Diseño y análisis de pervaporación dinámica para separación de etanol-agua

dc.contributor.advisorPrado-Rubio, Oscar Andrés
dc.contributor.advisorFontalvo Alzate, Javier
dc.contributor.authorVillada Atehortúa, Laura Andrea
dc.contributor.researchgroupGrupo de Investigación en Aplicación de Nuevas Tecnologíasspa
dc.date.accessioned2022-08-11T16:16:34Z
dc.date.available2022-08-11T16:16:34Z
dc.date.issued2021
dc.descriptiongráficos, tablas.spa
dc.description.abstractUna de las principales desventajas de la producción de bioetanol por fermentación es que el producto la inhibe. Por ello, actualmente se está desarrollando e implementando la pervaporación in situ para la eliminación del etanol durante el proceso de fermentación. Como tecnología de membranas, la pervaporación se utiliza para mejorar la producción de etanol porque no afecta a los microorganismos. La pervaporación tiene numerosas ventajas sobre los procesos convencionales; sin embargo, puede mejorarse intensificando el proceso, concretamente, mediante una intensificación dinámica que no implique grandes alteraciones en los sistemas existentes. En este trabajo se desarrolla un modelo dinámico para analizar el funcionamiento periódico de un módulo de pervaporación que utiliza una membrana de PDMS para la eliminación de etanol. Las variables estudiadas para conseguir la intensificación fueron el tiempo de uso del módulo y el tiempo de recuperación de la membrana. Se compara el flujo medio de etanol y la composición media de etanol en el permeado con una operación periódica y convencional. Como resultado, se muestran las condiciones de operación periódica para una mejor productividad y se propone una configuración del módulo de pervaporación de pervaporación para implementar una operación dinámica. Este estudio muestra cómo la forma de operar un sistema puede mejorar significativamente su productividad. (Texto tomado de la fuente)spa
dc.description.abstractA major disadvantage of bioethanol production by fermentation is that the product inhibits it. Thus, it is currently developing and implementing in situ pervaporation for the removal of ethanol during the fermentation process. As a membrane technology, pervaporation is used to improve ethanol production because it doesn’t affect microorganisms. Pervaporation has numerous advantages over conventional processes; however, it can be improved by intensifying the process, specifically, by dynamic intensification that does not entail major alterations to existing systems. Herein, a dynamic model is developed to analyze the periodic operation of a pervaporation module using a PDMS membrane for ethanol removal. The variables studied to achieve the intensification were the usage time of the module and the recovery time of the membrane. The average flux of ethanol and the average composition of ethanol in the permeate with a periodic and conventional operation are compared. As a result, periodic operating conditions are shown for better productivity and a pervaporation module configuration is proposed to implement a dynamic operation. This study shows how the way a system is operated can significantly improve its productivity.eng
dc.description.curricularareaQuímica Y Procesosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.format.extentv, 120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81848
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Químicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbdehagh, N., Tezel, F. H., y Thibault, J. (2014). Separation techniques in butanol produc- tion: Challenges and developments. Biomass and Bioenergy, 60:222–246.spa
dc.relation.referencesAguilera, A. F., Alopaeus, V., Christensen, L. P., Contreras-Zarazúa, G., Errico, M., Feng, X., Gómez-Castro, F. I., Antonio, C. G., Herrera, V. S., Kiss, A. A., et al. (2017). Pro- cess Synthesis and Process Intensification: Methodological Approaches. Walter de Gruyter GmbH & Co KG.spa
dc.relation.referencesAhmad, S. A. y Lone, S. R. (2012). Hybrid process (pervaporation-distillation): a review. Int. J. Sci. Eng. Res, 3(5):1–5.spa
dc.relation.referencesAmnuaypanich, S., Patthana, J., y Phinyocheep, P. (2009). Mixed matrix membranes pre- pared from natural rubber/poly (vinyl alcohol) semi-interpenetrating polymer network (nr/pva semi-ipn) incorporating with zeolite 4a for the pervaporation dehydration of water–ethanol mixtures. Chemical Engineering Science, 64(23):4908–4918.spa
dc.relation.referencesANH (2020). Agencia nacional de hidrocarburos: Reservas y producción de petróleo y gas, avaliable: https://www.anh.gov.co/atencion-al-ciudadano/documents.spa
dc.relation.referencesAryanti, P., Ariono, D., Hakim, A., y Wenten, I. (2018). Flory-huggins based model to de- termine thermodynamic property of polymeric membrane solution. In Journal of Physics: Conference Series, volume 1090, page 012074. IOP Publishing.spa
dc.relation.referencesBabi, D. K. y Gani, R. (2014). Hybrid distillation schemes: design, analysis, and application. In Distillation, pages 357–381. Elsevier.spa
dc.relation.referencesBabi, D. K., Holtbruegge, J., Lutze, P., Gorak, A., Woodley, J. M., y Gani, R. (2015). Sustainable process synthesis–intensification. Computers & Chemical Engineering, 81:218– 244.spa
dc.relation.referencesBaker, R. (2004). Membrane technology and applications, john wiley & sons. Ltd., New York, NY.spa
dc.relation.referencesBaker, R. W. (2012). Membrane technology and applications. John Wiley & Sons.spa
dc.relation.referencesBaldea, M. y Edgar, T. F. (2018). Dynamic process intensification. Current opinion in chemical engineering, 22:48–53.spa
dc.relation.referencesBausa, J. y Marquardt, W. (2001). Detailed modeling of stationary and transient mass transfer across pervaporation membranes. AIChE journal, 47(6):1318–1332.spa
dc.relation.referencesBeltrán Gómez, L. V. et al. (2016). Análisis de los diferentes tipos de energías alternativas y su implementación en colombia. Master’s thesis.spa
dc.relation.referencesBolto, B., Hoang, M., y Xie, Z. (2011). A review of membrane selection for the dehydra- tion of aqueous ethanol by pervaporation. Chemical Engineering and Processing: Process Intensification, 50(3):227–235.spa
dc.relation.referencesBolto, B., Tran, T., Hoang, M., y Xie, Z. (2009). Crosslinked poly (vinyl alcohol) membranes. Progress in polymer science, 34(9):969–981.spa
dc.relation.referencesBetancourt Grajales, R. (2003). Transferencia molecular de calor, masa y/o cantidad de movimiento. Univ. Nacional de Colombia.spa
dc.relation.referencesChapman, P. D., Oliveira, T., Livingston, A. G., y Li, K. (2008). Membranes for the dehy- dration of solvents by pervaporation. Journal of Membrane Science, 318(1-2):5–37.spa
dc.relation.referencesChung, T.-S., Jiang, L. Y., Li, Y., y Kulprathipanja, S. (2007). Mixed matrix membranes (mmms) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in polymer science, 32(4):483–507.spa
dc.relation.referencesCrespo, J. y Brazinha, C. (2015). Fundamentals of pervaporation. In Pervaporation, Vapour Permeation and Membrane Distillation, pages 3–17. Elsevier.spa
dc.relation.referencesCen, Y., Staudt-Bickel, C., y Lichtenthaler, R. N. (2002). Sorption properties of organic solvents in peba membranes. Journal of membrane science, 206(1-2):341–349.spa
dc.relation.referencesCinelli, B. A., Freire, D. M., y Kronemberger, F. A. (2019). Membrane distillation and pervaporation for ethanol removal: are we comparing in the right way? Separation Science and Technology, 54(1):110–127.spa
dc.relation.referencesClark, J. H. y Deswarte, F. (2014). Introduction to chemicals from biomass. John Wiley & Sons.spa
dc.relation.referencesDavis, R. A. (2002). Simple gas permeation and pervaporation membrane unit operation models for process simulators. Chemical Engineering & Technology: Industrial Chemistry– Plant Equipment–Process Engineering–Biotechnology, 25(7):717–722.spa
dc.relation.referencesDíaz, V. H. G., Prado-Rubio, O. A., Willis, M. J., y von Stosch, M. (2017). Dynamic hybrid model for ultrafiltration membrane processes. In Computer Aided Chemical Engineering, volume 40, pages 193–198. Elsevier.spa
dc.relation.referencesDong, Y., Zhang, L., Shen, J., Song, M., y Chen, H. (2006). Preparation of poly (vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydra- tion characterization of aqueous alcohol mixtures. Desalination, 193(1-3):202–210.spa
dc.relation.referencesDrioli, E., Stankiewicz, A. I., y Macedonio, F. (2011). Membrane engineering in process intensification—an overview. Journal of Membrane Science, 380(1-2):1–8.spa
dc.relation.referencesDuque Escobar, G. (2018). Calentamiento global en colombia. Escuela de Arquitectura y Urbanismo.spa
dc.relation.referencesEchevarría Villa, D. et al. (2018). Membranas compuestas con selectividad mejorada para la separación de butanol mediante pervaporación.spa
dc.relation.referencesEnagi, I. I., Al-Attab, K., y Zainal, Z. (2018). Liquid biofuels utilization for gas turbines: a review. Renewable and Sustainable Energy Reviews, 90:43–55.spa
dc.relation.referencesEdgar, T. F., Himmelblau, D. M., Lasdon, L. S., et al. (2001). Optimization of chemical processes.spa
dc.relation.referencesFan, S., Xiao, Z., Li, M., Li, S., Zhou, T., Hu, Y., y Wu, S. (2017). Pervaporation performance in pdms membrane bioreactor for ethanol recovery with running water and air as coolants at room temperature. Journal of Chemical Technology & Biotechnology, 92(2):292–297.spa
dc.relation.referencesFeng, X. y Huang, R. Y. (1997). Liquid separation by membrane pervaporation: a review. Industrial & Engineering Chemistry Research, 36(4):1048–1066.spa
dc.relation.referencesFernández-Linares, L. C., Montiel-Montoya, J., Millán-Oropeza, A., y Badillo-Corona, J. A. (2012). Producción de biocombustibles a partir de microalgas. Ra Ximhai, 8(3):101–115.spa
dc.relation.referencesFNB (2018). Federación nacional de biocombustibles: Oferta y demanda de etanol, avaliable: https://www.fedebiocombustibles.com/.spa
dc.relation.referencesFu, C., Cai, D., Hu, S., Miao, Q., Wang, Y., Qin, P., Wang, Z., y Tan, T. (2016). Ethanol fermentation integrated with pdms composite membrane: An effective process. Bioresource technology, 200:648–657.spa
dc.relation.referencesFu, Y.-J., Lai, C.-L., Chen, J.-T., Liu, C.-T., Huang, S.-H., Hung, W.-S., Hu, C.-C., y Lee, K.-R. (2014). Hydrophobic composite membranes for separating of water–alcohol mixture by pervaporation at high temperature. Chemical Engineering Science, 111:203–210.spa
dc.relation.referencesFavre, E., Nguyen, Q., Sacco, D., Moncuy, A., y Clement, R. (1995). Multicomponent polymer/solvents equilibria: an evaluation of flory-huggins theory for crosslinked pdms networks swelled by binary mixtures. Chemical Engineering Communications, 140(1):193– 205.spa
dc.relation.referencesFigueroa Paredes, D. A. (2018). Optimización de procesos híbridos destilación/membranas.spa
dc.relation.referencesGooding, C. H. y Bahouth, F. J. (1985). Membrane-aided distillation of azeotropic solutions. Chemical Engineering Communications, 35(1-6):267–279.spa
dc.relation.referencesGórak, A. y Stankiewicz, A. (2018). Intensification of Biobased Processes, volume 55. Royal Society of Chemistry.spa
dc.relation.referencesGuerrero, A. B., Ballesteros, I., y Ballesteros, M. (2018). The potential of agricultural banana waste for bioethanol production. Fuel, 213:176–185.spa
dc.relation.referencesGVR (2020). Grand view research: Ethanol market size, share & trends analysis re- port by source, 2020 - 2027, avaliable: https://www.grandviewresearch.com/industry- analysis/ethanol-market.spa
dc.relation.referencesGonçalves, C. B., Batista, E., y Meirelles, A. J. (2002). Liquid- liquid equilibrium data for the system corn oil+ oleic acid+ ethanol+ water at 298.15 k. Journal of Chemical & Engineering Data, 47(3):416–420.spa
dc.relation.referencesHafid, H. S., Shah, U. K. M., Baharuddin, A. S., Ariff, A. B., et al. (2017). Feasibility of using kitchen waste as future substrate for bioethanol production: A review. Renewable and Sustainable Energy Reviews, 74:671–686.spa
dc.relation.referencesHajjari, M., Tabatabaei, M., Aghbashlo, M., y Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste- oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72:445–464.spa
dc.relation.referencesHeintz, A. y Stephan, W. (1994). A generalized solution—diffusion model of the pervapora- tion process through composite membranes part i. prediction of mixture solubilities in the dense active layer using the uniquac model. Journal of Membrane Science, 89(1-2):143– 151.spa
dc.relation.referencesHoltbruegge, J., Kuhlmann, H., y Lutze, P. (2015). Process analysis and economic opti- mization of intensified process alternatives for simultaneous industrial scale production of dimethyl carbonate and propylene glycol. Chemical Engineering Research and Design, 93:411–431.spa
dc.relation.referencesHauser, J., Reinhardt, G., Stumm, F., y Heintz, A. (1989). Experimental study of solubilities of water containing organic mixtures in polyvinylalcohol using gaschromatographic and infrared spectroscopic analysis. Fluid phase equilibria, 49:195–210.spa
dc.relation.referencesHaaz, E. y Toth, A. J. (2018). Methanol dehydration with pervaporation: Experiments and modelling. Separation and Purification Technology, 205:121–129.spa
dc.relation.referencesHaáz, E., Valentinyi, N., Tarjani, A. J., Fozer, D., André, A., Mohamed, S. A. K., Rahim- li, F., Nagy, T., Mizsey, P., Deák, C., et al. (2019). Platform molecule removal from aqueous mixture with organophilic pervaporation: Experiments and modelling. Periodica Polytechnica Chemical Engineering, 63(1):138–146.spa
dc.relation.referencesInoue, T., Nagase, T., Hasegawa, Y., Kiyozumi, Y., Sato, K., Nishioka, M., Hamakawa, S., y Mizukami, F. (2007). Stoichiometric ester condensation reaction processes by pervaporati- ve water removal via acid-tolerant zeolite membranes. Industrial & engineering chemistry research, 46(11):3743–3750.spa
dc.relation.referencesIson, M., Sitt, J., y Trevisan, M. (2005). Algoritmos genéticos: aplicación en matlab. Guía de la materia Sistemas Complejos, 7:2020.spa
dc.relation.referencesJi, L., Shi, B., y Wang, L. (2015). Pervaporation separation of ethanol/water mixture using modified zeolite filled pdms membranes. Journal of Applied Polymer Science, 132(17).spa
dc.relation.referencesJyoti, G., Keshav, A., y Anandkumar, J. (2015). Review on pervaporation: theory, mem- brane performance, and application to intensification of esterification reaction. Journal of Engineering, 2015.spa
dc.relation.referencesJonquières, A., Clément, R., Lochon, P., Néel, J., Dresch, M., y Chrétien, B. (2002). In- dustrial state-of-the-art of pervaporation and vapour permeation in the western countries. Journal of Membrane Science, 206(1-2):87–117.spa
dc.relation.referencesLi, G. y Bai, P. (2012). New operation strategy for separation of ethanol–water by extractive distillation. Industrial & engineering chemistry research, 51(6):2723–2729.spa
dc.relation.referencesLópez-Murillo, L. H., Grisales-Díaz, V. H., Pinelo, M., y Prado-Rubio, O. A. (2021). Ultra- filtration intensification by dynamic operation: Insights from hybrid modelling. Chemical Engineering and Processing-Process Intensification, page 108618.spa
dc.relation.referencesLópez-Zamora, S. M., Fontalvo, J., y Gómez-García, M. Á. (2013). Pervaporation membrane reactor design guidelines for the production of methyl acetate. Desalination and Water Treatment, 51(10-12):2387–2393.spa
dc.relation.referencesLutze, P., Babi, D. K., Woodley, J. M., y Gani, R. (2013). Phenomena based methodo- logy for process synthesis incorporating process intensification. Industrial & Engineering Chemistry Research, 52(22):7127–7144.spa
dc.relation.referencesLutze, P. y Gorak, A. (2013). Reactive and membrane-assisted distillation: Recent develop- ments and perspective. Chemical engineering research and design, 91(10):1978–1997.spa
dc.relation.referencesLindvig, T., Michelsen, M. L., y Kontogeorgis, G. M. (2002). A flory–huggins model based on the hansen solubility parameters. Fluid Phase Equilibria, 203(1-2):247–260.spa
dc.relation.referencesLiu, C.-G., Xiao, Y., Xia, X.-X., Zhao, X.-Q., Peng, L., Srinophakun, P., y Bai, F.-W. (2019). Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnology advances, 37(3):491–504.spa
dc.relation.referencesLi, L., Xiao, Z., Tan, S., Pu, L., y Zhang, Z. (2004). Composite pdms membrane with high flux for the separation of organics from water by pervaporation. Journal of Membrane Science, 243(1-2):177–187.spa
dc.relation.referencesMarriott, J. y Sørensen, E. (2003). A general approach to modelling membrane modules. Chemical engineering science, 58(22):4975–4990.spa
dc.relation.referencesMarriott, J., Sørensen, E., y Bogle, I. (2001). Detailed mathematical modelling of membrane modules. Computers & Chemical Engineering, 25(4-6):693–700.spa
dc.relation.referencesMoriyama, N., Nagasawa, H., Kanezashi, M., y Tsuru, T. (2018). Pervaporation dehydration of aqueous solutions of various types of molecules via organosilica membranes: Effect of membrane pore sizes and molecular sizes. Separation and Purification Technology, 207:108– 115.spa
dc.relation.referencesMoulijn, J. A., Stankiewicz, A., Grievink, J., y Górak, A. (2008). Process intensification and process systems engineering: a friendly symbiosis. Computers & Chemical Engineering, 32(1-2):3–11.spa
dc.relation.referencesMaiti, A., Wescott, J., y Kung, P. (2005). Nanotube–polymer composites: insights from flory–huggins theory and mesoscale simulations. Molecular Simulation, 31(2-3):143–149.spa
dc.relation.referencesMyers, R. H., Montgomery, D. C., Vining, G. G., y Robinson, T. J. (2012). Generalized linear models: with applications in engineering and the sciences, volume 791. John Wiley & Sonsspa
dc.relation.referencesMcCabe, W. L. S. et al. (2007). Operaciones unitarias en Ingeniería Química/Warren L. McCabe, Julian C. Smith, Peter Harriot; TR. Alejandro Carlos Piombo Herrera. Number 660.2842 M333O.spa
dc.relation.referencesNaciones Unidas, N. (2019). La agenda 2030 y los objetivos de desarrollo sostenible: una oportunidad para américa latina y el caribe. objetivos, metas e indicadores mundiales.spa
dc.relation.referencesNguyen, Q., Bowyer, J., Howe, J., Bratkovich, S., Groot, H., Pepke, E., y Fernholz, K. (2017). Global production of second generation biofuels: Trends and influences.spa
dc.relation.referencesNigam, P. S. y Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in energy and combustion science, 37(1):52–68.spa
dc.relation.referencesNunes, S. P. y Peinemann, K.-V. (2007). Membrane technology in the chemical industry second. Environmental Engineering and Management Journal, 6(1):75–76.spa
dc.relation.referencesNoriega Valencia, M. A. (2010). Remoción de etanol en sistemas de fermentación alcohó- lica mediante pervaporación. Master’s thesis, Universidad Nacional de Colombia-Sede Manizales.spa
dc.relation.referencesOng, Y. K., Shi, G. M., Le, N. L., Tang, Y. P., Zuo, J., Nunes, S. P., y Chung, T.-S. (2016). Recent membrane development for pervaporation processes. Progress in Polymer Science, 57:1–31.spa
dc.relation.referencesOng, Y. K., Wang, H., y Chung, T.-S. (2012). A prospective study on the application of thermally rearranged acetate-containing polyimide membranes in dehydration of biofuels via pervaporation. Chemical engineering science, 79:41–53.spa
dc.relation.referencesObeso, V. y Velasquez, J. (2015). Análisis numérico. Notas de clase. Universidad del Norte.spa
dc.relation.referencesOjapah, M. M., Zhao, H., y Zhang, Y. (2016). Effects of ethanol on combustion and emissions of a gasoline engine operating with different combustion modes. International Journal of Engine Research, 17(9):998–1011.spa
dc.relation.referencesPaterson, P. (2017). Calentamiento global y cambio climático en sudamérica. Revista Política y Estrategia, (130):153–188.spa
dc.relation.referencesPérez, A. D., Rodríguez-Barona, S., y Fontalvo, J. (2019). Integration of a liquid membrane in taylor flow regime with a fermentation by lactobacillus casei atcc 393 for in-situ lactic acid removal. Chemical Engineering and Processing-Process Intensification, 140:85–90.spa
dc.relation.referencesPrado-Rubio, O., Jørgensen, S. B., y Jonsson, G. (2011). Reverse electro-enhanced dialysis for lactate recovery from a fermentation broth. Journal of membrane science, 374(1-2):20– 32.spa
dc.relation.referencesPrado-Rubio, O. A. (2010). Integration of Bioreactor and Membrane Separation Proces- ses: A Model Based Approach: Reverse Electro-Enhanced Dialysis process for lactic acid fermentation. PhD thesis.spa
dc.relation.referencesPrado-Rubio, O. A. (2015). Operación dinámica de sistemas para alcanzar intensificación de procesos. Libros Editorial UNIMAR.spa
dc.relation.referencesPelletier, G. J., Chapra, S. C., y Tao, H. (2006). Qual2kw–a framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environmental Modelling & Software, 21(3):419–425.spa
dc.relation.referencesPeng, F., Pan, F., Li, D., y Jiang, Z. (2005). Pervaporation properties of pdms membranes for removal of benzene from aqueous solution: Experimental and modeling. Chemical Engineering Journal, 114(1-3):123–129.spa
dc.relation.referencesPrado-Rubio, O. A., Fontalvo, J., y Woodley, J. M. (2019). 8. conception, design, and development of intensified hybrid-bioprocesses. In Process Intensification, pages 211–241. De Gruyter.spa
dc.relation.referencesQiu, B., Wang, Y., Fan, S., Liu, J., Jian, S., Qin, Y., Xiao, Z., Tang, X., y Wang, W. (2019). Ethanol mass transfer during pervaporation with pdms membrane based on solution- diffusion model considering concentration polarization. Separation and Purification Tech- nology, 220:276–282.spa
dc.relation.referencesReay, D., Ramshaw, C., y Harvey, A. (2013). Process Intensification: Engineering for effi- ciency, sustainability and flexibility. Butterworth-Heinemann.spa
dc.relation.referencesREN21 (2016). Global status report, avaliable: https://www.ren21.net/wp- content/uploads/2019/05/ren21_gsr2016_fullreport_en_11.pdf.spa
dc.relation.referencesReid, R. C., Prausnitz, J. M., y Poling, B. E. (1987). The properties of gases and liquids.spa
dc.relation.referencesSaini, J. K., Saini, R., y Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, 5(4):337–353.spa
dc.relation.referencesSarmiento, Á. Z. et al. (2015). Ciencia y tecnología en el plan nacional de desarrollo 2014- 2018:“todos por un nuevo país”. Technical report, UN-RCE-CID.spa
dc.relation.referencesSepúlveda, J. A. M., Junco, L. M. P., y Casallas, M. R. (2017). Producción de biocombustibles en colombia a partir de fuentes no convencionales. Puente, 9(2):79–85.spa
dc.relation.referencesShin, Y., Taufique, M. F. N., Devanathan, R., Cutsforth, E. C., Lee, J., Liu, W., Fifield, L. S., y Gotthold, D. W. (2019). Highly selective supported graphene oxide membranes for water-ethanol separation. Scientific reports, 9(1):1–11.spa
dc.relation.referencesSlater, C. S., Hickey, P., y Juricic, F. (1990). Pervaporation of aqueous ethanol mixtures through poly (dimethyl siloxane) membranes. Separation Science and Technology, 25(9- 10):1063–1077.spa
dc.relation.referencesSmuleac, V., Wu, J., Nemser, S., Majumdar, S., y Bhattacharyya, D. (2010). Novel per- fluorinated polymer-based pervaporation membranes for the separation of solvent/water mixtures. Journal of membrane science, 352(1-2):41–49.spa
dc.relation.referencesSowa, S. W., Baldea, M., y Contreras, L. M. (2014). Optimizing metabolite production using periodic oscillations. PLoS computational biology, 10(6):e1003658.spa
dc.relation.referencesStafford, W., Lotter, A., Brent, A., y von Maltitz, G. (2017). Biofuels technology: A look forward. Technical report, WIDER Working Paper.spa
dc.relation.referencesStankiewicz, A. y Moulijn, J. A. (2002). Process intensification. Industrial & Engineering Chemistry Research, 41(8):1920–1924.spa
dc.relation.referencesStephen, J. L. y Periyasamy, B. (2018). Innovative developments in biofuels production from organic waste materials: A review. Fuel, 214:623–633.spa
dc.relation.referencesSterman, L. E. y Ydstie, B. E. (1990). The steady-state process with periodic perturbations. Chemical Engineering Science, 45(3):721–736.spa
dc.relation.referencesSanchez Rendón, J. C. (2020). Metodología para estimación de parámetros y validación de modelos matemáticos de procesos biotecnológicos. Master’s thesis, Universidad Nacional de Colombia-Sede Manizalesspa
dc.relation.referencesShokouhi, A., Raisi, A., Pazuki, G., y Aroujalian, A. (2016). Evaluation of thermodynamic models for prediction of sorption behavior into the polydimethylsiloxane membrane in pervaporation process. Chemical Engineering Communications, 203(1):8–17.spa
dc.relation.referencesSchaetzel, P., Vauclair, C., Nguyen, Q. T., y Bouzerar, R. (2004). A simplified solution– diffusion theory in pervaporation: the total solvent volume fraction model. Journal of Membrane Science, 244(1-2):117–127.spa
dc.relation.referencesSchiffmann, P. y Repke, J.-U. (2011). Design of pervaporation modules based on compu- tational process modelling. In Computer Aided Chemical Engineering, volume 29, pages 397–401. Elsevier.spa
dc.relation.referencesSelim, A., Tóth, A. J., Haáz, E., Fózer, D., y Mizsey, P. (2020). Comparison of single and double-network pva pervaporation performance: Effect of operating temperature. Periodica Polytechnica Chemical Engineering, 64(3):377–383.spa
dc.relation.referencesSmitha, B., Suhanya, D., Sridhar, S., y Ramakrishna, M. (2004). Separation of organic– organic mixtures by pervaporation—a review. Journal of membrane science, 241(1):1–21.spa
dc.relation.referencesSzilagyi, B. y Toth, A. J. (2020). Improvement of component flux estimating model for pervaporation processes. Membranes, 10(12):418.spa
dc.relation.referencesTamayo Arias, J. A., Higuita, J. C., López, M., y Ospina Martínez, V. (2016). Plan estra- tégico de ciencia, tecnología e innovación para el departamento de caldas.spa
dc.relation.referencesTaylor, R. y Krishna, R. (1993). Multicomponent mass transfer, volume 2. John Wiley & Sons.spa
dc.relation.referencesTusel, G. y Ballweg, A. (1983). Method and apparatus for dehydrating mixtures of organic liquids and water. US Patent 4,405,409.spa
dc.relation.referencesTang, J., Sirkar, K. K., y Majumdar, S. (2013). Permeation and sorption of organic solvents and separation of their mixtures through an amorphous perfluoropolymer membrane in pervaporation. Journal of membrane science, 447:345–354.spa
dc.relation.referencesUNCTAD (2016). United nations conference on trade and development: Second-generation biofuel markets: State of play, trade and developing country perspectives, avalia- ble: https://unctad.org/webflyer/second-generation-biofuel-markets-state-play-trade-and- developing-country-perspectives.spa
dc.relation.referencesUyazán, A., Gil, I., Aguilar, J., Rodríguez, G., y Caicedo, L. (2002). Producción de alcohol carburante por destilación azeotrópica homogénea con glicerina. Universidad Nacional de Colombia, Departamento de Ingeniería Química.spa
dc.relation.referencesVaghari, H., Eskandari, M., Sobhani, V., Berenjian, A., Song, Y., y Jafarizadeh-Malmiri, H. (2015). Process intensification for production and recovery of biological products. American Journal of Biochemistry & Biotechnology, 11(1):37.spa
dc.relation.referencesVan Baelen, D., Van der Bruggen, B., Van den Dungen, K., Degrève, J., y Vandecasteele, C. (2005). Pervaporation of water–alcohol mixtures and acetic acid–water mixtures. Chemical Engineering Science, 60(6):1583–1590.spa
dc.relation.referencesValentínyi, N. y Mizsey, P. (2014). Comparison of pervaporation models with simulation of hybrid separation processes. Periodica Polytechnica Chemical Engineering, 58(1):7–14.spa
dc.relation.referencesWang, Q., Li, N., Bolto, B., Hoang, M., y Xie, Z. (2016). Desalination by pervaporation: A review. Desalination, 387:46–60.spa
dc.relation.referencesWijmans, J. G. y Baker, R. W. (1995). The solution-diffusion model: a review. Journal of membrane science, 107(1-2):1–21.spa
dc.relation.referencesXu, D., Loo, L. S., y Wang, K. (2010). Pervaporation performance of novel chitosan-poss hybrid membranes: Effects of poss and operating conditions. Journal of Polymer Science Part B: Polymer Physics, 48(21):2185–2192.spa
dc.relation.referencesXue, C., Zhao, X.-Q., Liu, C.-G., Chen, L.-J., y Bai, F.-W. (2013). Prospective and deve- lopment of butanol as an advanced biofuel. Biotechnology advances, 31(8):1575–1584.spa
dc.relation.referencesYan, L., Edgar, T. F., y Baldea, M. (2018). Dynamic process intensification of binary distillation via periodic operation. Industrial & Engineering Chemistry Research.spa
dc.relation.referencesYen, H.-W., Lin, S.-F., y Yang, I.-K. (2012). Use of poly (ether-block-amide) in pervaporation coupling with a fermentor to enhance butanol production in the cultivation of clostridium acetobutylicum. Journal of bioscience and bioengineering, 113(3):372–377.spa
dc.relation.referencesZhao, C., Wu, H., Li, X., Pan, F., Li, Y., Zhao, J., Jiang, Z., Zhang, P., Cao, X., y Wang, B. (2013). High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol. Journal of membrane science, 429:409–417.spa
dc.relation.referencesZhang, W., Gomez, E. D., y Milner, S. T. (2017). Predicting flory-huggins χ from simulations. Physical review letters, 119(1):017801.spa
dc.relation.referencesZhao, Y., Inbar, P., Chokshi, H. P., Malick, A. W., y Choi, D. S. (2011). Prediction of the thermal phase diagram of amorphous solid dispespa
dc.relation.referencesZhao, Y., Inbar, P., Chokshi, H. P., Malick, A. W., y Choi, D. S. (2011). Prediction of the thermal phase diagram of amorphous solid dispersions by flory–huggins theory. Journal of pharmaceutical sciences, 100(8):3196–3207.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicosspa
dc.subject.proposalPervaporación dinámicaspa
dc.subject.proposalOperación periódicaspa
dc.subject.proposalModelado matemáticospa
dc.subject.proposalIntensificación de procesosspa
dc.subject.proposalDynamic pervaporationeng
dc.subject.proposalPeriodic operationspa
dc.subject.proposalMathematical modellingspa
dc.subject.proposalProcess intensificationeng
dc.subject.unescoIndustria químicaspa
dc.subject.unescoChemical industryeng
dc.titleDiseño y análisis de pervaporación dinámica para separación de etanol-aguaspa
dc.title.translatedDesign and analysis of dynamic pervaporation for ethanol-water separationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053844188.2021.pdf
Tamaño:
3.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: