Wigner-Weyl Quantum Entanglement

dc.contributor.advisorViviescas Ramírez, Carlos Leonardo
dc.contributor.authorMurillo Mejía, Miller Mateo
dc.contributor.researchgroupGrupo de Investigación: Caos y Complejidadspa
dc.date.accessioned2024-01-18T19:47:09Z
dc.date.available2024-01-18T19:47:09Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractIn this thesis, we describe the entanglement dynamics of a system of two particles interacting via a Toda potential in the Wigner-Weyl phase space representation of quantum mechanics. Firstly, we present the principal elements of the Wigner-Weyl representation of quantum mechanics, followed by the identifi cation and quanti fication of the entanglement of the two particle Toda system in the wave representation. Next, we consider some relevant approaches to classical descriptions of the entanglement dynamics, from which we inspire to describe the chaotic and regular dynamics of the Toda system in the phase space via the quantum Poincaré surface of section employing stationary Wigner functions, getting results in good agreement with the classical equivalent. Finally, we present the analysis and interpretation of entanglement dynamics measured with two entanglement measures in phase space. The fi rst one is the Wigner Separability Entropy, which hasn't been employed in a system as relevant as the Toda model, and we show that it is able to reproduce results in agreement with another entanglement measure, the Von Neumann entropy. The second one is the linear entropy in the Wigner-Weyl representation. This entanglement measure allowed us to analyze and describe elements of the entanglement dynamics as periodic behaviors based on the interpretation of the reduced Wigner function of the Toda system. (Texto tomado de la fuente)eng
dc.description.abstractEn esta tesis, describimos la dinámica de entrelazamiento de un sistema de dos partículas interactuando bajo un potencial tipo Toda en la representación de Wigner-Weyl de la mecánica cuántica. Para comenzar, se presentan los elementos principales de la representación de Wigner-Weyl de la mecánica cuántica, seguido por la identi ficación y cuanti ficación del entrelazamiento de las dos partículas en el sistema Toda en la representación ondulatoria. Posteriormente, se consideran aproximaciones relevantes a la descripción clásica de la dinámica de entrelazamiento, de donde nos inspiramos para describir la dinámica caótica y regular del sistema Toda en el espacio de fase a partir de las superficies de Poincaré cuánticas empleando funciones de Wigner estacionarias, obteniendo resultados comparables con los equivalentes clásicos. Finalmente, se presenta el análisis e interpretación de la dinámica de entrelazamiento medida empleando dos medidas de entrelazamiento en el espacio de fase. La primera medida es la entropía de separabilidad de Wigner, la cual no ha sido empleada en un sistema tan relevante como el modelo Toda, con la cual nosotros mostramos que es capaz de reproducir resultados comparables con otra medida de entrelazamiento, la entropía de Von Neumann. La segunda medida es la entropía lineal en la representación de Wigner-Weyl. Esta medida de entrelazamiento nos permitió analizar y describir elementos de la dinámica de entrelazamiento tales como comportamientos periódicos basándonos en la interpretación de la función de Wigner reducida del sistema Toda.spa
dc.description.degreelevelMaestríaspa
dc.description.researchareaTeoría del entrelazamiento cuánticospa
dc.format.extentxii, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85367
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesM. Mazzanti, R. X. Schüssler, J. D. Arias Espinoza, Z. Wu, R. Gerritsma, and A. Safavi-Naini. Trapped ion quantum computing using optical tweezers and electric fields. Phys. Rev. Lett., 127(260502), 2021.spa
dc.relation.referencesX. Pan, Y. Zhou and H. Yuan. Engineering superconducting qubits to reduce quasiparticles and charge noise. Nat Commun, 13(7196), 2021.spa
dc.relation.referencesL.S. Madsen, F. Laudenbach, M.F. Askarani, et al. Quantum computational advantage with a programmable photonic processor. Nature, 606:75-81, 2022.spa
dc.relation.referencesD. Bluvstein, H. Levine, G. Semeghini, et al. A quantum processor based on coherent transport of entangled atom arrays. Nature, 604:451-456, 2022.spa
dc.relation.referencesA. Y. Khrennikov. Echoing the recent google success: Foundational roots of quantum supremacy. ArXiv, abs/1911.10337, 2019.spa
dc.relation.referencesJ.J. Sakurai. Modern Quantum Mechanics. Addison-Wesley, 1994.spa
dc.relation.referencesA. Buchleitner, C. Viviescas and M. Tiersch. Entanglement and Decoherence: Foundations and Modern Trends. Springer, Berlin Heidelberg, 2009.spa
dc.relation.referencesD. Gross, S. T. Flammia, and J. Eisert. Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett., 102(190501), 2022.spa
dc.relation.referencesV. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knght. Quantifying entanglement. Phys. Rev. Lett., 78(2275), 1997.spa
dc.relation.referencesG. Manfredi & M. R. Feix. Entropy and wigner functions. Phys. Rev. E., 62(4), 2000.spa
dc.relation.referencesD. James, P. Kwiat, W. Munro, and A. White. Measurement of qubits. Phys. Rev. A., 64(052312), 2001.spa
dc.relation.referencesG. Sentís, C. Eltschka, O. Gühne, M. Huber, and J. Siewert. Quantifying entanglement of maximal dimension in bipartite mixed states. Phys. Rev. Lett., 117(190502), 2016.spa
dc.relation.referencesC. Zhang Y. Huang C. Li G. Guo S. Xie, Y. Zhao and J. H. Eberly. Experimental examination of entanglement estimates. Phys. Rev. Lett., 130(150801), 2023.spa
dc.relation.referencesJ. S. Moreno. Semiclassical propagators of wigner function: a comparative study, 2020.spa
dc.relation.referencesT. Dittrich. Semiclassical propagator of the wigner function. Phys. Rev. Lett., 96(070403), 2006.spa
dc.relation.referencesG. Casati, I. Guarneri, & J. Reslen. Classical dynamics of quantum entanglement. Phys. Rev. E., 85(036208), 2012.spa
dc.relation.referencesT. Prosen. Complexity and nonseparability of classical liouvillian dynamics. Phys. Rev. E., 83(031124), 2011.spa
dc.relation.referencesJ. V. José & E. J. Saletan. Classical Dynamics a contemporary approach. Cambridge University Press, 1998.spa
dc.relation.referencesW. P. Schleich. Quantum Optics in Phase Space. Wiley-VCH., Germany, 2001.spa
dc.relation.referencesG. Benenti, G. G. Carlo and T. Prosen. Wigner separability entropy and complexity of quantum dynamics. Phys. Rev. E., 85(051129), 2012.spa
dc.relation.referencesP. D. Bergamasco, G. G. Carlo and A. M. F. Rivas. Quantum and classical complexity in coupled maps. Phys. Rev. E., 96(062144), 2017.spa
dc.relation.referencesP. D. Bergamasco, G. G. Carlo and A. M. F. Rivas. Out-of-time ordered correlators, complexity, and entropy in bipartite systems. Physical Review Research, 1(033044), 2019.spa
dc.relation.referencesJ. Gong & P. Brumer. Intrinsic decoherence dynamics in smooth hamiltonian systems: Quantum-classical correspondence. Phys. Rev. A., 68(022101), 2003.spa
dc.relation.referencesC. Miquel, J. Paz and M. Saraceno. Quantum computers in phase space. Phys. Rev. A., 65(062309), 2002.spa
dc.relation.referencesS. Keppeler & M. Fysik. Introduction to Wigner-Weyl calculus. 2004.spa
dc.relation.referencesD.F. Walls & G. J. Milburn. Quantum Optics. Springer, Germany, 2008.spa
dc.relation.referencesW. K. Wootters. A wigner function formulation of finite state quantum mechanics. Annals of Physics, 176:1-21, 1987.spa
dc.relation.referencesW. B. Case. Wigner functions and weyl transforms for pedestrians. Am. J. Phys., 76(937), 2008.spa
dc.relation.referencesR. L. Hudson. When is the wigner quasi-probability non-negative? Reports On Mathematical Physics, 6(2), 1974.spa
dc.relation.referencesA. Kenfack & K. Życzkowski. Negativity of the wigner function as an indicator of nonclassicality. Nature, 6:396-404, 2004.spa
dc.relation.referencesI. I. Arkhipov, A. Barasiński and J. Svozilík. Negativity volume of the generalized wigner function as an entanglement witness for hybrid bipartite states. Nature, 8(16955), 2018.spa
dc.relation.referencesL. E. Ballentine. Quantum Mechanics A modern development. World Scienti c Publishing Co. Pte. Ltd., Singapore, 2000.spa
dc.relation.referencesR. Cabrera, D. I. Bondar, K. Jacobs, and H. A. Rabitz. Efficient method to generate time evolution of the wigner function for open quantum systems. Phys. Rev. A., 92(042122), 2015.spa
dc.relation.referencesA. Ekert & P. L. Knight. Entangled quantum systems and the schmidt decomposition. Am. J. Phys., 63(415), 1995.spa
dc.relation.referencesR. Simon. Peres horodecki separability criterion for continuous variables systems. Phys. Rev. Lett., 84(12), 2000.spa
dc.relation.referencesB. Bergh & M. Gärttner. Entanglement detection in quantum many-body systems using entropic uncertainty relations. Phys. Rev. A., 103(052412), 2021.spa
dc.relation.referencesW. H. Zurek, S. Habib, and J. P. Paz. Coherent states via decoherence. Phys. Rev. Lett., 70(9), 1993.spa
dc.relation.referencesH. P. Robertson. The uncertainty principle. Phys. Rev., 34(163), 1929.spa
dc.relation.referencesL. Y. Chew & N. N. Chung. The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems. Acta Physica Polonica A, 120(6A), 2011.spa
dc.relation.referencesM. Gutzwiller. The quantum mechanical toda lattice, ii. Annals of Physics, 133(2), 1981.spa
dc.relation.referencesB. Doyon. Generalized hydrodynamics of the classical toda system. Journal of Mathematical Physics, 60(073302), 2019.spa
dc.relation.referencesM. Cusveller. Soliton computing in the toda lattice: controllable delay and logic gates, 2021.spa
dc.relation.referencesS. K. Gray, D. W. Noid and B. G. Sumpter. Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods. The Journal of Chemical Physics, 101(4062), 1994.spa
dc.relation.referencesH. Yoshida. Construction of higher order symplectic integrators. Phys. Lett. A., 150(5,6,7), 1990.spa
dc.relation.referencesE. Ott. Chaos in Dynamical Systems. Cambridge University Press, 2002.spa
dc.relation.referencesH. Goldstein, C. Poole and J. Safko. Classical Mechanics. Addison Wesley, 2001.spa
dc.relation.referencesW. W. Ho and D. A. Abanin. Entanglement dynamics in quantum many-body systems. Phys. Rev. B., 95(094302), 2017.spa
dc.relation.referencesA. Lerose & S. Pappalardi. Bridging entanglement dynamics and chaos in semiclassical systems. Phys. Rev. A., 102(032404), 2020.spa
dc.relation.referencesJ. N. Bandyopadhyay & A. Lakshminarayan. Testing statistical bounds on entanglement using quantum chaos. Phys. Rev. Lett., 89(6), 2002.spa
dc.relation.referencesT. Nishioka. Entanglement entropy: Holography and renormalization group. Reviews of Modern Physics, 90, 2018.spa
dc.relation.referencesF. Xu, C. C. Martens and Y. Zheng. Entanglement dynamics with a trajectory-based formulation. Phys. Rev. A., 96(022138), 2017.spa
dc.relation.referencesZ. Zhou J. Tan, Y. Luo and W. Hai. Combined effect of classical chaos and quantum resonance on entanglement dynamics. Chin. Phys. Lett, 33(7), 2016.spa
dc.relation.referencesM. A. Nielsen & I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, United Kingdom, 2000.spa
dc.relation.referencesL. E. Reichl. The transition to chaos: conservative classical systems and quantum manifestations. Springer, 2004.spa
dc.relation.referencesG. Casati and F. Haake. Encyclopedia of Condensed Matter Physics: Nonlinear Dynamics and Nonlinear Dynamical Systems. Elsevier, 2005.spa
dc.relation.referencesF. Haake. Quantum Signatures of Chaos. Springer, 2010.spa
dc.relation.referencesP. Leboeuf & M. Saraceno. Eigenfunctions of non-integrable systems in generalised phase spaces. J. Phys. A: Math. Gen., 23:1745-1764, 1990.spa
dc.relation.referencesP. A. Dando & T. S. Monteiro. Quantum surfaces of section for the diamagnetic hydrogen atom: Husimi functions versus wigner functions. J. Phys. B: At. Mol. Opt. Phys, 27:2681-2692, 1994.spa
dc.relation.referencesH. S. Qureshi, S. Ullah and F. Ghafoor. Hierarchy of quantum correlations using a linear beam splitter. Scienti c Reports, 8(16288), 2018.spa
dc.relation.referencesN. L. Balazs & A. Voros. The quantized baker's transformation. Annals of Physics, 190:1-31, 1989.spa
dc.relation.referencesA. Argüelles & T. Dittrich. Wigner function for discrete phase space: Exorcising ghost images. Physica A: Statistical Mechanics and its Applications, 356(1):72{77, 2005.spa
dc.relation.referencesA. Argüelles. Construcción de la función de wigner para espacios de fases discretos, 2004.spa
dc.relation.referencesY. A. Kravtsov & Y. I. Orlov. Caustics, Catastrophes and Wave Fields. Springer, 1993.spa
dc.relation.referencesJ. P. Gazeau. Coherent States in Quantum Physics. Wiley-VCH, 2009.spa
dc.relation.referencesD. J. Tannor. Introduction to Quantum Mechanics. University Science Books, United Sates of America, 2007.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembPartículasspa
dc.subject.lembParticlesrng
dc.subject.lembFuerzas nucleares (física)spa
dc.subject.lembNuclear fuel elementseng
dc.subject.proposalquantum phase spaceeng
dc.subject.proposalQuantum entanglementeng
dc.subject.proposalToda modeleng
dc.subject.proposalWigner functioneng
dc.subject.proposalQuantum Poincaré surface of sectioneng
dc.subject.proposalEspacio de fase cuánticospa
dc.subject.proposalEntrelazamiento cuánticospa
dc.subject.proposalModelo Todaspa
dc.subject.proposalFunción de Wignerspa
dc.subject.proposalSecciones de Poincaré cuánticasspa
dc.titleWigner-Weyl Quantum Entanglementeng
dc.title.translatedEntrelazamiento cuántico de Wigner-Weylspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012404530.2023.pdf
Tamaño:
45.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: