Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos

dc.contributor.advisorMojica Nava, Eduardo Aliriospa
dc.contributor.advisorRivera Escobar, Hernán Mauriciospa
dc.contributor.authorPulido Aponte, Álvaro Erveyspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.date.accessioned2020-08-03T20:46:12Zspa
dc.date.available2020-08-03T20:46:12Zspa
dc.date.issued2020-06-16spa
dc.description.abstractZymomonas Mobilis (Z. Mobilis), are fermenting microorganisms that under anaerobic conditions transform reducing sugars into ethyl alcohol. Although to date, mathematical models based on mass transfer have been proposed that suggest the representation of phenomena associated with the growth of microbial populations, little is known about their implementation for specific cases in which the evidence is purely experimental, such as a case of the dynamics expressed by two strains of (Z. Mobilis) in the same confinement space. The objective of this thesis was to evaluate in silico the dynamics of growth and competition of two strains of the organism Zymomonas Mobilis in a fermentative process. For this, a multi-population mathematical model based on the chemostat mass transfer was represented for a fermentation process called model A, its implementation for two strains of Z. Mobilis (ZM1 and ZM4) and the possible implications for stability and process control. On the other hand, a co-evolutionary model based on an evolutionary game theory called model B was obtained, from the use of strategies adopted by the same competing strains; The criteria for selecting the strategies included growth kinetics and substrate consumption for the fermentation process. Finally, two strategies were implemented for the design of a proportional, integral, and derivative controller, the first empirical by the Ziegler-Nichols method and the second by the virtual reference feedback tuning method. In contrast to the values obtained an independent culture for ZM1 and ZM4, in competition, the results were incremental for ZM4 in terms of generation of microbial biomass and product in model A. Compared to model B, the extinction of ZM1 was evidenced by cause of the strategies adopted by ZM4. A comparative table was made showing the main advantages and disadvantages of the two proposed models.spa
dc.description.abstractZymomonas Mobilis (Z. Mobilis), son microorganismos fermentadores que bajo condiciones anaeróbicas transforman los azucares reductores en alcohol etílico. Aunque a la fecha se han planteado modelos matemáticos basados en transferencia de masa que sugieren la representación de fenómenos asociados al crecimiento de poblaciones microbianas, poco se sabe en cuanto a su implementación para casos específicos en los que la evidencia es netamente experimental, como es el caso de la dinámica expresada por dos cepas de (Z. Mobilis) en el mismo espacio de con finamiento. El objetivo de esta tesis fue evaluar in silico la dinámica del crecimiento y competencia de dos cepas del organismo Zymomonas Mobilis en un proceso fermentativo. Para ello, se representó un modelo matemático multipoblacional basado en la transferencia de masa del quimiostato para un proceso fermentativo denominado modelo A, su implementación para dos cepas de Z. Mobilis (ZM1 y ZM4) y las posibles implicaciones en la estabilidad y el control del proceso. Por otro lado, se obtuvo un modelo co-evolutivo basado en teoría de juegos evolutivos denominado modelo B, desde el uso de estrategias adoptadas por las mismas cepas en competencia; el criterio de selección de las estrategias incluyó la cinética de crecimiento y el consumo de sustrato para el proceso de fermentación. Finalmente, se implementaron dos estrategias para el diseño de un controlador proporcional, integral y derivativo, la primera empírica por el método de Ziegler-Nichols y la segunda por el método de ajuste de realimentación por referencia virtual. A diferencia de los valores obtenidos en cultivo independiente para ZM1 y ZM4, en competencia, los resultados fueron incrementales para ZM4 en términos de generación de biomasa microbiana y producto en el modelo A. Frente al modelo B, se evidenció la extinción de ZM1 a causa de las estrategias adoptadas por ZM4. Se realizó un cuadro comparativo donde se presentan las principales ventajas y desventajas de los dos modelos propuestos.spa
dc.description.additionalMagíster en Ingeniería - Automatización Industrial . Línea de Investigación: Control de Procesos.spa
dc.description.degreelevelMaestríaspa
dc.format.extent83spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77901
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.references[1] N. Abdellatif, R. Fekih-Salem, and T. Sari, "Competition model of n species for a single ressource and coexistence in the chemostat," 2015.spa
dc.relation.references[2] J. M. Alexander, "Evolutionary game theory," in The Stanford Encyclopedia of Philosophy, summer 2019 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University, 2019.spa
dc.relation.references[3] N. Amenaghawon, C. Okieimen, and S. Ogbeide, "Kinetic modelling of ethanol inhibition during alcohol fermentation of corn stover using saccharomyces cerevisiae," Inter J Eng Res Appl, vol. 2, no. 4, pp. 798-803, 2012.spa
dc.relation.references[4] M. Annuar, I. Tan, S. Ibrahim, and K. Ramachandran, "A kinetic model for growth and biosynthesis of medium-chain-length poly-(3-hydroxyalkanoates) in pseudomonas putida," Brazilian Journal of Chemical Engineering, vol. 25, no. 2, pp. 217-228, 2008.spa
dc.relation.references[5] B. Armstrong, J. McPherson, and Y. Li, "A lyapunov stability proof for nonlinear stiffness pd control," in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1. IEEE, 1996, pp. 945-950.spa
dc.relation.references[6] I. P. Astudillo, "Diseño integral de biorreactores continuos de tanque agitado aplicados a procesos de fermentación," 2010.spa
dc.relation.references[7] I. C. P. Astudillo and C. A. C. Alzate, "Importance of stability study of continuous systems for ethanol production," Journal of biotechnology, vol. 151, no. 1, pp. 43-55, 2011.spa
dc.relation.references[8] E. Aycardi, "Alcance, desarrollo y perspectivas de la biotecnología en el país," 1986.spa
dc.relation.references[9] J. A. Barnett, "A history of research on yeasts 5: the fermentation pathway," Yeast, vol. 20, no. 6, pp. 509-543, 2003.spa
dc.relation.references[10] G. Bastin, "Dochain. on-line estimation and adaptive control of bioreactors," 1990.spa
dc.relation.references[11] P. Bergeron, "Environmental impacts of bioethanol," in Handbook on Bioethanol. Routledge, 2018, pp. 89-103.spa
dc.relation.references[12] D. Berry, "Physiology and microbiology of scotch whisky production," Progress in industrial microbiology, 1984.spa
dc.relation.references[13] M. C. Campi, A. Lecchini, and S. M. Savaresi, "Virtual reference feedback tuning: a direct method for the design of feedback controllers," Automatica, vol. 38, no. 8, pp. 1337-1346, 2002.spa
dc.relation.references[14] A. Cano, "Sistemas de lotka-volterra en dinámica poblacional," Ph.D. dissertation, Tesis de maestría. Universidad Nacional de Educación a Distancia. España, 2011.spa
dc.relation.references[15] G. Caponi, Leyes sin causa y causas sin ley en la explicación biológica. Universidad Nacional de Colombia Bogotá, 2014.spa
dc.relation.references[16] A. Caré, F. Torricelli, M. C. Campi, and S. M. Savaresi, "A toolbox for Virtual Reference Feedback Tuning (VRFT)," in 2019 European Control Conference (ECC). IEEE, June 2019, pp. 4252-4257.spa
dc.relation.references[17] C.-T. Chen, Linear system theory and design. Oxford University Press, Inc., 1998.spa
dc.relation.references[18] E. D. De Robertis and E. M. De Robertis, Fundamentos de biología celular y molecular. El Ateneo,, 1982.spa
dc.relation.references[19] B. Dien, M. Cotta, and T. Jeffries, "Bacteria engineered for fuel ethanol production: current status," Applied microbiology and biotechnology, vol. 63, no. 3, pp. 258-266, 2003.spa
dc.relation.references[20] O. Dragesund, J. Hamre, and O. Ulltang, "Biology and population dynamics of the Norwegian spring-spawning herring," 1980.spa
dc.relation.references[21] J. Du, Z. Yuan, Z. Ma, J. Song, X. Xie, and Y. Chen, "Kegg-path: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model," Molecular bioSystems, vol. 10, no. 9, pp. 2441-2447, 2014.spa
dc.relation.references[22] H. S. Fogler, Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi. Pearson Education, 2010.spa
dc.relation.references[23] S. Freilich, R. Zarecki, O. Eilam, E. S. Segal, C. S. Henry, M. Kupiec, U. Gophna, R. Sharan, and E. Ruppin, "Competitive and cooperative metabolic interactions in bacterial communities," Nature communications, vol. 2, p. 589, 2011.spa
dc.relation.references[24] E. L. Gaden Jr, "Fermentation process kinetics," Biotechnology and bioengineering, vol. 67, no. 6, pp. 629-635, 2000.spa
dc.relation.references[25] J.-P. Grivet, "Nonlinear population dynamics in the chemostat," Computing in Science & Engineering, vol. 3, no. 1, pp. 48-55, 2001.spa
dc.relation.references[26] W. D. Hamilton, "The genetic theory of social behavior. i and ii," Journal of theoretical biology, vol. 7, pp. 1-52, 1964.spa
dc.relation.references[27] A. Haurie, J. B. Krawczyk, G. Zaccour, et al., Games and dynamic games. World Scienti c, 2012, vol. 1.spa
dc.relation.references[28] E. Heinzle, A. P. Biwer, and C. L. Cooney, Development of sustainable bioprocesses: modeling and assessment. John Wiley & Sons, 2007.spa
dc.relation.references[29] S.-B. Hsu, T.-W. Hwang, and Y. Kuang, "Global analysis of the michaelis{menten-type ratio-dependent predator-prey system," Journal of mathematical biology, vol. 42, no. 6, pp. 489-506, 2001.spa
dc.relation.references[30] J. Izquierdo Sebastián, "Ley de malthus del crecimiento de una población," 2011.spa
dc.relation.references[31] I. Jóbses, G. Egberts, K. Luyben, and J. Roels, "Fermentation kinetics of zymomonas mobilis at high ethanol concentrations: oscillations in continuous cultures," Biotechnology and bioengineering, vol. 28, no. 6, pp. 868-877, 1986.spa
dc.relation.references[32] U. Kalnenieks, A. Pentjuss, R. Rutkis, E. Stalidzans, and D. A. Fell, "Modeling of zymomonas mobilis central metabolism for novel metabolic engineering strategies," Frontiers in microbiology, vol. 5, p. 42, 2014.spa
dc.relation.references[33] F. Kargi and M. L. Shuler, Bioprocess engineering: basic concepts. Prentice-Hall PTR, 1992.spa
dc.relation.references[34] A. Kayser, J. Weber, V. Hecht, and U. Rinas, "Metabolic flux analysis of escherichia coli in glucose-limited continuous culture. i. growth-rate-dependent metabolic efficiency at steady state," Microbiology, vol. 151, no. 3, pp. 693-706, 2005.spa
dc.relation.references[35] A. I. Kiseliov, M. L. Krasnov, G. I. Makarenko, and E. A. Bernardo, Problemas de ecuaciones diferenciales ordinarias. Mir, 1973.spa
dc.relation.references[36] -, Problemas de ecuaciones diferenciales ordinarias. Mir, 1973.spa
dc.relation.references[37] M. A. Kohanski, D. J. Dwyer, B. Hayete, C. A. Lawrence, and J. J. Collins, "A common mechanism of cellular death induced by bactericidal antibiotics," Cell, vol. 130, no. 5, pp. 797-810, 2007.spa
dc.relation.references[38] H. Kurosawa, N. Nomura, and H. Tanaka, "Ethanol production from starch by a coimmobilized mixed culture system of aspergillus awamori and saccharomyces cerevisiae," Biotechnology and bioengineering, vol. 33, no. 6, pp. 716-723, 1989.spa
dc.relation.references[39] Y. A. Kuznetsov, Elements of applied bifurcation theory. Springer Science & Business Media, 2013, vol. 112.spa
dc.relation.references[40] M. W. Lau, C. Gunawan, V. Balan, and B. E. Dale, "Comparing the fermentation performance of escherichia coli ko11, saccharomyces cerevisiae 424a (lnh-st) and zymomonas mobilis ax101 for cellulosic ethanol production," Biotechnology for biofuels, vol. 3, no. 1, p. 11, 2010.spa
dc.relation.references[41] K. Lee, M. Skotnicki, D. Tribe, and P. Rogers, "Kinetic studies on a highly productive strain of zymomonas mobilis," Biotechnology Letters, vol. 2, no. 8, pp. 339-344, 1980.spa
dc.relation.references[42] W.-C. Lee and C.-T. Huang, "Modeling of ethanol fermentation using zymomonas mobilis atcc 10988 grown on the media containing glucose and fructose," Biochemical Engineering Journal, vol. 4, no. 3, pp. 217-227, 2000.spa
dc.relation.references[43] L. Ljung et al., "Theory for the user," in System Identi cation. Prentice-hall, Inc., 1987.spa
dc.relation.references[44] B. Maiorella, H. W. Blanch, and C. R. Wilke, "By-product inhibition effects on ethanolic fermentation by saccharomyces cerevisiae," Biotechnology and bioengineering, vol. 25, no. 1, pp. 103-121, 1983.spa
dc.relation.references[45] A. A. Martín, F. G.-O. Soria, and V. E. S. Mazorra, Desarrollo de modelos cinéticos para bioprocesos: aplicación a la producción de xantano. Universidad Complutense de Madrid, 1999.spa
dc.relation.references[46] L. Menten and M. Michaelis, "Die kinetik der invertinwirkung," Biochem Z, vol. 49, no. 333-369, p. 5, 1913.spa
dc.relation.references[47] E. Mojica, "Identi ficación y control de un proceso de crecimiento celular en bioreactor," Ph.D. dissertation, Master thesis, University de los Andes, 2005.spa
dc.relation.references[48] J. Monod, "Sur l'expression analytique de la croissance des populations bactériennes en collaboration avec f. morin," Rev. Sci, vol. 5, pp. 227-229, 1942.spa
dc.relation.references[49] -, "La technique de culture continue: theorie et applications," 1950.spa
dc.relation.references[50] A. Moser, Bioprocess technology: kinetics and reactors. Springer Science & Business Media, 2012.spa
dc.relation.references[51] A. Musatti, C. Mapelli, M. Rollini, R. Foschino, and C. Picozzi, "Can zymomonas mobilis substitute saccharomyces cerevisiae in cereal dough leavening?" Foods, vol. 7, no. 4, p. 61, 2018.spa
dc.relation.references[52] J. Nash, "Non-cooperative games," Annals of mathematics, pp. 286-295, 1951.spa
dc.relation.references[53] M. A. Nowak, "Five rules for the evolution of cooperation," science, vol. 314, no. 5805, pp. 1560-1563, 2006.spa
dc.relation.references[54] M. A. Nowak and R. M. May, "Evolutionary games and spatial chaos," Nature, vol. 359, no. 6398, p. 826, 1992.spa
dc.relation.references[55] M. A. Nowak and K. Sigmund, "Evolution of indirect reciprocity by image scoring," Nature, vol. 393, no. 6685, p. 573, 1998.spa
dc.relation.references[56] Y. Ogawa, Y. Sugiyama, H. J. Ferrer, L. G. Sotos, and M. M. Juárez, La fórmula preferida del profesor. Funambulista, 2008.spa
dc.relation.references[57] F. M. Pagane Guereschi Ernandes and C. H. Garcia-Cruz, "Zymomonas mobilis: um microrganismo promissor para a fermentação alcoólica," Semina: Ciencias Agrárias, pp. 361-380, 2009.spa
dc.relation.references[58] I. C. Paz Astudillo et al., "Diseño integral de biorreactores continuos de tanque agitado aplicados a procesos de fermentación," Ph.D. dissertation, Universidad Nacional de Colombia-Sede Manizales, 2010.spa
dc.relation.references[59] M. Phisalaphong, N. Srirattana, and W. Tanthapanichakoon, "Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation," Biochemical engineering journal, vol. 28, no. 1, pp. 36-43, 2006.spa
dc.relation.references[60] L. Pinal, M. Ceden, H. Gutie, J. Alvarez-Jacobs, et al., "Fermentation parameters influencing higher alcohol production in the tequila process," Biotechnology Letters, vol. 19, no. 1, pp. 45-47, 1997.spa
dc.relation.references[61] Y. Piñeros-Castro, Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigación en Colombia. UTADEO, Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias . . . , 2014.spa
dc.relation.references[62] Á. E. Pulido Aponte, H. M. Rivera Escobar, and J. J. Espitia Pardo, "Control, supervisión y representación matemática de un proceso de biodigestión anaerobia para la biomasa de contenido ruminal bovino," Tecnura, vol. 22, no. 58, pp. 21-30, 2018.spa
dc.relation.references[63] N. Quijano, C. Ocampo-Martinez, J. Barreiro-Gomez, G. Obando, A. Pantoja, and E. Mojica-Nava, "The role of population games and evolutionary dynamics in distributed control systems: The advantages of evolutionary game theory," IEEE Control Systems Magazine, vol. 37, no. 1, pp. 70-97, 2017.spa
dc.relation.references[64] N. Qureshi and I. Maddox, "Application of novel technology to the abe fermentation process," Applied Biochemistry and Biotechnology, vol. 34, no. 1, pp. 441-448, 1992.spa
dc.relation.references[65] M. Ribas-García, R. Hurtado-Vargas, N. Garrido-Carralero, F. Domenech-López, and R. Sabadí-Díaz, "Metodología para la modelación matemática de procesos. caso de estudio, fermentación alcohólica," ICIDCA. Sobre los Derivados de la Caña de Azúcar, vol. 45, no. 1, pp. 37-47, 2011.spa
dc.relation.references[66] P. Rogers, Y. Jeon, K. Lee, and H. Lawford, "Zymomonas mobilis for fuel ethanol and higher value products," in Biofuels. Springer, 2007, pp. 263-288.spa
dc.relation.references[67] P. Rogers, K. Lee, M. Skotnicki, and D. Tribe, "Ethanol production by zymomonas mobilis," in Microbial reactions. Springer, 1982, pp. 37-84.spa
dc.relation.references[68] D. Ross, "Game theory," in The Stanford Encyclopedia of Philosophy, spring 2019 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University, 2019.spa
dc.relation.references[69] R. Rutkis, U. Kalnenieks, E. Stalidzans, and D. A. Fell, "Kinetic modelling of the zymomonas mobilis entner-doudoroff pathway: insights into control and functionality," Microbiology, vol. 159, no. 12, pp. 2674-2689, 2013.spa
dc.relation.references[70] W. H. Sandholm, Population games and evolutionary dynamics. MIT press, 2010.spa
dc.relation.references[71] H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition. Cambridge university press, 1995, vol. 13.spa
dc.relation.references[72] C. Smolke, The metabolic pathway engineering handbook: fundamentals. CRC press, 2009.spa
dc.relation.references[73] P. Taylor and P. L. Williams, "Theoretical studies on the coexistence of competing species under continuous-flow conditions," Canadian Journal of Microbiology, vol. 21, no. 1, pp. 90-98, 1975.spa
dc.relation.references[74] K. G. TeBeest, "Classroom note: Numerical and analytical solutions of volterra's population model," SIAM review, vol. 39, no. 3, pp. 484-493, 1997.spa
dc.relation.references[75] Y. Tian, K. Sun, A. Kasperski, and L. Chen, "Nonlinear modelling and qualitative analysis of a real chemostat with pulse feeding," Discrete Dynamics in Nature and Society, vol. 2010, 2010.spa
dc.relation.references[76] A. Traulsen and M. A. Nowak, "Evolution of cooperation by multilevel selection," Proceedings of the National Academy of Sciences, vol. 103, no. 29, pp. 10 952-10 955, 2006.spa
dc.relation.references[77] V. TREJOS, J. Fontalvo Alzate, and M. A. Gomez Garcia, "Mathematical description and stability analysis of fermentative processes," Dyna, vol. 76, no. 158, pp. 111-121, 2009.spa
dc.relation.references[78] R. L. Trivers, "The evolution of reciprocal altruism," The Quarterly review of biology, vol. 46, no. 1, pp. 35-57, 1971.spa
dc.relation.references[79] C. H. S. Trujillo, "La historia de los benefactores de la humanidad," Infectio, vol. 8, no. 2, 2011.spa
dc.relation.references[80] V. Vásquez and C. Lescano, "Predicción por redes neuronales arti ficiales de la calidad fisicoquímica de vinagre de melaza de caña por efecto de tiempo-temperatura de alimentación a evaporador-destilador flash," Scientia Agropecuaria, vol. 1, no. 1, pp. 63-73, 2010.spa
dc.relation.references[81] U. Veeramallu and P. Agrawal, "A structured kinetic model for zymomonas mobilis atcc10988," Biotechnology and bioengineering, vol. 36, no. 7, pp. 694-704, 1990.spa
dc.relation.references[82] J. Villadsen, J. Nielsen, and G. Lidén, Bioreaction engineering principles. Springer Science & Business Media, 2011.spa
dc.relation.references[83] J. Y. Wakano, K. Aoki, and M. W. Feldman, "Evolution of social learning: a mathematical analysis," Theoretical population biology, vol. 66, no. 3, pp. 249-258, 2004.spa
dc.relation.references[84] O. P. Ward, Fermentation biotechnology: principles, processes and products. Open University Press Milton Keynes, 1989.spa
dc.relation.references[85] J.Weber, A. Kayser, and U. Rinas, "Metabolic flux analysis of escherichia coli in glucose-limited continuous culture. ii. dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behavior," Microbiology, vol. 151, no. 3, pp. 707-716, 2005.spa
dc.relation.references[86] H. Widiastuti, J. Y. Kim, S. Selvarasu, I. A. Karimi, H. Kim, J.-S. Seo, and D.-Y. Lee, "Genome-scale modeling and in silico analysis of ethanologenic bacteria zymomonas mobilis," Biotechnology and bioengineering, vol. 108, no. 3, pp. 655-665, 2011.spa
dc.relation.references[87] Z. Wu, E. Xu, J. Long, Y. Zhang, F. Wang, X. Xu, Z. Jin, and A. Jiao, "Monitoring of fermentation process parameters of Chinese rice wine using attenuated total reflectance mid-infrared spectroscopy," Food Control, vol. 50, pp. 405-412, 2015.spa
dc.relation.references[88] S. Yang, T. J. Tschaplinski, N. L. Engle, S. L. Carroll, S. L. Martin, B. H. Davison, A. V. Palumbo, M. Rodriguez, and S. D. Brown, "Transcriptomic and metabolomic pro ling of zymomonas mobilis during aerobic and anaerobic fermentations," Bmc Genomics, vol. 10, no. 1, p. 34, 2009.spa
dc.relation.references[89] M. L. Zeeman, "Extinction in competitive lotka-volterra systems," Proceedings of the American Mathematical Society, vol. 123, no. 1, pp. 87-96, 1995.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalZ.Mobilisspa
dc.subject.proposalquimiostatospa
dc.subject.proposalcoexistenceeng
dc.subject.proposalcoexistenciaspa
dc.subject.proposalconcentrationeng
dc.subject.proposalgame theoryeng
dc.titleDinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegosspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024508293.2020.pdf
Tamaño:
7.74 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: