Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6

dc.contributor.advisorRoa Rojas, Jairospa
dc.contributor.authorRueda Cadavid, Diego Alejandrospa
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2024-09-16T20:47:38Z
dc.date.available2024-09-16T20:47:38Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEn los últimos años, los materiales cerámicos de tipo perovskita han suscitado un creciente interés debido a sus diversas aplicaciones tecnológicas y a la amplia gama de propiedades eléctricas, magnéticas y ópticas que presentan. Estas propiedades pueden ser modificadas intencionalmente a través de la incorporación de metales de diferente naturaleza, logrando obtener materiales óptimos para diferentes aplicaciones. En ese sentido, el presente trabajo se centra en la síntesis y caracterización del material tipo perovskita doble LaCaMnFeO6, el cual se compone de tierras raras y alcalinotérreos en los sitios A y A' (La, Ca), y de metales de transición de naturaleza magnética en los sitios B y B' (Mn, Fe). La síntesis de la perovskita LaCaMnFeO6 se llevó a cabo mediante el método de reacción de estado sólido, utilizando óxidos precursores de alta pureza. La caracterización estructural se realizó mediante difracción de rayos X (DRX) con el software GSAS II, donde se confirmó una estructura ortorrómbica con un factor de tolerancia de τ = 0.9596. A partir del análisis estructural realizado, se concluyó que el material se describe adecuadamente mediante la fórmula La0.5Ca0.5Mn0.5Fe0.5O3, presentando distorsiones estructurales en los cationes BB'. El análisis morfológico indicó una superficie granular con un tamaño promedio de grano de 1.0 ± 0.2 μm y una porosidad significativa. La composición elemental confirmó la presencia de elementos según la fórmula estequiométrica, aunque se observó un exceso en Mn y Fe, atribuido al carácter óxido del material. Respecto a las propiedades ópticas, se identificaron tres vibraciones intermoleculares relacionadas con los enlaces Mn-O, Fe-O y La/Ca-O. A partir de este resultado se determinó la brecha de energía tipo semiconductor arrojando un valor de Eg = 2.30 ± 0.02 eV. La caracterización magnética reveló una marcada irreversibilidad entre las curvas de susceptibilidad ZFC y FC, indicando un comportamiento magnético frustrado. También se evidenció la presencia de momentos antiferromagnéticos en las curvas de histéresis de magnetización, con un carácter ferromagnético a temperaturas altas. Las mediciones eléctricas mostraron un comportamiento de tipo semiconductor con resistividad decreciente exponencialmente, ajustándose al modelo de Salto de Rango Variable de Mott. Las curvas I-V exhibieron un comportamiento no lineal e histéretico, sugiriendo aplicaciones potenciales en dispositivos de memoria lógica programable. Finalmente, el material de tipo perovskita La0.5Ca0.5Mn0.5Fe0.5O3 sintetizado en el presente trabajo, muestra gran potencial para aplicaciones en dispositivos de memoria lógica, válvulas de espín y transistores ferromagnéticos, entre otros, debido a sus interesantes propiedades semiconductoras y ferromagnéticas. (Texto tomado de la fuente).spa
dc.description.abstractIn recent years, perovskite-type ceramic materials have attracted increasing interest due to their diverse technological applications and the wide range of electrical, magnetic, and optical properties they exhibit. These properties can be intentionally modified through the incorporation of metals of different natures, thereby obtaining materials optimized for various applications. In this context, the present work focuses on the synthesis and characterization of the double perovskite material LaCaMnFeO6, which is composed of rare earth and alkaline earth metals at the A and A' sites (La, Ca), and magnetic transition metals at the B and B' sites (Mn, Fe). The synthesis of LaCaMnFeO6 was carried out using the solid-state reaction method, employing high-purity oxide precursors. The structural characterization was performed by X-ray diffraction (XRD) using the GSAS II software, which confirmed an orthorhombic structure with a tolerance factor of τ = 0.9596. Based on the structural analysis conducted, it was concluded that the material is adequately described by the formula La0.5Ca0.5Mn0.5Fe0.5O3, exhibiting structural distortions in the BB' cations. The morphological analysis indicated a granular surface with an average grain size of 1.0 ± 0.2 μm and significant porosity. The elemental composition confirmed the presence of elements according to the stoichiometric formula, although an excess of Mn and Fe was observed, attributed to the oxide nature of the material. Regarding the optical properties, three intermolecular vibrations related to the Mn-O, Fe-O, and La/Ca-O were identified. From this result, a semiconductor-type energy gap was determined, yielding a value of Eg = 2.30 ± 0.02 eV. The magnetic characterization revealed a marked irreversibility between the ZFC and FC susceptibility curves, indicating frustrated magnetic behavior. The presence of antiferromagnetic moments was also evidenced in the magnetization hysteresis curves, with a ferromagnetic character at high temperatures. Electrical measurements showed semiconductor behavior with exponentially decreasing resistivity, fitting the Mott Variable Range Hopping model. The I-V curves exhibited non-linear and hysteretic behavior, suggesting potential applications in programmable logic memory devices. Finally, the perovskite-type material La0.5Ca0.5Mn0.5Fe0.5O3 synthesized in this work shows great potential for applications in logic memory devices, spin valves, ferromagnetic transistors, and others, due to its interesting semiconducting and ferromagnetic properties.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extentxiii, 71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86836
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesFrancy M Casallas-Caicedo, Enrique Vera-López, and Jairo Roa-Rojas. Impedance spectroscopy study of electrical response and correlation with structural properties in the la2srfe2coo9 triple complex perovskite. Physica B: Condensed Matter, 607:412865, 2021spa
dc.relation.referencesMelvin M Vopson. Fundamentals of multiferroic materials and their possible applications. Critical Reviews in Solid State and Materials Sciences, 40(4):223–250, 2015spa
dc.relation.referencesSS Kale, KR Jadhav, PS Patil, TP Gujar, and CD Lokhande. Characterizations of spray deposited lanthanum oxide (la2o3) thin films. Materials Letters, 59(24-25):3007–3009, 2005spa
dc.relation.referencesLucia I Olivares Lugo, Ana M Bolarín Miró, Antonia Martínez Luévanos, Claudia A Cortés Escobedo, Màrius Ramírez Cardona, and Félix Sánchez-De Jesús. Multiferroicidad en lafeo3 sintetizada mediante molienda de alta energía. Tópicos de Investigación en Ciencias de la Tierra y Materiales, 8(8):20–24, 2021spa
dc.relation.referencesRobert M Hazen. Perovskites. Scientific American, 258(6):74–81, 1988spa
dc.relation.referencesMagdalena Greluk, Marek Rotko, and Sylwia Turczyniak-Surdacka. Enhanced catalytic performance of la2o3 promoted co/ceo2 and ni/ceo2 catalysts for effective hydrogen production by ethanol steam reforming. Renewable Energy, 155:378–395, 2020spa
dc.relation.referencesChunwen Sun, Jose A Alonso, and Juanjuan Bian. Recent advances in perovskite type oxides for energy conversion and storage applications. Advanced Energy Materials,11(2):2000459, 2021spa
dc.relation.referencesMylène Hendrickx, Yawei Tang, Emily C Hunter, Peter D Battle, and Joke Hadermann. Structural and magnetic properties of the perovskites a2lafe2sbo9 (a= ca, sr, ba). Journal of Solid State Chemistry, 295:121914, 2021spa
dc.relation.referencesJin Won Seo, EE Fullerton, F Nolting, A Scholl, J Fompeyrine, and Jean-Pierre Locquet. Antiferromagnetic lafeo3 thin films and their effect on exchange bias. Journal of Physics: Condensed Matter, 20(26):264014, 2008spa
dc.relation.referencesM Marezio and PD Dernier. The bond lengths in lafeo3. Materials Research Bulletin, 6(1):23–29, 1971spa
dc.relation.referencesXi-Tao Yin, Hua Huang, Jie-Li Xie, Davoud Dastan, Jing Li, Ying Liu, Xiao-Ming Tan, Xiao-Chun Gao, Wahab Ali Shah, and Xiao-Guang Ma. High-performance visible light active sr-doped porous lafeo3 semiconductor prepared via sol–gel method. Green Chemistry Letters and Reviews, 15(3):546–556, 2022spa
dc.relation.referencesLuis G Tejuca and José LG Fierro. Properties and applications of perovskite-type oxides. CRC Press, 1992spa
dc.relation.referencesJorge Andrés Cardona Vásquez. Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R= Gd, Dy; A= Ca, Sr; x= 0.0, 0.5, 1.0 y 1.5). PhD thesis, Universidad Nacional de Colombiaspa
dc.relation.referencesXimena Audrey Velasquez Moya. Síntesis y estudio de las propiedades estructurales y magnéticas del estroncio-rutenato de tierra rara sr2ruhoo6. Master’s thesis, 2018.spa
dc.relation.referencesPatrick M Woodward. Octahedral tilting in perovskites. i. geometrical considerations. Acta Crystallographica Section B: Structural Science, 53(1):32–43, 1997.spa
dc.relation.referencesJuan de Dios Varela. Elementos geométricos de cristalografía. 2000.spa
dc.relation.referencesDA Landínez Téllez, LA Carrero Bermúdez, CE Deluque Toro, R Cardona, and J Roa Rojas. Cristalographic, ferroelectric and electronic properties of the sr2zrtio6 double perovskite. Modern Physics Letters B, 27(20):1350141, 2013spa
dc.relation.referencesStephen Blundell. Magnetism in condensed matter. OUP Oxford, 2001spa
dc.relation.referencesJohn MD Coey. Magnetism and magnetic materials. Cambridge university press, 2010.spa
dc.relation.referencesNicola A Spaldin. Magnetic materials: fundamentals and applications. Cambridge university press, 2010.spa
dc.relation.referencesJavier A Cuervo Farfán, Críspulo E Deluque Toro, Carlos A Parra Vargas, David A Landínez Téllez, and Jairo Roa-Rojas. Experimental and theoretical determination of physical properties of sm 2 bi 2 fe 4 o 12 ferromagnetic semiconductors. Journal of Materials Chemistry C, 8(42):14925–14938, 2020.spa
dc.relation.referencesJavier Alonso Cuervo Farfán. Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe). PhD thesis, Universidad Nacional de Colombia, 2021.spa
dc.relation.referencesFu-Chien Chiu et al. A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014, 2014.spa
dc.relation.referencesJA Sarmiento Vanegas, JA Cuervo Farfán, Críspulo E Deluque Toro, David A Landínez Téllez, and Jairo Roa-Rojas. Semiconductor-ferromagnetic nature of rare-earth based ferrocobaltite smfe0. 5co0. 5o3. Available at SSRN 4464427spa
dc.relation.referencesROCIO MARGARITA GUTIERREZ PEREZ. Transición antiferro-a ferromagnética parcial de átomos de mn en películas delgadas de mn3ga mediante dopaje con carbono. 2018.spa
dc.relation.referencesANGGA DITO Fauzi. Theoretical study of the effect of oxygen vacancies on magnetism and charge transport of fe3o4, 2017.spa
dc.relation.referencesRM Hill. Variable-range hopping. physica status solidi (a), 34(2):601–613, 1976.spa
dc.relation.referencesYing Zhao and Jiawei Wang. Variable range hopping model based on gaussian disordered organic semiconductor for seebeck effect in thermoelectric device. Micromachines,13(5):707, 2022.spa
dc.relation.referencesJinhui Song, Jun Zhou, and Zhong Lin Wang. Piezoelectric and semiconducting coupled power generating process of a single zno belt/wire. a technology for harvesting electricity from the environment. Nano letters, 6(8):1656–1662, 2006.spa
dc.relation.referencesCe-Wen Nan, MI Bichurin, Shuxiang Dong, D Viehland, and G Srinivasan. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of applied physics, 103(3), 2008.spa
dc.relation.referencesMartha Eloísa Aparicio Ceja and Gregorio Guadalupe Carbajal Arizaga. Utilidad de la difracción de rayos x en las nanociencias. Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, 3(2):62–72, 2010.spa
dc.relation.referencesML Ramón García. Introducción al método rietveld. CdIe Energía., Editor, 12:7–16,2007.spa
dc.relation.referencesBrian H Toby and Robert B Von Dreele. Gsas-ii: the genesis of a modern open source all purpose crystallography software package. Journal of Applied Crystallography, 46(2):544–549, 2013spa
dc.relation.referencesMarcello Picollo, Maurizio Aceto, and Tatiana Vitorino. Uv-vis spectroscopy. Physical sciences reviews, 4(4):20180008, 2019.spa
dc.relation.referencesPaul Kubelka and Franz Munk. An article on optics of paint layers. Z. Tech. Phys,12(593-601):259–274, 1931.spa
dc.relation.referencesVipin Kumar, Sachin Kr Sharma, TP Sharma, and V Singh. Band gap determination in thick films from reflectance measurements. Optical materials, 12(1):115–119, 1999.spa
dc.relation.referencesR Shaheen, J Bashir, Håkan Rundlöf, and AR Rennie. The crystal structure of calamfeo6 double perovskite. Materials Letters, 59(18):2296–2299, 2005.spa
dc.relation.referencesR Shaheen, J Bashir, M Siddique, Håkan Rundlöf, and AR Rennie. Crystal structure of alamnfeo6 (aca, sr, ba). Physica B: Condensed Matter, 385:103–105, 2006.spa
dc.relation.referencesM Nasir Khan, R Shaheen, and J Bashir. Neutron, synchrotron x-ray diffraction and xray absorption studies of calafemno6 double perovskite. Solid state sciences, 10(11):1634-1639, 2008.spa
dc.relation.referencesRamaroorthy Ramesh and Nicola A Spaldin. Multiferroics: progress and prospects in thin films. Nature materials, 6(1):21–29, 2007.spa
dc.relation.referencesPoorva Sharma and Ashwini Kumar. Recent advances in multifunctional perovskite materials. 2022.spa
dc.relation.referencesCaroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. Nih image to imagej: 25 years of image analysis. Nature methods, 9(7):671–675, 2012.spa
dc.relation.referencesWilliam E Vargas. Difusión y absorción de luz en materiales no homogéneos: Modelo de kubelka-munk. Light scattering and absorption by non homogeneous materials: The KM model, 44:163–183, 2011.spa
dc.relation.referencesPu Huang, Jun-jie Shi, Ping Wang, Min Zhang, Yi-min Ding, Meng Wu, Jing Lu, and Xin-qiang Wang. Origin of the wide band gap from 0.6 to 2.3 ev in photovoltaic material inn: quantum confinement from surface nanostructure. Journal of materials chemistry A, 4(44):17412–17418, 2016.spa
dc.relation.referencesJ-S Zhou, LG Marshall, Z-Y Li, X Li, and J-M He. Weak ferromagnetism in perovskite oxides. Physical Review B, 102(10):104420, 2020.spa
dc.relation.referencesCharles Kittel. Introduction to solid state physics. John Wiley & sons, inc, 2005.spa
dc.relation.referencesN Brahiti, M Abbasi Eskandari, M Balli, Ch Gauvin-Ndiaye, R Nourafkan, A Tremblay, and P Fournier. Analysis of the magnetic and magnetocaloric properties of alafemno6 (a= sr, ba, and ca) double perovskites. Journal of Applied Physics, 127(11), 2020.spa
dc.relation.referencesA Cortes, E Delgado, P Prieto, and W Lopera. Conduccion electronica a traves de estructuras capacitivas srtio 3+ nb/pb (zr 0.52 ti 0.48) o 3/ag crecidas sobre substratos de srtio 3 dopados con nb. Revista Colombiana de Física, 39(1), 2007.spa
dc.relation.referencesN Gergel, N Majumdar, K Keyvanfar, N Swami, LR Harriott, JC Bean, Gyana Pattanaik, Giovanni Zangari, Y Yao, and JM Tour. Study of the room temperature molecular memory observed from a nanowell device. Journal of Vacuum Science & Technology A,23(4):880–885, 2005.spa
dc.relation.referencesJuan-Carlos Sancho-Garcia. La teoría del funcional densidad y las ecuaciones variacionales de Kohn-Sham: aportación de nuevos aspectos sobre sus posibilidades y limitaciones. 2004.spa
dc.relation.referencesDiana Milena Aljure García. Análisis estructural y electrónico de la perovskita doble compleja de labife2o6. Master’s thesis, 2016.spa
dc.relation.referencesPeter E Blöchl. Projector augmented-wave method. Physical review B, 50(24):17953,1994spa
dc.relation.referencesHendrik J Monkhorst and James D Pack. Special points for brillouin-zone integrations. Physical review B, 13(12):5188, 1976.spa
dc.relation.referencesGeorg Kresse and Daniel Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 59(3):1758, 1999spa
dc.relation.referencesJohn P Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical review B, 45(23):13244, 1992.spa
dc.relation.referencesAB Shick, AI Liechtenstein, and WE Pickett. Implementation of the lda+ u method using the full-potential linearized augmented plane-wave basis. Physical Review B, 60(15):10763, 1999.spa
dc.relation.referencesPedro Borlido, Jonathan Schmidt, Ahmad W Huran, Fabien Tran, Miguel AL Marques, and Silvana Botti. Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. npj Computational Materials, 6(1):1–17, 2020.spa
dc.relation.referencesDexin Yang, Peng Zhao, Chen Yang, Tao Yang, Yulong Chen, and Dexuan Huo. A spin-valve-system in ferromagnetic semiconductor sr2femoo6/srmoo4. Ceramics International, 45(8):10072–10079, 2019.spa
dc.relation.referencesPhilip W Anderson. Antiferromagnetism. theory of superexchange interaction. Physical Review, 79(2):350, 1950.spa
dc.relation.referencesPatric W Anderson and HJPR Hasegawa. Considerations on double exchange. Physical Review, 100(2):675, 1955.spa
dc.relation.referencesEduard Leonovich Nagaev. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Physics Reports, 346(6):387–531, 2001.spa
dc.relation.referencesVijay Gopal Chilkuri, Georges Trinquier, Nadia Ben Amor, Jean-Paul Malrieu, and Nathalie Guihéry. In search of organic compounds presenting a double exchange phenomenon. Journal of Chemical Theory and Computation, 9(11):4805–4815, 2013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.proposalSemiconductoresspa
dc.subject.proposalTierras rarasspa
dc.subject.proposalFerromagnéticosspa
dc.subject.proposalFerromagneticseng
dc.subject.proposalSemiconductorseng
dc.subject.proposalRare earthseng
dc.subject.wikidataPerovskitaspa
dc.subject.wikidataperovskiteeng
dc.subject.wikidatapropiedad mecánica de los materialesspa
dc.subject.wikidatamechanical propertyeng
dc.subject.wikidatasemiconductorspa
dc.subject.wikidatasemiconductoreng
dc.titleCaracterísticas cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6spa
dc.title.translatedCrystallographic, electrical, and magnetic properties of the double perovskite material LaCaMnFeO6eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1113682762.2024.pdf
Tamaño:
5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: