (2013). Simplified optimization method for preliminary design of HVAC system and real building application. HVAC and R Research, 19(3), 213–229. https://doi.org/10.1080/10789669.2012.755904spa
dc.relation.referencesTECAM. (2020). TECAM S.A. | Sistemas de Aire Acondicionado y RefrigeraTción. Retrieved July 8, 2020, from http://tecam-sa.com/spa
dc.relation.referencesThe independent institute for outstanding energy efficiency in buildings. (2021). PHPP. Retrieved May 17, 2021, from https://passivehouse.com/04_phpp/04_phpp.htmspa
dc.relation.referencesThe New York State Senate. (2020). The Laws Of New York. Retrieved from https://www.nysenate.gov/legislation/laws/ENGspa
dc.relation.referencesTian, Z., Si, B., Shi, X., & Fang, Z. (2019). An application of Bayesian Network approach for selecting energy efficient HVAC systems. Journal of Building Engineering, Vol. 25. https://doi.org/10.1016/j.jobe.2019.100796spa
dc.relation.referencesTRANE. (2020). TRANE. Retrieved July 8, 2020, from https://www.trane.com/commercial/north-america/us/en.htmlspa
dc.relation.referencesTRANE. (2021). TRACE 700. Retrieved May 17, 2021, from https://www.trane.com/commercial/north-america/us/en/products-systems/design-and-analysis-tools/trace-700.htmlspa
dc.relation.referencesTRNSYS. (2021). TRNSYS. Retrieved May 17, 2021, from http://www.trnsys.com/spa
dc.relation.referencesUPB, & ACAIRE. (2017). Diplomado Aire Acondicionado UPB-ACAIRE.spa
dc.relation.referencesUPME. (2019a). Balance de Energía Útil 2015.spa
dc.relation.referencesUPME. (2019b). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética Resumen Ejecutivo BEU Sector Residencial y Terciario. 20. Retrieved from https://www1.upme.gov.co/Hemeroteca/Paginas/estudio-primer-balance-energia-util-para-Colombia.aspxspa
dc.relation.referencesUS Dept. of Energy. (2021). Best Directory. Retrieved from https://www.buildingenergysoftwaretools.com/spa
dc.relation.referencesZhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586–3592. https://doi.org/10.1016/j.rser.2012.02.049spa
dc.relation.referencesZhou, Z., Feng, L., Zhang, S., Wang, C., Chen, G., Du, T., … Zuo, J. (2016). The operational performance of “net zero energy building”: A study in China. Applied Energy, 177, 716–728. https://doi.org/10.1016/j.apenergy.2016.05.093spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionadospa
dc.subject.lembBuildings - Energy Conservation
dc.subject.lembEdificios - Conservación de energía
dc.subject.lembArchitecture and energy conservation
dc.subject.lembArquitectura y conservación de energía
dc.subject.lembDwellings - air conditioning
dc.subject.lembAire acondicionado en viviendas
dc.subject.lembAir conditioning - Energy consumption
dc.subject.lembAire acondicionado - Consumo de energía
dc.subject.proposalDiseño HVACspa
dc.subject.proposalEficiencia energéticaspa
dc.subject.proposalEdificacionesspa
dc.subject.proposalHVAC Designeng
dc.subject.proposalEnergy Efficciencyeng
dc.subject.proposalBuildingseng
dc.titleGuía metodológica de diseño basado en el uso eficiente de la energía para proyectos HVAC de edificaciones en países tropicalesspa
dc.title.translatedMethodological guide for design based on the efficient use of energy for HVAC projects in buildings in tropical countrieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017207725.2021.pdf
Tamaño:
2.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: