Evaluación de la adherencia entre un concreto activado alcalinamente con base en ceniza volante de carbón y el acero de refuerzo grado 60

dc.contributor.advisorHoyos Montilla, Ary Alain
dc.contributor.advisorTobón, Jorge Iván
dc.contributor.authorRua Patiño, Robinson Fernando
dc.contributor.cvlacRua Patiño, Robinson Fernando [0001595541]spa
dc.contributor.orcidRua Patiño, Robinson Fernando [0000-0003-0431-8625]spa
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcciónspa
dc.coverage.countryColombia
dc.date.accessioned2023-11-27T14:06:21Z
dc.date.available2023-11-27T14:06:21Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn la búsqueda de la mejora del concreto armado por parte de la industria de la construcción y la comunidad científica, surgen los cementos activados alcalinamente como una propuesta de material cementante. Este tipo de concreto presenta buenas propiedades de durabilidad y mecánicas. Sin embargo, todavía existen interrogantes en torno a la adherencia y la funcionalidad de su zona adherente. En esta tesis se estudió la adherencia entre un micro-concreto activado alcalinamente (AAMH) con base en ceniza volante y la matriz de acero. Para la investigación se realizó un diseño de experimentos factorial combinado, donde el primer factor es el espesor de la matriz circundante y sus dos niveles son 31,7 mm y 44,4 mm. De acuerdo con la literatura consultada, los dos niveles, corresponden a 4,9 veces el diámetro de la barra (Φ), que es el espesor mínimo de la matriz de concreto circundante, para que exista la zona adherente y el elemento no falle por splitting. El segundo nivel es 6,9 veces el diámetro de la barra (Φ), que corresponde a la zona media del espesor de la matriz circundante [1]. El segundo factor es la relación sílice – alúmina y sus niveles son 3,06; 4,06; 5,06; que son los valores de un intervalo de resultados que reporta la literatura. La sílice/alúmina que es de 3,06 corresponde a la cantidad de sílice reactiva que contiene la ceniza volante al solo ser activada con el precursor de hidróxido de sodio, las otras dos sílice/alúmina 4,06 y 5,06; se aumentan en el sistema por medio de la mezcla del precursor de hidróxido de sodio con silicato de sodio, donde este último reactivo aumenta la cantidad de sílice en las muestras [2], [3], [4]. El aumento de la sílice/alúmina en las muestras, aumenta directamente con la relación del Silicato de sodio-Hidróxido de sodio. Esta última relación de los precursores la cual es la encargada de variar el contenido de la sílice en el sistema de las muestras a lo largo del documento se identificará como el factor R. La sílice/alúmina (1) corresponde solo a la cantidad de Sílice y alúmina reactiva que contiene la ceniza volante. La ceniza se activada por medio del precursor hidróxido de sodio. La sílice/alúmina (2), (3) se les vario el contenido de la sílice en el sistema de las muestras, esta se hizo aumentando el factor R de las muestras, hasta alcanzar los valores que son objeto del estudio en esta tesis. Sílice alúmina (1) = 3,06 → Silicato de sodio Hidroxido de sodio (1) = 0,00 ; Sílice alúmina (2) = 4,06 → Silicato de sodio Hidroxido de sodio (2) = 0,53; Sílice alúmina (3) = 5,06 → Silicato de sodio Hidroxido de sodio (3) = 1,06. Los resultados muestran que el aumento de la cantidad de sílice en estos cementos permite un refinamiento de poros en los micro-concretos, que, a su vez, mejoran sus propiedades mecánicas. Una explicación a las variaciones en las propiedades mecánicas y microestructurales es que el contenido de sílice y la presencia del hidróxido de calcio, favorecen, respectivamente, los procesos de formación de los geles de Aluminosilicato de Sodio Hidratado (N-A-S-H) y Aluminosilicato de Calcio Hidratado (C-A-S-H). La literatura encontrada plantea que, al aumentar el espesor de la matriz circundante de concreto, se aumenta la resistencia a la tracción, dado que el esfuerzo de compresión radial que se genera por la matriz de concreto sobre la matriz de acero aumenta la fuerza de resistencia al arrancamiento. Los resultados obtenidos permiten inferir que si la matriz de concreto es suficientemente densa y poco porosa por el enriquecimiento de sílice que favorece la formación de los geles N-A-S-H y C-A-S-H, que aumenta las fuerzas de cohesión, la adherencia mejora independientemente del espesor de la matriz circundante.(Texto tomado de la fuente)spa
dc.description.abstractIn the search for the improvement of reinforced concrete by the construction industry and the scientific community, alkaline-activated cements emerge as a proposal for cementing material. This type of concrete has good durability and mechanical properties. However, there are still questions about the adherence and functionality of its adhesive zone. In this thesis, the adherence between an alkaline activated micro-concrete (AAMH) based on fly ash and the steel matrix was studied. For the research, a combined factorial design of experiments was carried out, where the first factor is the thickness of the surrounding matrix, and its two levels are 31.7 mm and 44.4 mm. According to the literature consulted, the two levels correspond to 4.9 times the diameter of the bar (Φ), which is the minimum thickness of the surrounding concrete matrix, so that the adherent zone exists, and the element does not fail due to splitting. The second level is 6.9 times the diameter of the bar (Φ), which corresponds to the middle of the thickness of the surrounding matrix [1]. The second factor is the silica-alumina ratio and its levels are 3.06; 4.06; 5.06; which are the values of an interval of results reported in the literature. The silica / alumina which is 3.06 corresponds to the amount of reactive silica that the fly ash contains when it is only activated with the sodium hydroxide precursor, the other two silica / alumina 4.06 and 5.06; they are increased in the system by mixing the sodium hydroxide precursor with sodium silicate, where the latter reagent increases the amount of silica in the samples [2], [3], [4]. The increase in silica / alumina in the samples increases directly with the ratio of Sodium Silicate-Sodium Hydroxide. This last relationship of the precursors which is responsible for varying the content of silica in the sample system throughout the document will be identified as the R factor. Silica / alumina (1) corresponds only to the amount of Silica and reactive alumina containing fly ash. The ash is activated by means of the sodium hydroxide precursor. The silica / alumina (2), (3) the silica content in the sample system was varied, this was done by increasing the R factor of the samples, until reaching the values that are the object of the study in this thesis. Sílica alumina (1) = 3,06 → Sodium silicate Sodium hydroxide (1) = 0,00 ; Sílica alumina (2) = 4,06 → Sodium silicate Sodium hydroxide (2) = 0,53; Sílica alumina (3) = 5,06 → Sodium silicate Sodium hydroxide (3) = 1,06. The results show that the increase in the amount of silica in these cements allows a refinement of pores in the micro-concretes, which in turn, improves their mechanical properties. One explanation for the variations in mechanical and microstructural properties is that the silica content and the presence of calcium hydroxide favor, respectively, the formation processes of hydrated Sodium Aluminosilicate (NASH) and Hydrated Calcium Aluminosilicate gels (CASH). The literature found proposes that by increasing the thickness of the surrounding concrete matrix, the tensile strength is increased, since the radial compression stress that is generated by the concrete matrix on the steel matrix increases the resistance force. To plucking. The results obtained allow us to infer that if the concrete matrix is sufficiently dense and not very porous due to the enrichment of silica that favors the formation of the NASH and CASH gels, which increases the cohesion forces, the adherence improves regardless of the thickness of the surrounding matrix.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaAdherencia en Concretos activados alcalinamente base ceniza volantespa
dc.format.extentxv, 72 páginaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84961
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesG. P. Gambarova P. G., Rosati, “Bond and splitting in bar pull-out: behavioural laws. Magazine of Concrete Research,” . Mag. Concr. Res., vol. 49, no. 179, pp. 99–110, 1997.spa
dc.relation.referencesM. J. A. Mijarsh, M. A. Megat Johari, and Z. A. Ahmad, “Compressive strength of treated palm oil fuel ash based geopolymer mortar containing calcium hydroxide, aluminum hydroxide and silica fume as mineral additives,” Cem. Concr. Compos., vol. 60, pp. 65–81, Jul. 2015.spa
dc.relation.referencesT. Xie, P. Visintin, X. Zhao, and R. Gravina, “Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach,” Constr. Build. Mater., vol. 256, p. 119380, 2020.spa
dc.relation.referencesF. Guo, J. Pei, J. Zhang, B. Xue, G. Sun, and R. Li, “Study on the adhesion property between asphalt binder and aggregate: A state-of-the-art review,” Constr. Build. Mater., vol. 256, p. 119474, 2020.spa
dc.relation.referencesA. Alain, “Evolución de la reacción y estructura del sistema portlandita - ceniza volante de carbón activado alcalinamente,” p. 155, 2018.spa
dc.relation.referencesG. Metelli and G. A. Plizzari, “Influence of the relative rib area on bond behaviour,” Mag. Concr. Res., vol. 66, no. 6, pp. 277–294, 2014.spa
dc.relation.referencesM. M. Huelva, “propuesta de un modelo de evaluación estruct ...,” no. January 2005, 2015.spa
dc.relation.referencesD. L. L. Segrera, J. Oliver, and A. E. Huespe, “Simulación numérica del proceso de fractura en concreto reforzado mediante la metodología de discontinuidades fuertes de continuo. Parte II: Aplicación a páneles sometidos a cortante,” Ing. e Investig., vol. 30, no. 3, pp. 16–26, 2010.spa
dc.relation.referencesL. P. Güereca, “Evaluación comparativa de los impactos ambientales de la producción de clínker con combustible fósil frente a combustible derivado de los residuos municipales,” Gac. del Inst. Ing., pp. 2010–2013, 2013.spa
dc.relation.referencesIDEAM, Y Departamental De Gases Efecto Invernadero - De Gases Efecto. 2016.spa
dc.relation.referencesM. Morales, “Universidad San Pedro Filial - Sullana,” p. 80, 2018.spa
dc.relation.referencesJ. Ignacio and D. Orso, “LAS MEZCLAS DE CONCRETO HIDRÁULICO CON ADITIVOS INCLUSORES DE AIRE ‘CENIZAS VOLANTES,’” 2016.spa
dc.relation.referencesA. Castel and S. J. Foster, “Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement,” Cem. Concr. Res., vol. 72, pp. 48–53, 2015.spa
dc.relation.referencesG. Xu and X. Shi, “Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review,” Resour. Conserv. Recycl., vol. 136, no. April, pp. 95–109, 2018.spa
dc.relation.referencesAmerican Society for Testing and Materials, “ASTM C136-14_Método de prueba estándar para la determinación granulométrica de agregados finos y gruesos,” Annu. B. ASTM Stand., pp. 3–7, 2014.spa
dc.relation.referencesP. Lorca Aranda, “‘Efecto de la Adición de Hidróxido Cálcico sobre Mezclas con Alta Sustitución de Cemento por Ceniza Volante,’” 2015.spa
dc.relation.referencesA. Hassan, M. Arif, and M. Shariq, “Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure,” J. Clean. Prod., vol. 223, pp. 704–728, 2019.spa
dc.relation.referencesN. Dominguez Ramirez, “La adherencia en el concreto reforzado : breve revisión histórica de la investigación del fenómeno Steel-concrete bonding phenomenon : a brief review of the phenomenon ’ s research,” Investig. y Ciencia21, vol. 21, pp. 61–72, 2013.spa
dc.relation.referencesV. Bilek, S. Bonczková, J. Hurta, D. Pytlík, and M. Mrovec, “Bond Strength between Reinforcing Steel and Different Types of Concrete,” Procedia Eng., vol. 190, pp. 243–247, 2017.spa
dc.relation.referencesM. Molina, J. P. Gutiérrez, and M. D. García, “Influencia del diámetro de la barra y del recubrimiento en las características adherentes del hormigón armado,” Bol. la Soc. Esp. Ceram. y Vidr., vol. 43, no. 2, pp. 560–564, 2004.spa
dc.relation.referencesD. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan, “On the development of fly ash-based geopolymer concrete,” ACI Mater. J., vol. 101, no. 6, pp. 467–472, 2004.spa
dc.relation.referencesA. Hassan, M. Arif, and M. Shariq, “A review of properties and behaviour of reinforced geopolymer concrete structural elements- A clean technology option for sustainable development,” J. Clean. Prod., vol. 245, 2020.spa
dc.relation.referencesL. Lemnitzer, S. Schröder, A. Lindorf, and M. Curbach, “Bond behaviour between reinforcing steel and concrete under multiaxial loading conditions in concrete containments,” React. Technol., no. SMiRT 20, pp. 1–12, 2009.spa
dc.relation.referencesG. REHM, “No TitleThe fundamental law of bond,” in Proceedings of the Symposium on Bond and Crack Formation in Reinforced Concrete, Stockholm, 1958.spa
dc.relation.referencesG. REHM, The basic principle of bond between steel and concrete., Deustcher. Biblioteca C&CA, 1968.spa
dc.relation.referencesLUTZ, L. A., GERGELY, P., WINTER, G., “No TitleThe mechanics of bond and slip of deformed reinforcing bars in concrete.,” Struct. Eng. Rep., vol. 324, 1966.spa
dc.relation.referencesM. M. Huelva, “Propuesta De Un Modelo De Evaluación Estruct ...,” no. January 2005, 2015.spa
dc.relation.referencesTepfers, “TepfersDrThesis,” A BONUS THEORY Appl. TO SUPERPOSED Tens. Reinf. POWER Deform. BARS, p. 330, 1973.spa
dc.relation.referencesR. Eligehausen, E. P. Popov, and V. V. Bertéro, “Local bond stress-slip relationship of ribbed bars under generalized excitations,” 1979.spa
dc.relation.referencesV. V. ELIGEHAUSEN, R., POPOV, E. P. BERTERO, “Local bond stress-slip relationships of deformed bars under generalized excitations,” Univ. Calif., vol. UCB/EERC-8, 1983.spa
dc.relation.referencesV. González Fernández, Á. Barrios-Padura, and M. Molina-Huelva, “Aplicaciones de las técnicas no destructivas Pull-Off y ultrasonidos en el control de calidad del refuerzo con materiales compuestos en estructuras de concreto,” Cienc. e Ing. Neogranadina, vol. 28, no. 1, pp. 5–26, Mar. 2018.spa
dc.relation.referencesR. EliGEHAUSEN, E. P. POPOV, and Vite. V. BERTERO, “CONICET_Digital_Nro.16669,” LOCAL Bond Stress. RELATIONSHIPS Deform. BARS UNDER Gen. Excit., p. 180.spa
dc.relation.referencesR. Tepfers and P.-A. Olsson, “Ring test for evaluation of bond properties of reinforcing bars,” Bond Concr. - From Res. to Pract. Riga, Latv., vol. 1, pp. 89–99, 1992.spa
dc.relation.referencesR. Eligehausen, E. P. Popov, and V. V. Bertero, “Local Bond Stress-Slip Relationships of Deformed Bars Under Generalized Excitations.,” vol. 4, pp. 69–80, 1982.spa
dc.relation.referencesP. LUTZ, L. A., GERGELY, “Mechanics of bond and slip of deformed bars in concrete,” ACI Struct. J., vol. 64 (11), pp. 711–721, 1967.spa
dc.relation.referencesGOTO, “Cracks formed in concrete around tension bars,” ACI J., vol. 68(4), pp. 244–251, 1971.spa
dc.relation.referencesM. Raous and M. A. Karray, “Model coupling friction and adhesion for steel-concrete interfaces,” Int. J. Comput. Appl. Technol., vol. 34, no. 1, pp. 42–51, 2009.spa
dc.relation.referencesM. A. Eyre J. R., Nokhasteh, “Strength assessment of corrosion damaged reinforced concrete slabs and beams.,” Proc. Inst. Civ. Eng. Struct. Build., vol. 94, pp. 197-203., 1992.spa
dc.relation.referencesZ. P. Bažant, Z. Li, and M. Thoma, “Identification of stress-slip law for bar or fiber pullout by size effect tests,” J. Eng. Mech., vol. 121, no. 5, pp. 620–625, 1995.spa
dc.relation.referencesC. J., “Alternative strategies for temporary support during structural repair of reinforced-concrete beams.,” J. Struct. Eng., vol. 122, pp. 238–246, 1996.spa
dc.relation.referencesL. Z. Raoof M., “Structural characteristics of RC beams with exposed main steel,” Proc. Inst. Civ. Eng., vol. 122, pp. 35–51, 1996.spa
dc.relation.referencesK. LUNDGREN, “Three-dimensional modelling of bond in reinforced concrete,” University of Technology, 1999.spa
dc.relation.referencesK. LUNDGREN, “Pull-out tests of steel-encased speci-mens subjected to reversed cyclic loading,” Mater. Struct., 2000.spa
dc.relation.referencesD. ZUO, J., DARWIN, “Bond slip of high relative rib area bars under cyclic loading.,” ACI Struct. J., vol. 97(2), pp. 331–334, 2000.spa
dc.relation.referencesG. L. KOCH, R. G., BALAZS, “Limit states for long term and cyclic loading. ‘Bond in concrete,’” Conf. held Budapest Univ. Techno logy Econ., vol. 211, pp. 220, 2002, 2002.spa
dc.relation.referencesB. H. Oh, O. C. Choi, L. Chung, and Korea Concrete Institute., Fracture mechanics of concrete and concrete structures : proceedings of the 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Jeju, Korea, May 23-28, 2010.spa
dc.relation.referencesM. Molina, J. P. Gutiérrez, and M. D. García, “Influencia del diámetro de la barra y del recubrimiento en las características adherentes del hormigón armado,” in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 2004, vol. 43, no. 2, pp. 560–564.spa
dc.relation.referencesS. Hong and S. K. Park, “Uniaxial bond stress-slip relationship of reinforcing bars in concrete,” Adv. Mater. Sci. Eng., vol. 2012, 2012.spa
dc.relation.referencesP. K. Sarker, “Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete,” Mater. Struct. Constr., vol. 44, no. 5, pp. 1021–1030, 2011.spa
dc.relation.referencesH. Costa, “La unión entre el hormigón alcalino activado y del Acero,” 2014.spa
dc.relation.referencesH. Y. Zhang, V. Kodur, B. Wu, J. Yan, and Z. S. Yuan, “Effect of temperature on bond characteristics of geopolymer concrete,” Constr. Build. Mater., vol. 163, pp. 277–285, 2018.spa
dc.relation.referencesS. Steel and R. Alloys, “Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete,” pp. 1–7, 2014.spa
dc.relation.referencesAstm, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use,” Annu. B. ASTM Stand., no. C, pp. 3–6, 2010.spa
dc.relation.referencesA. Guriérrez Torres, “Obtención Y Caracterización De Geopolímeros Sintetizados a Partir De La Escoria Granulada De Alto Horno Como Uso Alternativo Del Cemento Portland,” p. 258, 2017.spa
dc.relation.referencesJ. Of, S. Engineering, and M. Sciences, “Advanced Search http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JSEN...,” vol. 9445, no. August, p. 2007, 2007spa
dc.relation.referencesB. V. Silva, M. P. Barbosa, L. C. P. Silva Filho, and M. S. Lorrain, “Experimental investigation on the use of steel-concrete bond tests for estimating axial compressive strength of concrete. Part 2: APULOT,” Rev. IBRACON Estruturas e Mater., vol. 7, no. 5, pp. 856–878, 2014.spa
dc.relation.referencesASTM, “Standard test method for pullout strenght of hardened concrete ASTM C 900,” Am. Soc. Test. Mater., no. 1, pp. 1–10, 2013.spa
dc.relation.referencesK. S. Kotova and G. S. Slavcheva, “Composite materials cohesion parameters,” IOP Conf. Ser. Mater. Sci. Eng., vol. 489, no. 1, 2019.spa
dc.relation.referencesA 615/A 615M – 12, “Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement,” Astm, p. 6, 2012.spa
dc.relation.referencesASTM International, “Astm C188-17,” Annu. B. ASTM Stand., pp. 1–3, 2017.spa
dc.relation.referencesC204-18, “Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability,” ASTM Int., pp. 1–11, 2019.spa
dc.relation.referencesASTM, “ASTM: Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal 1,” ASTM Int., vol. 05, no. Reapproved 2018, pp. 1–6, 2002.spa
dc.relation.referencesASTM, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars ( Using 2-in . or [ 50-mm ] Cube Specimens ) 1,” Chem. Anal., vol. 04, no. C109/C109M – 11b, pp. 1–9, 2010.spa
dc.relation.referencesAmerican Society for Testing and Materials (ASTM), “Standard Test Method for Pullout Strength of Hardened Concrete 1,” Astm C900, no. 5, pp. 1–10, 2015.spa
dc.relation.referencesA. Mu, “ANÁLISIS DE LA RESISTENCIA A LA COMPRESIÓN F´c DEL CONCRETO HIDRÁULICO ADICIONADO CON SILICATO DE SODIO, MEDIANTE ENSAYOS DE MADUREZ Y RESISTENCIA A LA COMPRESIÓN.,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.spa
dc.relation.referencesAmerican Society for Testing and Materials International, “American Society for Testing and Materials. ASTM C128: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,” ASTM Int., vol. i, p. 6, 2015.spa
dc.relation.referencesAstm:C29/C29M-09, “Standard Test Method for Bulk Density (‘ Unit Weight ’) and Voids in Aggregate,” ASTM Int., vol. i, no. c, pp. 1–5, 2009.spa
dc.relation.referencesASTM, “ASTM C566-19_Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying,” Annu. B. ASTM Stand., pp. 5–7, 2019.spa
dc.relation.referencesASTM C143/C143M, “Standard Test Method for Slump of Hydraulic-Cement Concrete,” Astm C143, no. 1, pp. 1–4, 2015.spa
dc.relation.referencesG. Guevara Fallas, C. Hidalgo Madrigal, M. Pizarro García, I. Rodríguez Valenciano, L. D. Rojas Vega, and G. Segura Guzmán, “Efecto de la variación agua/cemento en el concreto,” Rev. Tecnol. en Marcha, vol. 25, no. 2, p. 80, 2012.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.lembMateriales de construcciónspa
dc.subject.lembBuilding materialseng
dc.subject.proposalAdherenciaspa
dc.subject.proposalEnsayo mecánico de arrancamientospa
dc.subject.proposalCementos activados alcalinamentespa
dc.subject.proposalCeniza volante de carbónspa
dc.subject.proposalMicro-concreto activado alcalinamentespa
dc.subject.proposalBond, Mechanical pull-out testeng
dc.subject.proposalAlkaline activated cementseng
dc.subject.proposalCarbon fly asheng
dc.subject.proposalAlkaline-activated micro-concreteeng
dc.titleEvaluación de la adherencia entre un concreto activado alcalinamente con base en ceniza volante de carbón y el acero de refuerzo grado 60spa
dc.title.translatedEvaluation of the adhesion between an alkaline activated concrete based on coal fly ash and grade 60 reinforcing steeleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis MSc Robinson Fernando Rua P..pdf
Tamaño:
2.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: