Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)

dc.contributor.advisorGuerrero González, Neil
dc.contributor.advisorGarcia-Alvarez, Julio Cesar
dc.contributor.authorHenao Ríos, José León
dc.contributor.orcidHenao Rios, Jose Leon [0000-0002-3119-9775]spa
dc.contributor.researchgroupPropagación Electromagnética Aplicada (Propela)spa
dc.date.accessioned2023-01-30T20:53:37Z
dc.date.available2023-01-30T20:53:37Z
dc.date.issued2021
dc.descriptiongraficas, tablasspa
dc.description.abstractThis thesis presents an investigation of the different formats and modulation methods used in Optical Wireless Communications (OWC), specifically in Visible Light Communications (VLC), using solid-state lighting devices (SSL). The final objective is to propose, model and validate an adaptive spatial (three-dimensional) modulation scheme that allows the optimization of the effective bandwidth through the use of power RGB LEDs. Initially, a taxonomy of the different technologies and possible uses of OWC communications is made in order to identify their functionalities and characteristics. From this classification, the challenges presented by visible light communications for indoor use also called VLC (which is within the OWC category), were identified, as well as the different modulation formats used in it. Once the above has been determined, a review of the state of the art for each of the identified challenges is made, and the contribution that was made to solve this particular challenge (if applicable) during the course of the Doctoral process and that made it possible to reach the proposed solution. In section 3, the underlying theory of LEDs is shown, which are a fundamental part of VLC systems. Based on the electrical model, the equations that allow characterizing relevant aspects such as electrical bandwidth, optical bandwidth, radiation patterns, and optical power are determined. Finally, the experimental characterization (laboratory measurements) of the RGB LED device used to implement the final proposal of this thesis is presented. Section 4 presents an overview of different baseband digital modulation formats used in VLC systems. Some of these formats allow lighting control by themselves, or in conjunction with techniques such as PWM or current injection (I-bias). In subsection 4.4, the work carried out during the development of this research process is exposed in detail using some modulation formats presented in the previous subsections and which allow solving the lighting control problem by keeping constant the transmission speed of data. The aforementioned works, achieved a constant transmission rate of $6$ Kbps using a codification that combines in the same bit frame PWM modulation for brightness control and M-PPM coding for the creation of data words, the transmitter was implemented with two 10W RGB LEDs located 0.9 meters from the receiver (Texas Instruments OPT101 photo-detector), and a range of illumination was obtained between 25% to 85% of the possible light power of the LED sources. Similarly, a second work implements a Differential Manchester-PWM hybrid differential encoding for data transmission and brightness control in a real-time system, the proposed digital modulation allows simultaneous control of brightness while maintaining data transmission with a constant rate of 50 Kbps using three 10 W white LEDs at a distance of 0.9 meters, and a brightness range between 10% and 90% of the maximum luminous flux of the LED sources. It should be noted that these proposed hybrid encodings are self-authored and to the best of our knowledge, had not been presented prior to publication and submission to IEEE Latin America and COLCOM 2020 respectively. Given the good results obtained in the previously presented works, we focused on optimizing the available bandwidth, taking into account that in an RGB LED, three transmission sources are available (one for each color) similar to the WDM technique (wavelength division multiplexing). In the first instance, OFDM (Orthogonal Frequency Division Multiplexing) multicarrier modulation was used and it was determined by means of simulations which were the most efficient coding schemes taking the Bit Error Rate (BER) as a reference. Next, it was explored which was the best way to segment the information in order to be transmitted through each of the available channels. It was determined that the data bit stream should be segmented into groups of 6 bits (4 M-QAM coded bits and 2 M-PAM coded bits) using the Spatial Multiplexing (SM) transmission scheme, generating a three-dimensional constellation and obtaining a speed of 27.3 Mbps through a 1.5 m VLC link (subsection 5.4.1) (Texto tomado de la fuente)eng
dc.description.abstractEsta tesis presenta una investigación sobre los diferentes formatos y métodos de modulación usados en comunicaciones ópticas inalámbricas (OWC - Optical Wireless Communications), específicamente en las comunicaciones sobre luz visible (VLC - Visible Light Communications), utilizando dispositivos de estado sólido para iluminación (SSL). El objetivo final es proponer, modelar y validar un esquema de modulación espacial (tridimensional) adaptativo, que permita la optimización del ancho de banda efectivo mediante el uso de LED’s RGB de potencia. Inicialmente, se hace una taxonomía de las diferentes tecnologías y posibles usos de las comunicaciones OWC con el fin de identificar sus funcionalidades y características. A partir de esta clasificación, se identificaron los desafíos que presentan las comunicaciones por luz visible para uso en interiores también denominada VLC (la cual se encuentra dentro de la categoría OWC), así como también los diferentes formatos de modulación usados en ella. Una vez se ha determinado lo anterior, se hace una revisión sobre el estado del arte para cada uno de los desafíos identificados, y se indica la contribución que se realizó para resolver ese reto en particular (si es del caso) durante el transcurso del proceso Doctoral y que permitieron llegar a la solución propuesta. En la siguiente sección se presenta la teoría subyacente a los LED, los cuales son parte fundamental de los sistemas VLC. En esta, a partir del modelo eléctrico, se determinan las ecuaciones que permiten caracterizar aspectos relevantes tales como como el ancho de banda eléctrica, ancho de banda óptico, patrones de radiación y potencia óptica. Al finalizar, se presenta la caracterización experimental (medidas tomadas en laboratorio) del dispositivo LED RGB usado para implementar la propuesta final de esta tesis. A continuación, se muestra una descripción general de diferentes formatos de modulación digital en banda base usados en los sistemas VLC. Algunos de estos formatos permiten el control de iluminación por si solos, en unión con técnicas tales como PWM o inyección de corriente (I-bias). En la subsección 4.4, se exponen de manera detallada los trabajos realizados durante el desarrollo de este proceso de investigación usando algunos formatos de modulación presentados en las subsecciones anteriores, los cuales permiten dar solución al problema del control de iluminación manteniendo constante la velocidad de transmisión de datos. Los trabajos mencionados anteriormente, lograron una velocidad de transmisión constante de 6 Kbps usando una codificación que combina en una misma trama de bits la modulación PWM para control de brillo y la codificación M-PPM para la creación de palabras de datos, el transmisor se implementó con dos LEDs RGB de 10 W ubicados a 0.9 metros del receptor (foto-detector OPT101 de Texas Instruments), y se obtuvo un rango de iluminación entre 25% al 85% de la potencia luminosa posible de las fuentes LED. De igual forma, un segundo trabajo implementa una codificación diferencial híbrida Manchester-PWM para la transmisión de datos y el control de luminosidad en un sistema en tiempo real, la modulación digital propuesta permite el control simultáneo de la luminosidad manteniendo la transmisión de datos con una velocidad constante de 50 Kbps utilizando tres LED’s blancos de 10 W a una distancia de 0.9 metros, y un rango de luminosidad entre el 10% y el 90% del flujo luminoso máximo de las fuentes LED. Cabe anotar que estas codificaciones hibridas propuestas, son de autoría propia y según nuestro mejor conocimiento, no habían sido presentadas antes de la publicación y presentación en la revista IEEE Latinoamérica y COLCOM 2020 respectivamente. Dados los buenos resultados obtenidos en los trabajos presentados anteriormente, nos enfocamos en optimizar el ancho de banda disponible, teniendo en cuenta que en un LED RGB, se tienen disponibles tres fuentes de transmisión (una por cada color) similar a la técnica WDM (multiplicación por división de longitud de onda). En una primera instancia, se hizo uso de la modulación multiportadora OFDM (Multiplexación por División de Frecuencias Ortogonales) y se determinó por medio de simulaciones cuáles eran los esquemas de codificación más eficientes, teniendo como referencia tasa de error de bit (BER). A continuación, se exploró cual era la mejor forma de segmentar la información con el fin de ser transmitida por cada uno de los canales disponibles, se determinó que el flujo de bits de datos debía ser segmentado en grupos de 6 bits (4 bits codificados M-QAM y 2 bits codificados M-PAM) usando en esquema de transmisión por Multiplexación Espacial (SM) generando una constelación tridimensional obteniendo una velocidad de 27.3 Mbps a través de un enlace VLC de 1.5 m (subsección 5.4.1).spa
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicacionesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Automáticaspa
dc.description.researchareaComunicaciones Opticas Inalambricas.spa
dc.description.sponsorshipPolitécnico Colombiano Jaime Isaza Cadavidspa
dc.format.extentxxiii, 108 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83193
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesCISCO. (2020, Mar.) Cisco annual internet report (2018ˆa€“2023) white paper. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.htmlspa
dc.relation.referencesH. Haas, L. Yin, C. Chen, S. Videv, D. Parol, E. Poves, H. Alshaer, and M. S. Islim, “Introduction to indoor networking concepts and challenges in lifi,” Journal of Optical Communications and Networking, vol. 12, no. 2, pp. A190–A203, 2020.spa
dc.relation.referencesF. Delgado, I. Quintana, J. Rufo, J. Rabadan, C. Quintana, and R. Perez-Jimenez, “Design and implementation of an ethernet-vlc interface for broadcast transmissions,” IEEE Communications letters, vol. 14, no. 12, pp. 1089–1091, 2010.spa
dc.relation.referencesC.-H. Yeh, Y.-L. Liu, and C.-W. Chow, “Real-time white-light phosphor-led visible light communication (vlc) with compact size,” Optics express, vol. 21, no. 22, pp. 26 192–26 197, 2013.spa
dc.relation.referencesX. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A gb/s vlc transmission using hardware preequalization circuit,” IEEE photonics technology letters, vol. 27, no. 18, pp. 1915–1918, 2015.spa
dc.relation.referencesS. Rajbhandari, H. Chun, G. Faulkner, H. Haas, E. Xie, J. J. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. Oˆa€™Brien, “Neural network-based joint spatial and temporal equalization for mimo-vlc system,” IEEE Photonics Technology Letters, vol. 31, no. 11, pp. 821–824, 2019.spa
dc.relation.referencesM. L. G. Salmento, G. M. Soares, J. M. Alonso, and H. A. Braga, “A dimmable offline led driver with ook-m-fsk modulation for vlc applications,” IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5220–5230, 2018.spa
dc.relation.referencesJ.-N. Guo, J. Zhang, G. Xin, and L. Li, “Constant transmission efficiency dimming control scheme for vlc systems,” in Photonics, vol. 8, no. 1. Multidisciplinary Digital Publishing Institute, 2021, p. 7.spa
dc.relation.referencesY. Celik, S. Aldirmaz-Colak, and E. Basar, “Flexible quadrature spatial pulse amplitude modulation for vlc systems,” IEEE Systems Journal, 2021.spa
dc.relation.referencesO. P. Babalola and V. Balyan, “Efficient channel coding for dimmable visible light communications system,” IEEE Access, vol. 8, pp. 215 100–215 106, 2020.spa
dc.relation.referencesT. Wang, F. Yang, C. Pan, L. Cheng, and J. Song, “Spectral-efficient hybrid dimming scheme for indoor visible light communication: A subcarrier index modulation based approach,” Journal of Lightwave Technology, vol. 37, no. 23, pp. 5756–5765, 2019.spa
dc.relation.referencesR. Ahmad and A. Srivastava, “Papr reduction of ofdm signal through dft precoding and gmsk pulse shaping in indoor vlc,” IEEE Access, vol. 8, pp. 122 092–122 103, 2020.spa
dc.relation.referencesS. Naser, L. Bariah, S. Muhaidat, M. Al-Qutayri, and P. C. Sofotasios, “An effective spatial modulation based scheme for indoor vlc systems,” IEEE Photonics Journal, vol. 14, no. 1, pp. 1–11, 2022.spa
dc.relation.referencesZ. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab®. CRC press, 2019.spa
dc.relation.referencesM. Uysal and H. Nouri, “Optical wireless communications ˆa€” an emerging technology,” in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1–7.spa
dc.relation.referencesH. Kaushal, V. Jain, and S. Kar, Free space optical communication. Springer, 2017, vol. 18.spa
dc.relation.referencesS. Karabetsos, S. Mikroulis, and A. Nassiopoulos, “Radio over fiber for broadband communications: A promising technology for next generation networks,” in Handbook of Research on Heterogeneous Next Generation Networking: Innovations and Platforms. IGI Global, 2009, pp. 80–103.spa
dc.relation.referencesH. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE access, vol. 4, pp. 1518–1547, 2016.spa
dc.relation.referencesJ. V. Aravind, S. Kumar, and S. Prince, “Mathematical modelling of underwater wireless optical channel,” in 2018 International Conference on Communication and Signal Processing (ICCSP), 2018, pp. 0776–0780.spa
dc.relation.referencesG. Schirripa Spagnolo, L. Cozzella, and F. Leccese, “Underwater optical wireless communications: Overview,” Sensors, vol. 20, no. 8, p. 2261, 2020.spa
dc.relation.referencesM. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE communications surveys & tutorials, vol. 16, no. 4, pp. 2231–2258, 2014.spa
dc.relation.referencesH. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE communications surveys & tutorials, vol. 19, no. 1, pp. 57–96, 2016.spa
dc.relation.referencesW. Wu, M. Chen, Z. Zhang, X. Liu, and Y. Dong, “Overview of deep space laser communication,” Science China Information Sciences, vol. 61, no. 4, pp. 1–12, 2018.spa
dc.relation.referencesS. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in 2008 6th international symposium on communication systems, networks and digital signal processing. IEEE, 2008, pp. 82–86.spa
dc.relation.referencesA.-M. C˘ailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: A survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2681–2703, 2017.spa
dc.relation.referencesN. Kumar, N. Louren¸co, D. Terra, L. N. Alves, and R. L. Aguiar, “Visible light communications in intelligent transportation systems,” in 2012 IEEE Intelligent Vehicles Symposium. IEEE, 2012, pp. 748–753.spa
dc.relation.referencesT. D. Little, A. Agarwal, J. Chau, M. Figueroa, A. Ganick, J. Lobo, T. Rich, and P. Schimitsch, “Directional communication system for short-range vehicular communications,” in 2010 IEEE Vehicular Networking Conference. IEEE, 2010, pp. 231–238.spa
dc.relation.referencesE. Eso, O. I. Younus, Z. Ghassemlooy, S. Zvanovec, and M. M. Abadi, “Performances of optical camera-based vehicular communications under turbulence conditions,” in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2020, pp. 1–5.spa
dc.relation.referencesM. D. Thieu, T. L. Pham, T. Nguyen, and Y. M. Jang, “Optical-roi-signaling for vehicular communications,” IEEE Access, vol. 7, pp. 69 873–69 891, 2019.spa
dc.relation.referencesT. Garlington, J. Babbitt, and G. Long, “Analysis of free space optics as a transmission technology,” US Army Information Systems Engineering Command, vol. 3, no. 2, 2005.spa
dc.relation.referencesD. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Communications Magazine, vol. 42, no. 5, pp. S2–S7, 2004.spa
dc.relation.referencesS. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced optical wireless communication systems. Cambridge university press, 2012.spa
dc.relation.referencesN. Chi, H. Haas, M. Kavehrad, T. D. Little, and X.-L. Huang, “Visible light communications: demand factors, benefits and opportunities [guest editorial],” IEEE Wireless Communications, vol. 22, no. 2, pp. 5–7, 2015.spa
dc.relation.referencesH. Haas, L. Yin, Y.Wang, and C. Chen, “What is lifi?” Journal of lightwave technology, vol. 34, no. 6, pp. 1533–1544, 2015.spa
dc.relation.referencesD. C. O’brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2008, pp. 1–5.spa
dc.relation.referencesS. Park, D. Jung, H. Shin, D. Shin, Y. Hyun, K. Lee, and Y. Oh, “Information broadcasting system based on visible light signboard,” Proc. Wireless Opt. Commun, vol. 30, pp. 311–313, 2007.spa
dc.relation.referencesT. Wang, F. Yang, J. Song, and Z. Han, “Dimming techniques of visible light communications for human-centric illumination networks: State-of-the-art, challenges, and trends,” IEEE Wireless Communications, vol. 27, no. 4, pp. 88–95, 2020.spa
dc.relation.referencesS. Mali, A. Agarwal, S. K. Singh, and D. D. Pradhan, “Design and implementation of text and audio signal transmission using visible light communication,” in 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(ISMAC). IEEE, 2020, pp. 303–306.spa
dc.relation.referencesX.-T. Jiang, H. Gao, and P. Li, “Visible light communication audio signal transmission system design,” in 2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2018, pp. 1–4.spa
dc.relation.referencesW. Liu, C. Yang, and Q. Yang, “Indoor high-accuracy positioning system using image sensor and visible led lights,” in 2016 Asia Communications and Photonics Conference (ACP), 2016, pp. 1–3.spa
dc.relation.referencesY. See and N. M. Noor, “Investigation of indoor positioning system using visible light communication,” in 2016 IEEE Region 10 Conference (TENCON). IEEE, 2016, pp. 186–189.spa
dc.relation.referencesF. Seguel, P. Palacios-Jativa, C. A. Azurdia-Meza, N. Krommenacker, P. Charpentier, and I. Soto, “Underground mine positioning: A review,” IEEE Sensors Journal, 2021.spa
dc.relation.referencesI. F. Akyildiz, Z. Sun, and M. C. Vuran, “Signal propagation techniques for wireless underground communication networks,” Physical Communication, vol. 2, no. 3, pp. 167–183, 2009.spa
dc.relation.referencesM. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of wifi and lifi toward 5g: concepts, opportunities, and challenges,” IEEE Communications Magazine, vol. 54, no. 2, pp. 64–71, 2016.spa
dc.relation.referencesX. Wu, M. D. Soltani, L. Zhou, M. Safari, and H. Haas, “Hybrid lifi and wifi networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1398–1420, 2021.spa
dc.relation.referencesS. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid wifi-vlc internet access system,” in 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems. IEEE, 2014, pp. 569–574.spa
dc.relation.referencesR. Ahmad, A. Srivastava et al., “Energy-efficient coexistence of lifi users and light enabled iot devices,” IEEE Transactions on Green Communications and Networking, 2021.spa
dc.relation.referencesM. Kavehrad, “Optical wireless applications: A solution to ease the wireless airwaves spectrum crunch,” in Broadband Access Communication Technologies Vii, vol. 8645. International Society for Optics and Photonics, 2013, p. 86450G.spa
dc.relation.referencesD. A. Basnayaka and H. Haas, “Hybrid rf and vlc systems: Improving user data rate performance of vlc systems,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE, 2015, pp. 1–5.spa
dc.relation.referencesL. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible light communication: concepts, applications and challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3204–3237, 2019.spa
dc.relation.referencesI. 62471, “Photobiological safety of lamps and lamp systems,” 2006.spa
dc.relation.referencesM. T. Alresheedi and J. M. Elmirghani, “10 gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” Journal of Lightwave Technology, vol. 30, no. 12, pp. 1843–1856, 2012.spa
dc.relation.references“Mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” in 2010 Seventh International Conference on Wireless and Optical Communications Networks-(WOCN). IEEE, 2010, pp. 1–6.spa
dc.relation.referencesZ. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, “Performance of dimming control scheme in visible light communication system,” Optics express, vol. 20, no. 17, pp. 18 861–18 868, 2012.spa
dc.relation.referencesS. Rajagopal, R. D. Roberts, and S.-K. Lim, “Ieee 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Communications Magazine, vol. 50, no. 3, pp. 72–82, 2012.spa
dc.relation.referencesJ. L. H. Rios, “Experimental validation of inverse mppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 100, no. 1e, 2020.spa
dc.relation.referencesB. Bai, Z. Xu, and Y. Fan, “Joint led dimming and high capacity visible light communication by overlapping ppm,” in The 19th Annual Wireless and Optical Communications Conference (WOCC 2010). IEEE, 2010, pp. 1–5.spa
dc.relation.referencesF. Zafar, D. Karunatilaka, and R. Parthiban, “Dimming schemes for visible light communication: the state of research,” IEEE Wireless Communications, vol. 22, no. 2, pp. 29–35, 2015.spa
dc.relation.referencesP. Cao, J. Chen, and X. You, “An initialization scheme for blind equalization in vlc systems,” in 2017 16th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2017, pp. 1–3.spa
dc.relation.referencesK. Werfli, P. A. Haigh, Z. Ghassemlooy, P. Chvojka, S. Zvanovec, S. Rajbhandari, and S. Long, “Multi-band carrier-less amplitude and phase modulation with decision feedback equalization for bandlimited vlc systems,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW). IEEE, 2015, pp. 6–10.spa
dc.relation.referencesH. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “Vlc: Beyond pointto-point communication,” IEEE Communications Magazine, vol. 52, no. 7, pp. 98–105, 2014.spa
dc.relation.referencesX. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750mbit/s visible light communications employing 64qam-ofdm based on amplitude equalization circuit,” in 2015 optical fiber communications conference and exhibition (OFC). IEEE, 2015, pp. 1–3.spa
dc.relation.referencesG. Zhang, X. Hong, C. Fei, and X. Hong, “Sparsity-aware nonlinear equalization with greedy algorithms for led-based visible light communication systems,” Journal of Lightwave Technology, vol. 37, no. 20, pp. 5273–5281, 2019.spa
dc.relation.referencesR. Martinek, L. Danys, R. Jaros, D. Mozny, P. Siska, and J. Latal, “Vlc channel equalization simulator based on lms algorithm and virtual instrumentation,” in 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE, 2019, pp. 1–6.spa
dc.relation.referencesJ. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 3, pp. 538–546, 1996.spa
dc.relation.referencesY. Yang, Z. Zeng, J. Cheng, and C. Guo, “An enhanced dco-ofdm scheme for dimming control in visible light communication systems,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–13, 2016.spa
dc.relation.referencesY. Hong, J. Xu, and L.-K. Chen, “Experimental investigation of multi-band oct precoding for ofdm-based visible light communications,” Opt. Express, vol. 25, no. 11, pp. 12 908–12 914, May 2017.spa
dc.relation.referencesA. Yesilkaya, E. Basar, F. Miramirkhani, E. Panayirci, M. Uysal, and H. Haas, “Optical mimo-ofdm with generalized led index modulation,” IEEE Transactions on Communications, vol. 65, no. 8, pp. 3429–3441, 2017.spa
dc.relation.referencesK. O. Akande, P. A. Haigh, and W. O. Popoola, “On the implementation of carrierless amplitude and phase modulation in visible light communication,” IEEE Access, vol. 6, pp. 60 532–60 546, 2018.spa
dc.relation.referencesI. Din and H. Kim, “Energy-efficient brightness control and data transmission for visible light communication,” IEEE photonics technology letters, vol. 26, no. 8, pp. 781–784, 2014.spa
dc.relation.referencesG. Cossu, A. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 gbit/s visible optical wireless transmission based on rgb led,” Optics express, vol. 20, no. 26, pp. B501–B506, 2012.spa
dc.relation.referencesS. H. Younus, A. A. Al-Hameed, A. T. Hussein, M. T. Alresheedi, and J. M. Elmirghani, “Wdm for multi-user indoor vlc systems with scm,” IET Communications, vol. 13, no. 18, pp. 3003–3011, 2019.spa
dc.relation.referencesY. Chen and M. Jiang, “Joint colour-and-spatial modulation aided visible light communication system,” in 2016 IEEE 83rd vehicular technology conference (VTC Spring). IEEE, 2016, pp. 1–5.spa
dc.relation.referencesK. P. Pujapanda, “Lifi integrated to power-lines for smart illumination cum communication,” in 2013 International Conference on Communication Systems and Network Technologies. IEEE, 2013, pp. 875–878.spa
dc.relation.referencesG. Sun, W. Zhao, R. Wang, and X. Li, “Design of ethernet-vlc data conversion system based on fpga,” International Journal of Computer Theory and Engineering, vol. 12, no. 3, 2020.spa
dc.relation.referencesZ. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications. CRC press, 2017.spa
dc.relation.referencesX. Wang, L. Wang, K. Jian, C. Wang, and C. P. Yue, “A rgb led pam-4 visible light communication transmitter based on a system design with equalization,” in 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2020, pp. 798–801.spa
dc.relation.referencesC. Min, X. Chen, X. Mao, X. Li, T. Pan, Q. Sun, and H. Chen, “A novel method for constructing vlc equalizer with active-passive hybrid network,” IEEE Photonics Journal, vol. 12, no. 2, pp. 1–10, 2020.spa
dc.relation.referencesN. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 mb/s by a blue led, 600 mb/s by a red led, and 520 mb/s by a green led based on simple ook-nrz modulation of a commercially available rgb-type white led using pre-emphasis and postequalizing techniques,” in 2014 The European Conference on Optical Communication (ECOC). IEEE, 2014, pp. 1–3.spa
dc.relation.referencesH. Li, X. Chen, J. Guo, and H. Chen, “A 550 mbit/s real-time visible light communication system based on phosphorescent white light led for practical high-speed low-complexity application,” Optics express, vol. 22, no. 22, pp. 27 203–27 213, 2014.spa
dc.relation.referencesR. Kisacik, M. Yagan, M. Uysal, A. Pusane, and A. Yalcinkaya, “A new led response model and its application to pre-equalization in vlc systems,” IEEE Photonics Technology Letters, vol. 33, no. 17, pp. 955–958, 2021.spa
dc.relation.referencesM. Ataee, S. M. S. Sadough, and Z. Ghassemlooy, “Adaptive equalization for visible light communications with power over ethernet backhaul,” in 2020 3rd West Asian Symposium on Optical and Millimeter-wave Wireless Communication (WASOWC). IEEE, 2020, pp. 1–5.spa
dc.relation.referencesJ. Gancarz, H. Elgala, and T. D. Little, “Impact of lighting requirements on vlc systems,” IEEE Communications Magazine, vol. 51, no. 12, pp. 34–41, 2013.spa
dc.relation.referencesA. Dix, J. Finlay, G. D. Abowd, and R. Beale, “Human-computer interaction,” Harlow ua, 2000.spa
dc.relation.referencesJ. A. Jacko, “Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications,” 2012.spa
dc.relation.referencesJ. K. Kwon, “Inverse source coding for dimming in visible light communications using nrz-ook on reliable links,” IEEE Photonics Technology Letters, vol. 22, no. 19, pp. 1455–1457, 2010.spa
dc.relation.referencesT. Wang, F. Yang, L. Cheng, and J. Song, “Spectral-efficient generalized spatial modulation based hybrid dimming scheme with laco-ofdm in vlc,” IEEE Access, vol. 6, pp. 41 153–41 162, 2018.spa
dc.relation.referencesY. Zuo and J. Zhang, “A novel coding based dimming scheme with constant transmission efficiency in vlc systems,” Applied Sciences, vol. 9, no. 4, 2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/4/803spa
dc.relation.referencesD.-F. Zhang, Y.-J. Zhu, and Y.-Y. Zhang, “Multi-led phase-shifted ook modulation based visible light communication systems,” IEEE Photonics Technology Letters, vol. 25, no. 23, pp. 2251–2254, 2013.spa
dc.relation.referencesC.Wang, Y. Yang, C. Guo, Z. Zeng, and C. Feng, “Generalized dimming control scheme with optimal dimming control pattern for vlc,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020, pp. 1–6.spa
dc.relation.referencesS. He, G. Ren, L. Wu, Z. Sun, and Y. Zhao, “Flicker mitigation and dimming control analyze of duty cycle fixed-mvpm for indoor vlc system,” in 2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020, pp. 6–9.spa
dc.relation.referencesJ.-N. Guo, J. Zhang, Y.-Y. Zhang, G. Xin, and L. Li, “Constant weight space-time codes for dimmable mimo-vlc systems,” IEEE Photonics Journal, vol. 12, no. 6, pp. 1–15, 2020.spa
dc.relation.referencesJ. Henao-Rios, D. Marquez-Viloria, and N. Guerrero-Gonz´alez, “Real time implementation of a hybrid differential manchester-pwm encoding for constant data rate under variable brightness in vlc systems,” in 2020 IEEE Colombian Conference on Communications and Computing (COLCOM). IEEE, 2020, pp. 1–5.spa
dc.relation.referencesG. Miao, J. Zander, K. W. Sung, and S. B. Slimane, Fundamentals of mobile data networks. Cambridge University Press, 2016.spa
dc.relation.referencesR. B. Nunes, A. Shahpari, J. A. L. Silva, M. Lima, P. S. B. de Andr˜A©, and M. E. V. Segatto, “Experimental demonstration of a 33.5-gb/s ofdm-based pon with subcarrier pre-emphasis,” IEEE Photonics Technology Letters, vol. 28, no. 8, pp. 860–863, 2016.spa
dc.relation.referencesE. Basar, “Index modulation techniques for 5g wireless networks,” IEEE Communications Magazine, vol. 54, no. 7, pp. 168–175, 2016.spa
dc.relation.referencesE. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas, “Index modulation techniques for next-generation wireless networks,” IEEE Access, vol. 5, pp. 16 693–16 746, 2017.spa
dc.relation.referencesK. M. vd Zwaag, J. L. Neves, H. R. Rocha, M. E. Segatto, and J. A. Silva, “Adaptation to the leds flicker requirement in visible light communication systems through ce-ofdm signals,” Optics Communications, vol. 441, pp. 14 – 20, 2019.spa
dc.relation.referencesF. T. Monteiro, W. S. Costa, J. L. Neves, D. M. Silva, H. R. Rocha, E. O. Salles, and J. A. Silva, “Experimental evaluation of pulse shaping based 5g multicarrier modulation formats in visible light communication systems,” Optics Communications, vol. 457, p. 124693, 2020.spa
dc.relation.referencesQ. Wang, Z. Wang, L. Dai, and J. Quan, “Dimmable visible light communications based on multilayer aco-ofdm,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–11, 2016.spa
dc.relation.referencesA. W. Azim, Y. Le Guennec, and G. Maury, “Spectrally augmented hartley transform precoded asymmetrically clipped optical ofdm for vlc,” IEEE Photonics Technology Letters, vol. 30, no. 23, pp. 2029–2032, 2018.spa
dc.relation.referencesC. Guerra-Y´anez, S. Zv´anovec, and Z. Ghassemlooy, “Experimental evaluation of a hermite function-based multicarrier scheme for vlc,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2021, pp. 1–4.spa
dc.relation.referencesN. Bamiedakis, R. Penty, and I. White, “Carrierless amplitude and phase modulation in wireless visible light communication systems,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2169, p. 20190181, 2020.spa
dc.relation.referencesS. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband supernyquist cap16 vlc system employing a joint mimo equalizer,” Optics express, vol. 26, no. 12, pp. 15 718–15 725, 2018.spa
dc.relation.referencesP. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Nonorthogonal multi-band cap for highly spectrally efficient vlc systems,” in 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2018, pp. 1–6.spa
dc.relation.referencesP. A. Haigh, P. Chvojka, A. Minotto, A. Burton, P. Murto, E. Wang, Z. Ghassemlooy, S. Zvanovec, F. Cacialli, and I. Darwazeh, “Hybrid super-nyquist cap modulation based vlc with low bandwidth polymer leds,” in 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2019, pp. 1–6.spa
dc.relation.referencesK. O. Akande and W. O. Popoola, “Mimo techniques for carrierless amplitude and phase modulation in visible light communication,” IEEE Communications Letters, vol. 22, no. 5, pp. 974–977, 2018.spa
dc.relation.referencesH. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “Led based wavelength division multiplexed 10 gb/s visible light communications,” Journal of lightwave technology, vol. 34, no. 13, pp. 3047–3052, 2016.spa
dc.relation.referencesJ. L. H. Rios, N. G. Gonz´alez, M. R. Ribeiro, and J. A. Silva, “Experimental validation of a three-dimensional modulation format for data transmission in rgb visible light communication systems,” IET Communications, vol. 15, no. 2, pp. 279–288, 2021.spa
dc.relation.referencesA. T. Hussein and J. M. Elmirghani, “10 gbps mobile visible light communication system employing angle diversity, imaging receivers, and relay nodes,” Journal of Optical Communications and Networking, vol. 7, no. 8, pp. 718–735, 2015.spa
dc.relation.referencesR. Bian, I. Tavakkolnia, and H. Haas, “15.73 gb/s visible light communication with off-the-shelf leds,” Journal of Lightwave Technology, vol. 37, no. 10, pp. 2418–2424, 2019.spa
dc.relation.referencesY. Wang, Y. Zhou, T. Gui, K. Zhong, X. Zhou, L. Wang, A. P. T. Lau, C. Lu, and N. Chi, “Efficient mmse-sqrd-based mimo decoder for sefdm-based 2.4-gb/s-spectrumcompressed wdm vlc system,” IEEE Photonics Journal, vol. 8, no. 4, pp. 1–9, 2016.spa
dc.relation.referencesJ. Zhu, L. Mu, and X. Zhang, “Pwm-based dimmable hybrid optical ofdm for visiblelight communications,” IET Communications, vol. 14, no. 6, pp. 930–936, 2020.spa
dc.relation.referencesM. Mohammedi Merah, H. Guan, and L. Chassagne, “Experimental multi-user visible light communication attocell using multiband carrierless amplitude and phase modulation,” IEEE Access, vol. 7, pp. 12 742–12 754, 2019.spa
dc.relation.referencesI. Newton, Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light. Sam Smith & Benj Walford Printers to the Royal Society, 1704.spa
dc.relation.referencesH. Christiaan, Trait´e de la Lumi`ere: O`u Sont Expliqu´es les Causes de ce qui Luy Arrive Dans la Reflexion & Dans la Refraction. Pieter van der Aa, 1690.spa
dc.relation.referencesY. Thomas, The Bakerian lecture. Experiments and calculation relative to physical optics. Philosophical Transactions of the Royal Society of London, 1804.spa
dc.relation.referencesM. García Castañeda and J. Ewert De-Geus, Introducción a la física moderna. UNIVERSIDAD NACIONAL DE COLOMBIA,, 2003, no. 539 G164i Ej. 1.spa
dc.relation.referencesD. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Cengage learning, 2017.spa
dc.relation.referencesA. F. Rex, R. Wolfson, and M. M. Romo, Fundamentos de f´ısica. Addison Wesley, 2011.spa
dc.relation.referencesW. Doherty and R. Joos, “The pin diode circuit designersˆa€™ handbook,” Microsemi Corporation, vol. 1, pp. 1–137, 1998. [123] I. Yun, Photodiodes: From Fundamentals to Applications. BoD–Books on Demand, 2012.spa
dc.relation.referencesJ. Graeme, Photodiode amplifiers: op amp solutions. McGraw-Hill, Inc., 1995.spa
dc.relation.referencesG. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons, 2012, vol. 222.spa
dc.relation.referencesR. M. Gagliardi and S. Karp, “Optical communications,” New York, 1976.spa
dc.relation.referencesM. Petit, L. Michez, J.-M. Raimundo, and P. Dumas, “Electrical and optical measurements of the bandgap energy of a light-emitting diode,” Physics Education, vol. 51, no. 2, p. 025003, 2016.spa
dc.relation.referencesA. Einstein and F. A. Davis, The principle of relativity. Courier Corporation, 2013.spa
dc.relation.referencesN. Chi, LED-based visible light Communications. Springer, 2018.spa
dc.relation.referencesE. F. Schubert, Light-Emitting Diodes. Cambridge University Press, 2006.spa
dc.relation.referencesJ. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.spa
dc.relation.referencesS. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources.” Optometry and vision science: official publication of the American Academy of Optometry, vol. 68, no. 8, pp. 645–662, 1991.spa
dc.relation.referencesK. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE photonics technology letters, vol. 23, no. 16, pp. 1136–1138, 2011.spa
dc.relation.referencesH.-J. Jang, J.-H. Choi, Z. Ghassemlooy, and C. G. Lee, “Pwm-based ppm format for dimming control in visible light communication system,” in 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2012, pp. 1–5.spa
dc.relation.referencesF. Knobloch, “Noncoherent dimming frequency shift on-off keying scheme for low data rate optical street lighting communication,” ICTON 2015, p. Mo.B2.5, 2015.spa
dc.relation.referencesC.-S. A. Gong, Y.-C. Lee, J.-L. Lai, C.-H. Yu, L. R. Huang, and C.-Y. Yang, “The highefficiency led driver for visible light communication applications,” Scientific reports, vol. 6, p. 30991, 2016.spa
dc.relation.referencesB. Aydin and C¸ . Duman, “Comparison of ook-rz and 4-ppm performances in li-fi systems using led arrays,” Optics & Laser Technology, vol. 153, p. 108247, 2022.spa
dc.relation.referencesA. Pradana, N. Ahmadi, T. Adiono, W. A. Cahyadi, and Y.-H. Chung, “Vlc physical layer design based on pulse position modulation (ppm) for stable illumination,” in 2015 international symposium on intelligent signal processing and communication systems (ISPACS). IEEE, 2015, pp. 368–373.spa
dc.relation.referencesJ. R. Barry, Wireless infrared communications. Springer Science & Business Media, 2012, vol. 280.spa
dc.relation.referencesS. N. Ismail and M. H. Salih, “A review of visible light communication (vlc) technology,” in AIP Conference Proceedings, vol. 2213, no. 1. AIP Publishing LLC, 2020, p. 020289.spa
dc.relation.referencesD.-s. Shiu and J. M. Kahn, “Differential pulse-position modulation for power-efficient optical communication,” IEEE transactions on communications, vol. 47, no. 8, pp. 1201–1210, 1999.spa
dc.relation.referencesV. Dixit and A. Kumar, “Performance analysis of l-ppm modulated nlos-vlc system with perfect and imperfect csi,” Journal of Optics, vol. 23, no. 1, p. 015702, 2020.spa
dc.relation.referencesG. Lee and G. Schroeder, “Optical pulse position modulation with multiple positions per pulsewidth,” IEEE Transactions on Communications, vol. 25, no. 3, pp. 360–364, 1977.spa
dc.relation.referencesC. N. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Transactions on Information Theory, vol. 40, no. 5, pp. 1313–1326, 1994.spa
dc.relation.referencesX. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Optics Express, vol. 19, no. 26, pp. B868–B881, 2011.spa
dc.relation.referencesY. Akaiwa, “Digital modulation/demodulation for mobile radio communication,” 2015.spa
dc.relation.referencesL. Litwin, “An introduction to multicarrier modulation,” IEEE potentials, vol. 19, no. 2, pp. 36–38, 2000.spa
dc.relation.referencesA. A. Hajomer, X. Yang, and W. Hu, “Secure ofdm transmission precoded by chaotic discrete hartley transform,” IEEE Photonics Journal, vol. 10, no. 2, pp. 1–9, 2017.spa
dc.relation.referencesI. Mapfumo, Performance of asymmetrically clipped optical OFDM and DC-biased optical OFDM based on fast Fourier transform/discrete Hartley transform for powerline communication-visible light communication systems under impulsive noise. University of Johannesburg (South Africa), 2020.spa
dc.relation.referencesA. Goldsmith, Wireless communications. Cambridge university press, 2005.spa
dc.relation.referencesG. Cossu, W. Ali, R. Corsini, and E. Ciaramella, “Gigabit-class optical wireless communication system at indoor distances (1.5 – 4 m),” Opt. Express, vol. 23, no. 12, pp. 15 700–15 705, Jun 2015.spa
dc.relation.referencesK. Liang, C.-W. Chow, and Y. Liu, “Rgb visible light communication using mobilephone camera and multi-input multi-output,” Opt. Express, vol. 24, no. 9, pp. 9383–9388, May 2016.spa
dc.relation.referencesC.-W. Chow, R.-J. Shiu, Y.-C. Liu, Y. Liu, and C.-H. Yeh, “Non-flickering 100 m rgb visible light communication transmission based on a cmos image sensor,” Opt. Express, vol. 26, no. 6, pp. 7079–7084, Mar 2018.spa
dc.relation.referencesP. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of rgb led-based optical camera communications,” IEEE Photonics Journal, vol. 7, no. 5, pp. 1–12, 2015.spa
dc.relation.referencesM. S. Moreolo, R. Mu˜noz, and G. Junyent, “Novel power efficient optical ofdm based on hartley transform for intensity-modulated direct-detection systems,” Journal of lightwave Technology, vol. 28, no. 5, pp. 798–805, 2010.spa
dc.relation.referencesR. N. Bracewell, “Discrete hartley transform,” JOSA, vol. 73, no. 12, pp. 1832–1835, 1983.spa
dc.relation.referencesX. Li, R. Mardling, and J. Armstrong, “Channel capacity of im/dd optical communication systems and of aco-ofdm,” in 2007 IEEE International Conference on Communications. IEEE, 2007, pp. 2128–2133.spa
dc.relation.referencesZ. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: modulation and signal processing. John Wiley & Sons, 2017.spa
dc.relation.referencesJ. Tang and L. Zhang, “Efficient real-fourier domain-based color shift keying ofdm implemented with hartley transform for visible light communication system,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). IEEE, 2017, pp. 1–5.spa
dc.relation.referencesY. Cao, X. Zhou, J. Sun, W. Zhang, and C.-X. Wang, “Optical spatial modulation with dht-based ofdm in visible light communication systems,” in 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017, pp. 1–5.spa
dc.relation.referencesJ. R. B. J. M. Kahn, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.spa
dc.relation.referencesZ. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications system and channel modelling with Matlab. CRC press, 2019. [163] R. Mesleh, H. Elgala, and H. Haas, “Optical spatial modulation,” Journal of Optical Communications and Networking, vol. 3, no. 3, pp. 234–244, 2011.spa
dc.relation.referencesL. R. M. Castor, R. Natale, J. A. L. Silva, and M. E. V. Segatto, “Experimental investigation of broadband power line communication modems for onshore oil gas industry: A preliminary analysis,” in 18th IEEE International Symposium on Power Line Communications and Its Applications, 2014, pp. 244–248.spa
dc.relation.referencesL. G. Baltar, F. Schaich, M. Renfors, and J. A. Nossek, “Computational complexity analysis of advanced physical layers based on multicarrier modulation,” in 2011 Future Network & Mobile Summit. IEEE, 2011, pp. 1–8.spa
dc.relation.referencesJ. L. H. Rios, N. G. Gonzalez, and J. C. G. ´Alvarez, “Experimental validation of inverse m-ppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 19, no. 02, pp. 280–287, 2021.spa
dc.relation.referencesS. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Transactions on Information Theory, vol. 49, no. 6, pp. 1385–1399, 2003.spa
dc.relation.referencesS. Hranilovic, “On the design of bandwidth efficient signalling for indoor wireless optical channels,” International Journal of Communication Systems, vol. 18, no. 3, pp. 205–228, 2005.spa
dc.relation.referencesP. Fahamuel, J. Thompson, and H. Haas, “Study, analysis and application of optical ofdm, single carrier (sc) and mimo in intensity modulation direct detection (im/dd),” 2013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.proposalOWCeng
dc.subject.proposalVLCeng
dc.subject.proposalLEDeng
dc.subject.proposalRGB
dc.subject.proposalModulationeng
dc.subject.proposalPWMeng
dc.subject.proposalM-PPMeng
dc.subject.proposalManchestereng
dc.subject.proposalWDMeng
dc.subject.proposalOFDMeng
dc.subject.proposalSpatial Multiplexingeng
dc.subject.proposalModulaciónspa
dc.subject.proposalMultiplexación espacialspa
dc.subject.unescoTecnología de la comunicación
dc.subject.unescoCommunication technology
dc.titleModeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)eng
dc.title.translatedModelado y simulación de un esquema de modulación espacial adaptativa para la optimización del ancho de banda efectivo sobre luz visible (VLC), utilizando dispositivos de estado sólido para la iluminación (SSL)spa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79383020.2022.pdf
Tamaño:
11.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: